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Langevin dynamics has become a popular tool to simulate the Boltzmann equilibrium distribution.
When the repartition of the Langevin equation involves the exact realization of the Ornstein-Uhlenbeck
noise, in addition to the conventional density evolution, there exists another type of discrete evolution
that may not correspond to a continuous, real dynamical counterpart. This virtual dynamics case is
also able to produce the desired stationary distribution. Different types of repartition lead to differ-
ent numerical schemes, of which the accuracy and efficiency are investigated through studying the
harmonic oscillator potential, an analytical solvable model. By analyzing the asymptotic distribution
and characteristic correlation time that are derived by either directly solving the discrete equations of
motion or using the related phase space propagators, it is shown that the optimal friction coefficient
resulting in the minimum characteristic correlation time depends on the time interval chosen in the
numerical implementation. When the recommended “middle” scheme is employed, both analytical
and numerical results demonstrate that, for good numerical performance in efficiency as well as accu-
racy, one may choose a friction coefficient in a wide range from around the optimal value to the high
friction limit. Published by AIP Publishing. https://doi.org/10.1063/1.4996204

I. INTRODUCTION

The behavior of complicated systems, either social or
natural, is often described by the stochastic differential equa-
tion (SDE). The numerical simulation of SDE is nowadays
an important theme in such diverse fields from finance and
ecology, to physics and chemistry.1–3 In the present paper, we
will analytically derive the stationary phase-space density of
a Brownian system described by SDEs according to different
numerical algorithms, while the characteristic correlation time
will also be analytically obtained in the harmonic limit. While
the former indicates the accuracy of the algorithm, the latter
suggests the efficiency.

Assume the (time-independent) Hamiltonian of the sys-
tem H to be of the standard Cartesian form

H = pT M−1p/2 + U (x) . (1)

Here M is the diagonal “mass matrix” with elements {mj}, and
p and x are the momentum and coordinate vectors, respec-
tively. N is the number of particles and 3N is the total number of
degrees of freedom. (3N becomes one when a one-dimensional
one-particle system is studied.) It is also assumed that the sys-
tem is in the heat bath at temperature T. Define β = 1/kBT with
kB as the Boltzmann constant.

a)Electronic mail: jianliupku@pku.edu.cn
b)Electronic mail: jiushu@bnu.edu.cn

Brownian motion of the system may be described by the
Langevin equation4

dxt =M−1ptdt, (2)

dpt = −∇xt U(xt)dt − γptdt + σM1/2dWt , (3)

where Wt is a vector of 3N-dimensional independent Wiener
processes, γ is often a diagonal friction matrix with positive
elements, and σ =

√
2/βγ1/2. Here and in the following, a

function F of time t (F(t)) is also denoted as F t for abbre-
viation. Note that the relation between the matrix σ and the
friction matrix γ is based on the fluctuation-dissipation theo-
rem, which guarantees that the steady state of the Langevin
system satisfies the Boltzmann distribution e−βH(x,p). Var-
ious numerical algorithms have been proposed to use the
Langevin equation as a type of thermostat to obtain the desired
Boltzmann distribution. While some algorithms were origi-
nally proposed without employing the Lie-Trotter splitting,5–11

some researchers involved the splitting to derive integrators
for Langevin dynamics.12–25 Leimkuhler and Matthews have
recently compared a few numerical algorithms for Langevin
dynamics in the high friction limit20–22 for their performances
in accuracy.

In addition to accuracy, sampling efficiency is often
another important factor to consider when the Langevin equa-
tion is employed as a type of thermostat. The main purpose
of the paper is to present two theoretical approaches to study
both the accuracy and efficiency of the numerical algorithm.
One approach is derived by solving the discrete equations
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of motion (the trajectory-based approach), and the other is
derived by using the related phase space propagators (the phase
space propagator approach). Most practical algorithms employ
second-order (splitting) schemes, because higher order (split-
ting) ones11,26–34 are more complicated and do not necessarily
offer more economic algorithms for general molecular systems
and they involve either more force calculations or second-order
derivatives (or even higher order derivatives) of the potential
energy surface.25 We then focus the exploration on various
second-order algorithms (more accurately, on algorithms that
lead to second-order accuracy for the stationary distribution).
The paper is organized as follows: In Sec. II, we use the
Langevin equation to justify the Fokker-Planck equation (or
the forward Kolmogorov equation) that the phase-space den-
sity ρ(x, p, t) satisfies, and then show that the stationary state
of ρ(x, p, t) is the Boltzmann distribution. The procedure
will also be used to analyze the stationary state and charac-
teristic correlation time for a numerical algorithm when time
is discretized. Section III summarizes three types of reparti-
tion and their schemes of numerical algorithms. Section IV
then offers two different approaches to obtain the stationary
state for each scheme (for both real and virtual dynamics if
the latter is available) for the harmonic system, while Sec. V
analyzes the characteristic correlation time and suggests the
optimal value of the friction coefficient for the underlying
algorithm. Section VI demonstrates some numerical examples
beyond the harmonic limit to verify the results derived from the
analytical analysis. Our conclusion remarks are presented in
Sec. VII.

II. BOLTZMANN DISTRIBUTION AS THE STATIONARY
STATE OF LANGEVIN DYNAMICS

Note that ρ(x, p, t) ≡
〈
δ(xt − x)δ(pt − p)

〉
, where 〈 〉

denotes the stochastic averaging over the Wiener process Wt .
With the chain rule and Eqs. (2) and (3), the derivative of ρ
with respect to time t is

∂

∂t
ρ(x, p, t) = −∇x ·

〈
ẋtδ(xt − x)δ(pt − p)

〉
−∇p ·

〈
ṗtδ(xt − x)δ(pt − p)

〉
(4)

= −M−1∇x ·
〈
ptδ(xt − x)δ(pt − p)

〉
+∇p ·

〈
∇xt U(xt)δ(xt − x)δ(pt − p)

〉
+ γ∇p ·

〈
ptδ(xt − x)δ(pt − p)

〉
− σM1/2∇p ·

〈
ηtδ(xt − x)δ(pt − p)

〉
, (5)

where ηt formally stands for dWt /dt and is called the white
noise vector. The property of the δ-function allows us to
obtain 〈

xtδ(xt − x)δ(pt − p)
〉
= xρ(x, p, t),〈

∇xt U(xt)δ(xt − x)δ(pt − p)
〉
= ∇xU(x)ρ(x, p, t),

and 〈
ptδ(xt − x)δ(pt − p)

〉
= pρ(x, p, t).

Upon resorting to the Furutsu-Novikov theorem3 and Eq. (3),
there is

〈
ηtδ(xt − x)δ(pt − p)

〉
= −

1
2
∇p

〈
δpt

δηt
δ(xt − x)δ(pt − p)

〉
= −

1
2
σM1/2∇pρ(x, p, t). (6)

Substituting these relations into Eq. (5) using a simplified
notation ρ for the density distribution, we obtain

∂

∂t
ρ = −

(
M−1p

)
· ∇xρ + ∇xU(x) · ∇pρ +

(
γ∇p

)
· (pρ)

+

(
1
2
σ2M∇p

)
· ∇pρ, (7)

which is the Fokker-Planck equation (or the forward Kol-
mogorov equation) for Langevin dynamics. One can simply
recast Eq. (7) as ∂ρ/∂t = Lρ, where the relevant Kolmogorov
operator for the right-hand side (RHS) of Eq. (7) is

Lρ = −
(
M−1p

)
· ∇xρ + ∇xU(x) · ∇pρ + ∇p ·

(
γpρ

)
+

1
β
∇p ·

(
γM∇pρ

)
. (8)

It is straightforward to show that the Boltzmann distribution
e−βH(x,p) is a stationary state for

∂ρ/∂t = 0. (9)

Given an initial distribution, the transient behavior of the
density distribution can in principle be computed by using
Eq. (7). But we are only interested in the steady state for the
Brownian system described by the difference equation resulted
from Eqs. (2) and (3) as time is discretized because the result
may be useful for optimizing numerical algorithms. In the fol-
lowing, we will give a brief introduction to the frequently used
numerical algorithms for solving Eqs. (2) and (3) and study
the corresponding stationary states for the harmonic system.
A uniform time interval (or step size) ∆t will be adopted.

III. NUMERICAL ALGORITHMS

Several numerical simulation techniques have been devel-
oped for solving the Langevin system. The efficiency strongly
depends on the underlying algorithm. A useful strategy to
design numerical algorithms is based on the repartition of
Eqs. (2) and (3).

A. First type of repartition

The first type of repartition of Eqs. (2) and (3) reads as
[

dxt

dpt

]
=

[
M−1pt

0

]
dt︸         ︷︷         ︸

x

+

[
0

−∇xt U(xt)

]
dt︸              ︷︷              ︸

p

+

[
0

−γptdt + σM1/2dWt

]

︸                         ︷︷                         ︸
T

, (10)

which allows one to take full advantage of the “solvability”
of the three parts by splitting the evolution in one step into
different sub-steps. Suppose the system starts with (x(t),p(t))
at time t. When there is only the first term in the RHS of
Eq. (10), then exact dynamics leads to the update relation

[
x(t + ∆t)
p(t + ∆t)

]
=

[
x(t) + M−1p(t)∆t

p(t)

]
. (11)
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Similarly, the other two solutions corresponding to the second
and third terms, respectively, read as

[
x(t + ∆t)
p(t + ∆t)

]
=

[
x(t)

p(t) − ∇U(x)|x=x(t)∆t

]
, (12)

[
x(t + ∆t)
p(t + ∆t)

]
=

[
x(t)

e−γ∆tp(t) +Ω(t,∆t)

]
, (13)

where in Eq. (13)

Ω(t,∆t) = σM1/2
∫ t+∆t

t
dse−γ(t+∆t−s)ηs. (14)

It is straightforward to show that Ω(t,∆t) for a fixed time t
is a Gaussian random vector with zero mean and diagonal
deviation matrix35〈

Ω(t,∆t)ΩT (t,∆t)
〉
=

1
2
σ2Mγ−1

(
1 − e−2γ∆t

)
(15)

=
1
β

M
(
1 − e−2γ∆t

)
, (16)

where in the following 1 denotes the unit matrix with a suitable
dimension obvious in the context. Note that the third part is
the Ornstein-Uhlenbeck (OU) process.

Consider a standard-Gaussian-random-number vector
µ(t,∆t) for a fixed time t with zero mean

〈µ (t,∆t)〉 = 0 (17)

and diagonal deviation matrix〈
µ(t,∆t)µT (t,∆t)

〉
= 1. (18)

The Gaussian random vector can be recast as

Ω(t,∆t) =

√
1
β

M1/2
(
1 − e−2γ∆t

)1/2
µ(t,∆t). (19)

In numerical implementation, the element Ω(j) of Ω can
be generated feasibly by using a standard-Gaussian-random-

number generator with coefficient β−1/2M1/2
j

(
1 − e−2γj∆t

)1/2
,

where M j and γj are the j-th diagonal elements of M and γ,
respectively.

We use eL∆t to represent the phase space propagator for
Eqs. (2) and (3) or for Eq. (7) when the infinitesimal time
interval dt becomes finite as ∆t. Analogously, the phase space
propagators for Eqs. (11)–(13) are denoted as eLx∆t , eLp∆t ,
and eLT∆t , respectively. Here Lx, Lp, and LT are the relevant
Kolmogorov operators,

Lxρ = −
(
M−1p

)
· ∇xρ, (20)

Lpρ = ∇xU(x) · ∇pρ, (21)

LT ρ = ∇p ·
(
γpρ

)
+

1
β
∇p ·

(
γM∇pρ

)
, (22)

where ρ is a density distribution in the phase space.
Different splitting orders for Eq. (10) lead to different

algorithms. We have four schemes that are reduced to the con-
ventional velocity-Verlet algorithm (eLp∆t/2eLx∆teLp∆t/2) for
constant energy MD when the OU process is not included.
Note that the conventional velocity-Verlet algorithm is
symplectic.

(1) Middle scheme

eL∆t ≈ eL
Middle∆t = eLp∆t/2eLx∆t/2eLT∆teLx∆t/2eLp∆t/2.

(23)
The thermostat process is arranged in the middle. As
will be discussed in Sec. IV, in addition to real dynam-
ics for the Langevin equation as conventionally studied,
virtual dynamics may also be proposed in the scheme to
obtain the Boltzmann distribution. Note that an efficient
Langevin thermostat algorithm proposed by Leimkuh-
ler and Matthews20 is the real dynamics case of the
“middle” scheme.

(2) End scheme

eL∆t ≈ eL
End∆t = eLT∆teLp∆t/2eLx∆teLp∆t/2. (24)

The thermostat process is applied after the velocity-
Verlet process. The real time dynamics case was given
in Ref. 20.

(3) Beginning scheme

eL∆t ≈ eL
Begin∆t = eLp∆t/2eLx∆teLp∆t/2eLT∆t . (25)

The thermostat process is applied before the velocity-
Verlet process. The real time dynamics case was pre-
sented in Ref. 18.

(4) Side scheme

eL∆t ≈ eL
Side∆t = eLT∆t/2eLp∆t/2eLx∆teLp∆t/2eLT∆t/2.

(26)
The thermostat process for half an interval∆t/2 is at each
of the two sides (i.e., before and after the velocity-Verlet
process). The real time dynamics case was suggested in
Ref. 16.

Similarly, one can also obtain the following
schemes:

(5) Position-Verlet (PV)-middle scheme

eL∆t ≈ eL
PV-middle∆t = eLx∆t/2eLp∆t/2eLT∆teLp∆t/2eLx∆t/2.

(27)
(6) PV-end scheme

eL∆t ≈ eL
PV-end∆t = eLT∆teLx∆t/2eLp∆teLx∆t/2. (28)

(7) PV-beginning scheme

eL∆t ≈ eL
PV-begin∆t = eLx∆t/2eLp∆teLx∆t/2eLT∆t . (29)

(8) PV-side scheme

eL∆t ≈ eL
PV-side∆t = eLT∆t/2eLx∆t/2eLp∆teLx∆t/2eLT∆t/2. (30)

The real dynamics cases of the four schemes were earlier stud-
ied by Leimkuhler et al.20,22 These schemes are reduced to
the position-Verlet (PV) algorithm (eLx∆t/2eLp∆teLx∆t/2) for
constant energy MD as the OU process is not considered. (The
PV algorithm is also symplectic.)

As will be discussed in Sec. V, the stationary state dis-
tribution produced by any one of the eight schemes for a
harmonic system is independent of the Langevin friction coef-
ficient γ. More schemes may be proposed with the repartition
of Eq. (10), but their stationary state distributions for a har-
monic system will often depend on the friction coefficient [see
the supplementary material for more discussion].

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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B. Second type of repartition

An alternative type of repartition of Eqs. (2) and (3) is
[

dxt

dpt

]
=

[
0

−∇xt U(xt)dt − γptdt + σM1/2dWt

]

︸                                            ︷︷                                            ︸
pT

+

[
M−1pt

0

]
dt︸         ︷︷         ︸

x

. (31)

When there is only the first term in Eq. (31), exact dynamics
leads to the update relation
[

x(t + ∆t)
p(t + ∆t)

]

=

[
x(t)

e−γ∆tp(t) − γ−1
(
1 − e−γ∆t

)
∇U(x)|x=x(t) +Ω(t,∆t)

]
,

(32)

where Ω(t,∆t) is defined in the same way as in Eq. (14) or
in Eq. (16). The phase space propagator for the first term
in Eq. (31) is eLp−T∆t for a finite time interval ∆t, where the
relevant Kolmogorov operator Lp−T is

Lp−T ρ = ∇xU(x) · ∇pρ + ∇p ·
(
γpρ

)
+

1
β
∇p ·

(
γM∇pρ

)
.

(33)

Two schemes for Eq. (31) are as follows:

(9) Middle-pT scheme

eL∆t ≈ eL
Middle-pT∆t = eLx∆t/2eLp−T∆teLx∆t/2. (34)

(10) Side-pT scheme

eL∆t ≈ eL
Side-pT∆t = eLp−T∆t/2eLx∆teLp−T∆t/2. (35)

Both schemes were proposed by Melchionna in 2007.17

C. Third type of repartition

Analogously, the third type of repartition of Eqs. (2) and
(3) is
[

dxt

dpt

]
=

[
M−1ptdt

−γptdt + σM1/2dWt

]

︸                         ︷︷                         ︸
xT

+

[
0

−∇xt U(xt)

]
dt︸              ︷︷              ︸

p

. (36)

The solution to the first term of Eq. (36) reads as
[

x(t + ∆t)
p(t + ∆t)

]
= e−K∆t

[
x(t)
p(t)

]
+
∫ t+∆t

t
dse−K(t+∆t−s)K1η̄s,

(37)
where

K =
(

0 −M−1

0 γ

)
, K1 =

(
0 0
0 σM1/2

)
, η̄s =

(
0
ηs

)
. (38)

It is easy to verify that

e−K∆t =

(
1 γ−1

(
1 − e−γ∆t

)
M−1

0 e−γ∆t

)
. (39)

Equation (37) can be expressed as
[

x(t + ∆t)
p(t + ∆t)

]
= e−K∆t

[
x(t)
p(t)

]
+ Ω̄(t,∆t), (40)

where

Ω̄(t,∆t) =
∫ t+∆t

t
ds e−K(t+∆t−s)K1η̄s. (41)

It is straightforward to show that Ω̄(t,∆t) is a Gaussian
random vector with zero mean and deviation matrix

〈
Ω̄(t,∆t)Ω̄

T
(t,∆t)

〉
=

∫ t+∆t

t
ds e−K(t+∆t−s)

(
0 0
0 2
βγM

)
e−KT (t+∆t−s)

=
1
β

*.
,

γ−2
(
2γ∆t − 3 + 4e−γ∆t − e−2γ∆t

)
M−1 γ−1

(
1 − e−γ∆t

)2

γ−1
(
1 − e−γ∆t

)2
M

(
1 − e−2γ∆t

) +/
-

. (42)

In numerical implementation, Ω̄ is generated by using a
standard-Gaussian-random-number generator and a matrix C,
i.e.,

Ω̄(t,∆t) = Cµ (t,∆t) , (43)

where µ(t,∆t) is the standard Gaussian random vector defined
by Eqs. (17) and (18) and

C = TΣ1/2. (44)

Here

T = *.
,

1
2 L−1

1 P−1
3 (P1 − P2 − E)

1
2

L−1
2 P−1

3 (P1 − P2 + E)

L−1
1 L−1

2

+/
-

,

Σ =
1

2β

(
P1 + P2 − E 0

0 P1 + P2 + E

) (45)

with the diagonal matrix

P1 = γ
−2

(
2γ∆t − 3 + 4e−γ∆t − e−2γ∆t

)
M−1,

P2 =M
(
1 − e−2γ∆t

)
,

P3 = γ
−1

(
1 − e−γ∆t

)2
,

E =
[
(P1 − P2)2 + 4P3

2
]1/2

,

L1 =



[
1
2

P−1
3 (P1 − P2 − E)

]2

+ 1



1/2

,

L2 =



[
1
2

P−1
3 (P1 − P2 + E)

]2

+ 1



1/2

.

(46)
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The phase space propagator for the first term in Eq. (36)
is eLx−T∆t for a finite time interval ∆t, where the relevant
Kolmogorov operator Lx−T is

Lx−T ρ = −
(
M−1p

)
· ∇xρ+∇p ·

(
γpρ

)
+

1
β
∇p ·

(
γM∇pρ

)
.

(47)

Two schemes for Eq. (36) can be proposed as follows:

(11) Middle-xT scheme

eL∆t ≈ eL
Middle-xT∆t = eLp∆t/2eLx−T∆teLp∆t/2. (48)

(12) Side-xT scheme

eL∆t ≈ eL
Side-xT∆t = eLx−T∆t/2eLp∆teLx−T∆t/2. (49)

The splitting in either scheme was earlier mentioned by Droz-
dov in 1993,12 although no algorithm was discussed or studied
in the literature.

When the thermostat is not included, it is trivial to show
that the “middle-xT” and “side-pT” schemes are reduced to
the velocity-Verlet algorithm for constant energy MD, while
the “side-xT” and “middle-pT” schemes approach the position
Verlet algorithm instead.

IV. STATIONARY DISTRIBUTION FOR THE HARMONIC
SYSTEM

We should stress that it is very difficult if not impossible
to carry out the error analysis for general systems. Here we
only consider the linear one for which the potential function is

U(x) =
1
2

(
x − xeq

)T
A

(
x − xeq

)
, (50)

where xeq is a constant vector and A is a constant Hessian
matrix. Below we show two approaches to obtain the stationary
state distribution.

A. Phase space propagator approach

We first present an approach that uses phase space propa-
gators to do the analysis. It is described in detail in Appendix
A on how to obtain the stationary state distribution for a
one-dimensional harmonic system. We follow Appendix C of
Ref. 24 to study the multi-dimensional case for the first eight
schemes that use the first type of repartition for the harmonic
system [Eq. (50)]. Now Eq. (21) becomes

Lpρ = (x − xeq)T A
∂ρ

∂p
. (51)

Using the Taylor expansion eLp∆t =
∞∑

n=0

1
n!

(
∆t(x − xeq)T A∇p

)n
,

it is straightforward to verify that

eLp∆tg(p) = g
(
p + A

(
x − xeq

)
∆t

)
, (52)

where eLp∆t is a momentum shift operator. Similarly, Eq. (20)
leads to a position shift operator eLx∆t that has

eLx∆t f (x) = f (x −M−1p∆t). (53)

The OU process [Eq. (13) or Eq. (22)] keeps the Maxwell
momentum distribution unchanged, i.e.,

eLT∆t exp

{
−β

[
1
2

pT M−1p
]}
= exp

{
−β

[
1
2

pT M−1p
]}

.

(54)

Consider the density distribution

ρMiddle (x, p) =
1

ZN
exp



−β



1
2

pT
(
M − A

∆t2

4

)−1

p

+
1
2

(
x − xeq

)T
A

(
x − xeq

)]}
, (55)

where ZN is the normalization constant. It is easy to show that
Eq. (55) is a stationary density distribution for the “middle”
scheme, which satisfies

eL
Middle∆t ρMiddle = ρMiddle. (56)

Analogously, one may verify that the “side”/“end”/“beginning”
schemes share the same stationary density distribution for the
harmonic system,

ρSide/End/Begin (x, p) =
1

Z ′N
exp

{
−β

[
1
2

pT M−1p +
1
2

(
x− xeq

)T

× (1 − AM−1∆t2

4
)A

(
x − xeq

)]}
,

(57)

where Z ′N is the normalization constant.
Adopting the same procedure, we obtain the stationary

density distribution for the “PV-middle” scheme

ρPV-middle (x, p) =
1

Z̄N
exp

{
−β

[
1
2

pT
(
1 −M−1A

∆t2

4

)
M−1p

+
1
2

(
x − xeq

)T
A

(
x − xeq

)]}
, (58)

where Z̄N is the normalization constant. The “PV-side”/“PV-
end”/“PV-beginning” schemes share the same stationary den-
sity distribution for the harmonic system,

ρPV-side/PV-end/PV-begin (x, p)

=
1

Z̄ ′N
exp

{
−β

[
1
2

pT M−1p +
1
2

(
x − xeq

)T

× (1 − AM−1∆t2

4
)
−1

A
(
x − xeq

)




, (59)

with the normalization constant Z̄ ′N . In the harmonic limit,
the “middle”/“PV-middle” schemes lead to the exact con-
figurational distribution but not the exact momentum dis-
tribution, while the “side”/“end”/“beginning”/“PV-side”/“PV-
end”/“PV-beginning” schemes produce the exact momentum
distribution but not the exact configurational distribution.
Interestingly, the stationary density distribution for the har-
monic system obtained from any one of these schemes does
not depend on the diagonal friction matrix γ.

It is important to note that all conclusions above hold as
long as Eq. (54) is satisfied. Replace e−γ∆t by−e−γ∆t and e−nγ∆t

by
(
−e−γ∆t

)n
for any integer n in Eqs. (13) and (16) [i.e., the

solution to the OU process]. Equation (13) then becomes
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[
x(t + ∆t)
p(t + ∆t)

]
=

[
x(t)

−e−γ∆tp(t) +Ω(t,∆t)

]
, (60)

where Ω(t,∆t) is a Gaussian random vector with zero mean,
for which the diagonal deviation matrix is defined by Eq. (16).
Interestingly, Eq. (60) does not change the Maxwell momen-
tum distribution, which still satisfies Eq. (54). It then presents
another thermostat method based on the Langevin equation,
albeit that Eq. (60) is not a physical solution to

[
dxt

dpt

]
=

[
0

−γptdt + σM1/2dWt

]
. (61)

Each of the first eight schemes [Eqs. (23)–(30)] in Sec. III
then has two versions. One is the real dynamics case as con-
ventionally used, and the other is the virtual dynamics case
by replacing eLT∆t by eL

vir
T ∆t [the phase space propagator for

Eq. (60)] in the scheme. The virtual dynamics cases for the
eight schemes [Eqs. (23)–(30)] in Sec. III are denoted as
“middle (vir)”, “side (vir)”, “end (vir)”, “beginning (vir)”,
“PV-middle (vir)”, “PV-side (vir)”, “PV-end (vir)”, and “PV-
beginning (vir)”, respectively. Any one of the virtual dynamics
cases then shares the same stationary density distribution with
its corresponding real dynamics case for a finite time inter-
val ∆t for the harmonic system. More importantly, it is easy
to verify that any one of the virtual dynamics cases for the
eight schemes [Eqs. (23)–(30)] in Sec. III leads to the correct
Boltzmann distribution e−βH(x,p) for any general systems [of
the form Eq. (1)] when the time interval ∆t approaches zero.

Interestingly, in Appendix B, we derive the relation
between the “middle”/“middle (vir)” scheme and Grønbech-
Jensen and Farago’s algorithm.10 The unified theoretical
framework suggested in the paper naturally includes our pro-
posed methods: Grønbech-Jensen and Farago’s algorithm10

and Leimkuhler and Matthews’s integrators.20,21

B. Trajectory-based approach

We further employ a trajectory-based approach by directly
solving the discrete equations of motion to do the analysis.

We denote (xn,pn) for the phase-space point and ρn for the
density distribution at the n-th step. By definition, the density
distribution at the n-th time step is ρn ≡

〈
δ(xn − x)δ(pn − p)

〉
.

In principle, if xn and pn are known as a functional of the
white noise ηt or the independent increment process Ω(t,∆t),
ρn could be evaluated.

We first consider the “middle” scheme. The update of the
position and momentum based on this algorithm reads as

xn+1 = xn +
∆t
2

M−1
(
1 + e−γ∆t

) [
pn −

∆t
2
∇xn U(xn)

]

+
∆t
2

M−1Ωn, (62)

pn+1 = e−γ∆t
[
pn −

∆t
2
∇xn U(xn)

]
−
∆t
2
∇xn+1 U(xn+1) +Ωn,

(63)

where Ωn ≡ Ω(n∆t,∆t) defined by Eqs. (14) and (15) [or
Eq. (19)] are taken to be an independent increment process
in the numerical implementation, namely, 〈Ωn〉 = 0 and

〈
ΩnΩ

T
n′
〉
= δnn′

1
β

M
(
1 − e−2γ∆t

)
. (64)

Equations (62) and (63) for the harmonic system [Eq. (50)]
become

xn+1 = xn +
∆t
2

M−1
(
1 + e−γ∆t

) [
pn −

∆t
2

A
(
xn − xeq

)]

+
∆t
2

M−1Ωn, (65)

pn+1 = e−γ∆t
[
pn −

∆t
2

A
(
xn − xeq

)]
−
∆t
2

A
(
xn+1 − xeq

)
+Ωn.

(66)

For convenience, we now deal with the discrete-time evolution
in the phase space. Let R denote the phase-space point, namely,

Rn ≡

(
xn

pn

)
. (67)

As the system is driven by the Gaussian process, the resultant
dynamics described by the update relations, Eqs. (65) and (66),
is a linear combination of stochastic Gaussian processes, which
is itself a Gaussian, too. Physically, the system finally evolves
to the stationary state possessing a fixed averaged phased-
space point R̄ ≡ limn→∞R̄n (here R̄n ≡ 〈Rn〉) and fluctuation

correlation matrix W ≡ limn→∞

〈(
Rn − R̄n

) (
Rn − R̄n

)T
〉
.

Because the stationary state assumes a Gaussian distribution,
its property is fully determined by the two quantities R̄ and W
that are required to be determined. To calculate R̄, one may
take the random average of Eqs. (65) and (66) and let n go to
infinity to obtain

x̄ = x̄ +
∆t
2

M−1
(
1 + e−γ∆t

) [
p̄ −
∆t
2

A
(
x̄ − xeq

)]
, (68)

p̄ = e−γ∆t
[
p̄ −
∆t
2

A
(
x̄ − xeq

)]
−
∆t
2

A
(
x̄ − xeq

)
. (69)

From these equations, one readily obtains

x̄ = xeq, (70)

p̄ = 0. (71)

It should be stressed that here we have assumed that the sta-
tionary state exists so that x̄ = limn→∞x̄n = limn→∞x̄n+1 and
p̄ = limn→∞p̄n = limn→∞p̄n+1. Although the same procedure,
that is, treating the motion in the configuration and momentum
space separately according to Eqs. (65) and (66) may be used
to establish a set of equations for the equilibrium fluctuation
correlation matrices Wxx ≡ limn→∞

〈
(xn − x̄n) (xn − x̄n)T

〉
,

Wxp ≡ limn→∞

〈
(xn − x̄n)

(
pn − p̄n

)T
〉
= WT

px, and Wpp

≡ limn→∞

〈(
pn − p̄n

) (
pn − p̄n

)T
〉

that can be used to con-
struct W, no powerful techniques are available to solve them
except for the one-dimensional system. For general systems,
therefore, we follow a “physical” way of the phase-space
dynamics to determine W after solving Rn. It turns out that the
discrete trajectory Rn may shed more insights on the steady
state as well as the stability of the dynamics, which may be hid-
den otherwise. To solve the phase-space dynamics, we recast
iteration relations, Eqs. (65) and (66), as10
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Rn+1 = M̃Rn + F0 + Ω̃n, (72)

where

M̃ =
(

M̃xx M̃xp

M̃px M̃pp

)
, (73)

F0 =

*.....
,

(
∆t
2

)2

M−1
(
1 + e−γ∆t

)
Axeq

∆t
2


1 −

(
∆t
2

)2

AM−1


(
1 + e−γ∆t

)
Axeq

+/////
-

, (74)

Ω̃n =

*.....
,

∆t
2

M−1Ωn


1 −

(
∆t
2

)2

AM−1

Ωn

+/////
-

, (75)

with

M̃xx = 1 −
(
∆t
2

)2

M−1
(
1 + e−γ∆t

)
A, (76)

M̃xp =
∆t
2

M−1
(
1 + e−γ∆t

)
, (77)

M̃px = −
∆t
2


1 −

(
∆t
2

)2

AM−1


(
1 + e−γ∆t

)
A, (78)

M̃pp = e−γ∆t −

(
∆t
2

)2

AM−1
(
1 + e−γ∆t

)
. (79)

Given the initial condition R0, one can use the iteration
relation, Eq. (72), to find the solution of Rn,

Rn = M̃
n
R0 +

n−1∑
j=0

M̃
j (

F0 + Ω̃n−1−j

)
. (80)

Upon taking random average and letting n→∞, there yields
the equilibrium phase-space point R̄ as

R̄ = lim
n→∞

M̃
n
R0 +

∞∑
j=0

M̃
j
F0. (81)

Here the first term should vanish, which is physically required
for an equilibrium state if it exists. For the second term, the
series can be summed up to yield

R̄ =
(
1 − M̃

)−1
F0. (82)

We now resort to the algebra techniques for block matrices to
find the expression of the inverse of the matrix 1−M̃. Consider
a block matrix

N =
(

N11 N12

N21 N22

)
,

where N11, N12, N21, and N22 are n × n, n × m, m × n, and m
× m block matrices. If N11 is invertible, then there is a matrix
inversion lemma

N−1 =



N11
−1 + N11

−1N12(N/N11)−1N21N11
−1 −N11

−1N12(N/N11)−1

−(N/N11)−1N21N11
−1 (N/N11)−1


, (83)

where N/N11 ≡ N22−N21N11
−1N12 is called the Schur complement of the block N11. In our case, the four blocks N11 = 1−M̃xx,

N12 = −M̃xp, N21 = −M̃px, and N22 = 1 − M̃pp are all n × n. From Eq. (76), we readily obtain the inverse of the block N11,

N11
−1 =

(
1 − M̃xx

)−1
=

(
∆t
2

)−2

A−1M
(
1 + e−γ∆t

)−1
.

With this as well as Eqs. (77)–(79), we obtain the Schur complement of N11 by a direct matrix multiplication,

N/N11 = 1 − M̃pp − M̃px

(
1 − M̃xx

)−1
M̃xp = 21. (84)

Upon substituting into Eq. (83), there is

(
1 − M̃

)−1
=



(
∆t
2

)−2

A−1M



(
1 + e−γ∆t

)−1
−

1
2


1 −

(
∆t
2

)2

M−1A





1
2

(
∆t
2

)−1

A−1

−
1
2

(
∆t
2

)−1 
M −

(
∆t
2

)2

A


1
2

1



. (85)

Inserting this result and Eq. (73) into Eq. (82), we obtain

R̄ =
(

xeq

0

)
, (86)

which is the same as that given by Eqs. (70) and (71) as it should be. From Eq. (72), it is straightforward to obtain the iteration
relation for the fluctuation correlation of Rn, namely,〈(

Rn+1 − R̄n+1

) (
Rn+1 − R̄n+1

)T
〉
= M̃

〈(
Rn − R̄n

) (
Rn − R̄n

)T
〉

M̃
T

+
〈
Ω̃nΩ̃

T
n

〉
. (87)
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Taking the asymptotic limit n→∞, we obtain the equation for the stationary fluctuation correlation W,

W = M̃WM̃
T

+Θ, (88)

which is the discrete Lyapunov equation. Here Θ reads as

Θ =



(
∆t
2

)2

M−1QM−1 ∆t
2

M−1Q

1 −

(
∆t
2

)2

M−1A


∆t
2


1 −

(
∆t
2

)2

AM−1


QM−1

1 −

(
∆t
2

)2

AM−1


Q

1 −

(
∆t
2

)2

M−1A




,

where Q = 1
βM

(
1 − e−2γ∆t

)
. We emphasize that for arbitrary

M̃ and Θ, the discrete Lyapunov equation defies an analytical
solution although one can work out an infinite series for W,

W =
∞∑

j=0

M̃
j
Θ

(
M̃

T
) j

. (89)

For a better understanding of the procedure, we consider
the special case of the harmonic system, the free Brownian
particle.

1. Free Brownian motion

A free Brownian system means A = 0 and xeq = 0. In
this case, the average position given by Eq. (70) is ill-defined.
However, the discrete trajectory Rn expressed as Eq. (80) (F0

= 0) can be readily calculated because the powers of M̃ assume
simple expressions

M̃
n
=



1 ∆t
2 M−1Sn

0 e−nγ∆t


,

where Sn =
(
1 + e−γ∆t

) (
1 − e−nγ∆t

) (
1 − e−γ∆t

)−1
. As a con-

sequence, the position and momentum read, respectively,
as

xn = x0 +
∆t
2

M−1Snp0 +
∆t
2

M−1
n−1∑
j=0

(
1 + Sj

)
Ωn−1−j, (90)

pn = e−nγ∆tp0 +
n−1∑
j=0

e−jγ∆tΩn−1−j. (91)

Taking random average on both sides, one readily obtains

x̄n = x0 +
∆t
2

M−1Snp0, (92)

p̄n = e−nγ∆tp0. (93)

As n→∞, they become the equilibrium values,

x̄ = x0 +
∆t
2

M−1
(
1 + e−γ∆t

) (
1 − e−γ∆t

)−1
p0, (94)

p̄ = 0. (95)

We now derive the stationary density distribution. Define
the fluctuation correlation matrix, WRnRn ≡

〈
(Rn − R̄n)

(Rn − R̄n)T 〉
for Rn =

(
xn, pn

)T . Using Eqs. (90) and (91) and

brute force calculations, we are able to derive the four required
fluctuation correlation matrices at every time step,

Wxnxn =

(
∆t
2

)2 1
β

M−1
(
1 + e−γ∆t

)2
[
4n

(
1 − e−2γ∆t

)−1

+
(
1 − e−2nγ∆t − 4

(
1 − e−nγ∆t

)) (
1 − e−γ∆t

)−2
]

,

(96)

Wxnpn
=Wpnxn

=
∆t
2
·

1
β

(
1 + e−γ∆t

)
×

(
1 − 2e−nγ∆t + e−2nγ∆t

) (
1 − e−γ∆t

)−1
, (97)

Wpnpn
=

1
β

M
(
1 − e−2nγ∆t

)
, (98)

which are all diagonal. We should point out that as n gets
large, Wxnxn becomes linearly proportional to n and eventually
divergent for n → ∞. This is typical for a diffusion process.
For the stationary density distribution, we need to evaluate
the inverse of the block matrix consisting of these fluctuation
correlation matrices, namely,

W−1 = lim
n→∞

*
,

Wxnxn Wxnpn

Wpnxn Wpnpn

+
-

−1

.

Using the matrix inversion lemma, Eq. (83), and recognizing
A�1 = 0 in this case, we obtain

W−1 =

(
0 0
0 βM−1

)
, (99)

which exactly corresponds to the Boltzmann distribution in the
free particle limit.

2. One-dimensional case

We now consider the one-dimensional case where Eq. (50)
becomes

U(x) =
1
2

(
x − xeq

)T
A

(
x − xeq

)
. (100)

Note that now the block matrix M̃ [Eq. (73)] becomes an
ordinary 2 × 2 matrix with eigenvalues

ε1,2 =
T
2
±

√
T2

4
− D, (101)
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where

T = M̃xx + M̃pp =
(
1 + e−γ∆t

) 
1 − 2

(
∆t
2

)2

AM−1


,

D = M̃xxM̃pp − M̃xpM̃px = e−γ∆t ,

(102)

and eigenvectors

v1,2 =
1√

M̃2
xp +

(
ε1,2 − M̃xx

)2

(
M̃xp

ε1,2 − M̃xx

)
. (103)

Therefore, M̃ can be diagonalized by V = (v1,v2), namely,

V−1M̃V =
(
ε1 0
0 ε2

)
≡ Λ (104)

or M̃ = VΛV−1. With this result, the powers of M̃ can be
written explicitly as

M̃
n
= VΛnV−1

= *
,

v11u11ε
n
1 + v12u21ε

n
2 v11u12ε

n
1 + v12u22ε

n
2

v21u11ε
n
1 + v22u21ε

n
2 v21u12ε

n
1 + v22u22ε

n
2

+
-

, (105)

where vi ,j and ui ,j(i,j = 1,2) are the elements of V and V�1,
respectively. Substituting Eq. (105) into Eq. (80), we may
obtain the deviations of the position and momentum from their
equilibrium values,

∆xn = xn − x̄n =

n−1∑
j=0

(
cx1ε

j
1 + cx2ε

j
2

)
Ωn−1−j, (106)

∆pn = pn − p̄n =

n−1∑
j=0

(
cp1ε

j
1 + cp2ε

j
2

)
Ωn−1−j, (107)

where these coefficients are

cx1 =
∆t
2M

v11u11 +

1 −

(
∆t
2

)2 A
M


v11u12,

cx2 =
∆t
2M

v12u21 +

1 −

(
∆t
2

)2 A
M


v12u22,

cp1 =
∆t
2M

v21u11 +

1 −

(
∆t
2

)2 A
M


v21u12,

cp2 =
∆t
2M

v22u21 +

1 −

(
∆t
2

)2 A
M


v22u22.

With these expressions, we are able to calculate the required
fluctuation correlations

Wxnxn = Q

c2

x1

1 − ε2n
1

1 − ε2
1

+ 2cx1cx2
1 − εn

1ε
n
2

1 − ε1ε2
+ c2

x2

1 − ε2n
2

1 − ε2
2


,

(108)

Wxnpn = Wpnxn = Q

cx1cp1

1 − ε2n
1

1 − ε2
1

+
(
cx1cp2 + cx2cp1

)
×

1 − εn
1ε

n
2

1 − ε1ε2
+ cx2cp2

1 − ε2n
2

1 − ε2
2


, (109)

Wpnpn = Q

c2

p1

1 − ε2n
1

1 − ε2
1

+ 2cp1cp2
1 − εn

1ε
n
2

1 − ε1ε2
+ c2

p2

1 − ε2n
2

1 − ε2
2


,

(110)

where Q = 1
βM

(
1 − e−2γ∆t

)
. It should be stressed that we are

only interested in the stable iteration of the phase-space points,
which requires ���ε1,2

��� < 1. Otherwise, the fluctuation correla-
tion matrix elements, Eqs. (108)–(110), will be divergent. To
complete the involved algebra, it turns out that parameterizing
the matrix M̃ is helpful. To this end, its eigenvalues ε1,2 are
recast as10

ε1,2 =
√

De±λ (111)

and

M̃ =
*...
,

√
D cosh λ +

1 − D
2

b

1
b

[
Dsinh2λ −

(1 − D)2

4

]
√

D cosh λ −
1 − D

2

+///
-

,

(112)
where b = M̃xp =

∆t
2 M−1

(
1 + e−γ∆t

)
is not changed. Then the

diagonalization matrix V and the inverse V�1 read as

V =



1
n1

1
n2

1
bn1

(
√

D sinh λ −
1 − D

2

)
−

1
bn2

(
√

D sinh λ +
1 − D

2

)
(113)

and

V−1 =
1

det V



−
1

bn2

(
√

D sinh λ +
1 − D

2

)
−

1
n2

−
1

bn1

(
√

D sinh λ −
1 − D

2

)
1
n1



, (114)

where the “normalization” constant n1,2 is

n1,2 =

√
1 +

1

b2

�����
±
√

D sinh λ −
1 − D

2

�����

2

.

With these expressions, we readily obtain

cx1 =
b

2
√

D sinh λ

1 +
√

Deλ

1 + D
,

cx2 = −
b

2
√

D sinh λ

1 +
√

De−λ

1 + D
,

cp1 =

√
D sinh λ − 1−D

2

2
√

D sinh λ

1 +
√

Deλ

1 + D
,

cp2 =

√
D sinh λ + 1−D

2

2
√

D sinh λ

1 +
√

De−λ

1 + D
.

Substituting into Eqs. (108)–(110), we obtain
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Wxx ≡ lim
n→∞

Wxnxn =
b2Q

4Dsinh2λ(1 + D)2



1 +
√

Deλ

1 −
√

Deλ
+

1 +
√

De−λ

1 −
√

De−λ
−

2
(
1 +
√

Deλ
) (

1 +
√

De−λ
)

1 − D



=
2b2Q

(1 + D)2 (1 − D)
(
1 −
√

Deλ
) (

1 −
√

De−λ
)

=
1
β

A−1, (115)

Wxp ≡ lim
n→∞

Wxnpn = Wpx

=
bQ

4Dsinh2λ(1 + D)2



1 +
√

Deλ

1 −
√

Deλ

(
√

D sinh λ −
1 − D

2

)

−
1 +
√

De−λ

1 −
√

De−λ

(
√

D sinh λ +
1 − D

2

)
+

(
1 +
√

Deλ
) (

1 +
√

De−λ
)

= 0, (116)

Wpp ≡ lim
n→∞

Wpnpn =
Q

4Dsinh2λ(1 + D)2




1 +
√

Deλ

1 −
√

Deλ

(
√

D sinh λ −
1 − D

2

)2

+
1 +
√

De−λ

1 −
√

De−λ

(
√

D sinh λ +
1 − D

2

)2

+
2
(
1 +
√

Deλ
) (

1 +
√

De−λ
)

1 − D

[
Dsinh2λ −

(1 − D)2

4

] 


= −

2Q
[
Dsinh2λ − (1−D)2

4

]

(1 + D)2 (1 − D)
(
1 −
√

Deλ
) (

1 −
√

De−λ
)

=
1
β

M

1 −

(
∆t
2

)2

AM−1


. (117)

3. Multi-dimensional case

As one can see from the above, the derivation of the
stationary density distribution from the known trajectory is
tedious even for the one-dimensional harmonic system. The
difficulty we are facing is that the techniques used for the
one-dimensional case cannot be directly applied to the multi-
dimensional case. To make things simpler, we assume that
the “middle” scheme gives an exact Boltzmann distribution
for the position, which has been revealed from the analysis of
the one-dimensional system, the numerical simulation, and the
former studies.24,25 Besides, there is no fluctuation correlation
between the position and momentum in the equilibrium. There-
fore, we may assume the following fluctuation correlation
matrices:

Wxx ≡ lim
n→∞

〈
(xn − x̄n) (xn − x̄n)T

〉
=

1
β

A−1, (118)

Wxp =WT
px ≡ lim

n→∞

〈
(xn − x̄n)

(
pn − p̄n

)T
〉
= 0, (119)

and we will determine the fluctuation correlation matrix for the
momentum Wpp ≡ limn→∞

〈(
pn − p̄n

) (
pn − p̄n

)T
〉

by resort-
ing to the discrete Lyapunov equation, Eq. (88), in which F0

= 0 now. By some straightforward algebra, one readily proves
the consistency of the above ansatz of the equilibrium density
and obtains

Wpp =
1
β


M −

(
∆t
2

)2

A


. (120)

Because the resultant dynamics defined by Eqs. (65) and (66) is
Gaussian for the harmonic system, the fluctuation correlation
matrices, Eqs. (118)–(120), and the averaged phase space point
defined by Eqs. (70) and (71) lead to the stationary density
distribution Eq. (55).

Consider the virtual dynamics case of the “middle”
scheme [i.e., “middle (vir)”]. Replace the diagonal matrix
e−γ∆t by −e−γ∆t and e−nγ∆t by

(
−e−γ∆t

)n
for any integer n

in the equations presented in the trajectory-based approach.
One may follow the same procedure to demonstrate that “mid-
dle (vir)” produces the same stationary density distribution
as Eq. (55). Similarly, it is straightforward to show that Eqs.
(57)–(59) are the stationary density distribution in the har-
monic limit for both the real and virtual dynamics cases of
the “side”/“end”/“beginning” schemes, that for both cases of
the “PV-middle” scheme, and that for both cases of “PV-
side”/“PV-end”/“PV-beginning” schemes, respectively. This
is consistent with the conclusions from the phase space
propagator approach.

4. The last four schemes

The analysis for such as the “middle-xT”/“side-
xT”/“middle-pT”/“side-pT” schemes is more tedious, albeit
that the algebra is similar. We may employ the trajectory-
based approach to re-derive the stationary density distribution
for the one-dimensional case [Eq. (100)] for each of the last
four schemes. The results agree with the stationary density
distributions obtained by the phase space propagator
approach as presented in Appendix A 1. (See Table I.)
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TABLE I. Fluctuation correlation matrices in the stationary state distribution [Eq. (A34)] for the last four schemes
for the one-dimensional harmonic system [Eq. (100)].

Scheme Fluctuation correlation matrix

Middle-pT
Wxx =

1
β

1
2
γ∆t

(
1 − e−γ∆t

)−1 (
1 + e−γ∆t

)
A−1,

Wxp = Wpx = 0,

Wpp =
M
β

2
(
1 + e−γ∆t

) [
2
(
1 + e−γ∆t

)
− ∆tAM−1γ−1

(
1 − e−γ∆t

)]−1

Side-pT

Wxx =
1
βA

γ∆t
(
1 + e−γ∆t

)2(
1 − e−γ∆t

) [
2
(
1 + e−γ∆t

)
− ∆tAM−1γ−1

(
1 − e−γ∆t

)] ,

Wxp = −
1
β

∆t
(
1 − e−2γ∆t

)
(1 + e−

1
2 γ∆t)2

[
2
(
1 + e−γ∆t

)
− ∆tAM−1γ−1

(
1 − e−γ∆t

)] ,

Wpp =
M
β

−4∆tAM−1e−
1
2 γ∆t(1 − e−

1
2 γ∆t) + 2γ

(
1 + e−γ∆t

)
(1 + e−

1
2 γ∆t)

(1 + e−
1
2 γ∆t)

[
−∆tAM−1

(
1 − e−γ∆t

)
+ 2γ

(
1 + e−γ∆t

)]

Middle-xT

Wxx =
1
βA

2
[
γ2

(
1 − e−2γ∆t

)
+

(
e−2γ∆t + 2γ∆te−γ∆t − 1

)
AM−1

]

γ
(
1 − e−γ∆t

) [
2γ

(
1 + e−γ∆t

)
− ∆t

(
1 − e−γ∆t

)
AM−1

] ,

Wxp = Wpx =
1
β

(
1 + e−γ∆t

) [
γ∆t

(
1 + e−γ∆t

)
− 2

(
1 − e−γ∆t

)](
1 − e−γ∆t

) [
∆t

(
1 − e−γ∆t

)
AM−1 − 2γ

(
1 + e−γ∆t

)] ,

Wpp =
M
β

θ1

θ2

with

θ1 =

{
1
2

(
1 + e−γ∆t

)3
AM−1γ2

∆t2 +
1
2

(
1 − e−γ∆t

)2 (
1 + e−γ∆t

) [
4γ2 +

(
AM−1

)2
∆t2

]

−AM−1γ∆t
(
1 − e−γ∆t

) [
3
(
1 + e−2γ∆t

)
+ e−γ∆t

(
AM−1

∆t2 − 2
)] }

,

θ2 = γ
(
1 − e−γ∆t

)2 [
2γ

(
1 + e−γ∆t

)
− AM−1

∆t
(
1 − e−γ∆t

)]

Side-xT

Wxx =
1
βA

θ̄1

θ̄2
,

Wxp = Wpx =
1
β

θ̄3

θ̄4
,

Wpp =
M
β

(1 + e−γ∆t)
[
2∆t2γAM−1e−γ∆t + 2γ

(
1 − e−γ∆t

)2
− ∆tAM−1

(
1 − e−2γ∆t

)]

(
1 − e−γ∆t

)2 [
−∆t

(
1 − e−γ∆t

)
AM−1 + 2γ

(
1 + e−γ∆t

)]

with

θ̄1 =

{
−∆t2γ

(
AM−1

)2
(−e−

5
2 γ∆t + 3e−2γ∆t − 3e−

1
2 γ∆t + 1)

−2γ
(
γ2 − AM−1

)
(1 + e−

1
2 γ∆t)

(
1 − e−2γ∆t

)
+ 2∆t

(
AM−1

)
(1 + e−

1
2 γ∆t)

[
4AM−1e−γ∆t + γ2(1 + e−2γ∆t)

−2
(
AM−1 + γ2

)
e−

1
2 γ∆t(1 + e−γ∆t)

]}
,

θ̄2 = γ
2(1 + e−

1
2 γ∆t)

(
1 − e−γ∆t

) [
∆t

(
1 − e−γ∆t

)
AM−1 − 2γ

(
1 + e−γ∆t

)]
,

θ̄3 =

{
−2∆t2γAM−1e−

1
2 γ∆t(1 − e−

3
2 γ∆t) − 2γ(1 + e−

1
2 γ∆t)

(
1 − e−2γ∆t

)
+∆t(1 + e−

1
2 γ∆t)

[
AM−1(1 − e−

1
2 γ∆t)

2
(1 + 4e−

1
2 γ∆t + e−γ∆t)

+2γ2e−
1
2 γ∆t

(
1 + e−γ∆t

)]}
,

θ̄4 = γ(1 + e−
1
2 γ∆t)

(
1 − e−γ∆t

) [
∆t

(
1 − e−γ∆t

)
AM−1 − 2γ

(
1 + e−γ∆t

)]
.

The stationary distributions listed for the last four schemes
in Table I are not well-defined when the friction coefficient
approaches infinity. This suggests that the results obtained
from the last four schemes are more sensitive to the friction
coefficient (than the first eight schemes do).

Finally, we note that the trajectory-based approach is capa-
ble of analyzing Langevin dynamics algorithms that the phase

space propagator approach is inconvenient to deal with (see
Sec. S5 of the supplementary material).

V. CHARACTERISTIC CORRELATION TIME

The characteristic correlation time is often used to esti-
mate the sampling efficiency. For example, the potential energy

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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autocorrelation function is defined as

Cpot(t) =
〈[U(x (t)) − 〈U (x)〉] [U(x (0)) − 〈U (x)〉]〉〈

[U (x) − 〈U (x)〉]2
〉 . (121)

The bracket 〈 〉 of Eq. (121) denotes the phase space aver-
age of the Boltzmann distribution. The characteristic cor-
relation time for the potential correlation function is then

given by

τpot =

∫ ∞
0

Cpot(t)dt. (122)

The smaller τpot is, the more efficiently the Langevin equation
[Eqs. (2) and (3)] explores the potential energy surface and
samples the configurational space.

Analogously, the characteristic correlation time of the
Hamiltonian autocorrelation function,

CHam(t) =
〈[

H(x (t) , p (t)) − 〈H(x, p)〉
] [

H(x (0), p (0)) − 〈H(x, p)〉
]〉〈[

H(x, p) − 〈H(x, p)〉
]2

〉 , (123)

is

τHam =

∫ ∞
0

CHam(t)dt. (124)

The smaller τHam is, the more efficiently the Langevin equation
[Eqs. (2) and (3)] explores the phase space.

For simplicity, we consider the one-dimensional harmonic
system [Eq. (100)], where A = Mω2 is the force constant.

A. Infinitesimal time interval

It is easy to follow Refs. 1, 4, 19, and 24 to derive τpot

or τHam for the harmonic system [Eq. (100)] when the time
interval is infinitesimal. Here we rather employ the phase space
propagator approach presented in Appendix A to re-derive τpot

or τHam because the derivation procedure may be generalized
to the case when the time interval becomes finite.

The propagation of the density distribution in the phase
space [Eq. (7)] for the one-dimensional harmonic system
[Eq. (100)] becomes

∂ρ

∂t
= Lρ = − p

M
∂ρ

∂x
+ Mω2

(
x − xeq

) ∂ρ
∂p

+
∂

∂p
(γp · ρ)

+
γM
β

∂2ρ

∂p2
. (125)

Assume that ρt ≡ ρ(x, p;t|x0, p0;0) is the solution to Eq. (125).
Although the explicit expression of ρt is difficult to obtain,
we directly analyze the displacement squared autocorrelation
function that may be expressed as〈[

x (0) − xeq

]2 [
x (t) − xeq

]2
〉
=

∫
ρ0 (x0, p0) ρt

(
x0 − xeq

)2

×
(
x − xeq

)2
dx0dp0dxdp.

(126)

Because the analysis is for the correlation function of the
stationary state, the initial distribution is the Boltzmann
distribution

ρ0 (x0, p0) =
βω

2π
exp



−β



p2
0

2M
+

1
2

Mω2
(
x0 − xeq

)2





.

(127)

Consider the time derivative of Eq. (126), i.e.,

∂

∂t

〈[
x (0) − xeq

]2 [
x (t) − xeq

]2
〉

=

∫
ρ0 (x0, p0)

∂ρt

∂t

(
x0 − xeq

)2 (
x − xeq

)2
dx0dp0dxdp.

(128)

Substituting Eq. (125) into Eq. (128) and applying integration
by parts produces

∂

∂t

〈[
x (0) − xeq

]2 [
x (t) − xeq

]2
〉

=

∫
ρ0 (x0, p0)

(
2
(
x0 − xeq

)2 (
x − xeq

) p
M
ρt

)
dx0dp0dxdp

=
2
M

〈[
x (0) − xeq

]2 [
x (t) − xeq

]
p (t)

〉
. (129)

Similarly, we further obtain

∂

∂t

〈[
x (0) − xeq

]2 [
x (t) − xeq

]
p (t)

〉
= −Mω2

〈[
x (0) − xeq

]2 [
x (t) − xeq

]2
〉

− γ
〈[

x (0) − xeq

]2 [
x (t) − xeq

]
p (t)

〉
+

1
M

〈[
x (0) − xeq

]2
p2 (t)

〉
(130)

and
∂

∂t

〈[
x (0) − xeq

]2
p2 (t)

〉
= −2Mω2

〈[
x (0) − xeq

]2 [
x (t) − xeq

]
p (t)

〉
− 2γ

〈[
x (0) − xeq

]2
p2 (t)

〉
+

2γ

β2ω2
. (131)

Define

χ (t) =
(
χ(1)(t), χ(2)(t), χ(3)(t)

)T

=

(〈[
x (0) − xeq

]2 [
x (t) − xeq

]2
〉

,〈[
x (0) − xeq

]2 [
x (t) − xeq

]
p(t)

〉
,〈[

x (0) − xeq

]2
p2(t)

〉)T
.



184104-13 Li et al. J. Chem. Phys. 147, 184104 (2017)

Solving the differential function

χ̇ = G̃χ + g̃, (132)

where

g̃ =
(
0, 0,

2γ

β2ω2

)T

, (133)

G̃ =
*..
,

0 2
M 0

−Mω2 −γ 1
M

0 −2Mω2 −2γ

+//
-

, (134)

with the initial condition

χ (0) =

(
3

β2M2ω4
, 0,

1

β2ω2

)T

, (135)

we then obtain

χ (t) = eG̃t
[
G̃
−1

g̃ + χ (0)
]
− G̃

−1
g̃. (136)

When t goes to infinity, ρt approaches the Boltzmann distri-
bution, i.e.,

ρt ≡ ρ (x, p; t |x0, p0; 0 )

→
βω

2π
exp

{
−β

[
p2

2M
+

1
2

Mω2
(
x − xeq

)2
]}

. (137)

It is then straightforward to verify that

χ (∞) =

(〈(
x − xeq

)2
〉2

,
〈(

x − xeq

)2
〉 〈(

x − xeq

)
p
〉

,〈(
x − xeq

)2
〉 〈

p2
〉)T

. (138)

The eigenvalues of G̃ are �γ, �γ � 2λ, and �γ + 2λ, where
λ = 1

2

√
γ2 − 4ω2. Because the real parts of the eigenvalues of

G̃ are all negative, from Eq. (136) we obtain

χ (∞) = −G̃
−1

g̃ =
(

1

β2M2ω4
, 0,

1

β2ω2

)T

, (139)

where

G̃
−1
=

*....
,

−
γ2+ω2

2γω2 − 1
Mω2 − 1

2γM2ω2

M
2 0 0

−M2ω2

2γ 0 − 1
2γ

+////
-

. (140)

Note that the characteristic correlation time of the potential
[Eq. (122)] is

τpot =

∫ ∞
0

〈[
x (0) − xeq

]2 [
x (t) − xeq

]2
〉
−

〈(
x − xeq

)2
〉2

〈(
x − xeq

)4
〉
−

〈(
x − xeq

)2
〉2

dt

=
∫
∞

0

[
χ(1) (t) − χ(1) (∞)

]
dt

χ(1) (0) − χ(1) (∞)
. (141)

The integral in the numerator is then∫ ∞
0

[
χ (t) − χ (∞)

]
dt =

∫ ∞
0

eG̃t
[
G̃
−1

g̃ + χ (0)
]

dt

= −G̃
−1

[
G̃
−1

g̃ + χ (0)
]

. (142)

Substituting Eqs. (135), (139), and (140) into Eq. (142) leads
to

∫ ∞
0

[
χ (t) − χ (∞)

]
dt =

*.........
,

1
2

(
1
γ

+
γ

ω2

)
2

β2M2ω4

−
1

β2Mω4

1

β2ω2γ

+/////////
-

. (143)

Employing Eqs. (136), (139), and (142), we may show that
Eq. (141) yields

τpot =
1
2

(
1
γ

+
γ

ω2

)
(144)

for an infinitesimal time interval. The optimal value of the
friction coefficient

γ
opt
pot = ω (145)

then leads to the minimum characteristic correlation time24 for
Eq. (144),

τmin
pot =

1
ω

. (146)

Analogously, it is straightforward to prove that τHam for
the harmonic system [Eq. (100)] is

τHam =
1
γ

+
γ

4ω2
(147)

for an infinitesimal time interval. The optimal value of the
friction coefficient

γ
opt
Ham = 2ω (148)

produces the minimum characteristic correlation time for Eq.
(124),

τmin
Ham =

1
ω

. (149)

B. Finite time interval

When the time interval ∆t is finite, the optimal value of
the friction coefficient depends on the underlying algorithm.
The potential energy autocorrelation function [Eq. (121)] is
expressed as

Cpot(n∆t) =
〈U(n∆t)U(0)〉 − 〈U〉2〈

U2〉 − 〈U〉2 . (150)

The bracket 〈 〉 of Eq. (150) denotes the phase space average of
the stationary density distribution for the underlying algorithm.
Its characteristic correlation time is then

τpot = ∆t
∞∑

n=0

Cpot(n∆t). (151)

Analogously, the Hamiltonian autocorrelation function and its
characteristic correlation time can also be obtained for the
finite time interval ∆t.

Below we use the “middle” scheme [Eq. (23)] as the
example.

1. Phase space propagator approach

We may extend the derivation in Sec. IV A to study the
characteristic correlation time for the finite time interval.
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a. Real dynamics case in the middle scheme. The rele-
vant Kolmogorov operators in Eqs. (20)–(22) for the one-
dimensional harmonic system [Eq. (100)] become

Lx ρ = −
p
M
∂ρ

∂x
, (152)

Lpρ = Mω2
(
x − xeq

) ∂ρ
∂p

, (153)

LT ρ =
∂

∂p
(γp · ρ) +

γM
β

∂2ρ

∂p2
. (154)

We define the conditional densities

ρn,0 (x, p) ≡ ρ (x, p; n∆t |x0, p0; 0 )

=

(
eL

Middle∆t
)n
δ (x − x0) δ (p − p0) ,

ρn,1 (x, p) ≡ eLp∆t/2ρn,0 (x, p) ,

ρn,2 (x, p) ≡ eLx∆t/2ρn,1 (x, p) ,

ρn,3 (x, p) ≡ eLT∆t ρn,2 (x, p) ,

ρn,4 (x, p) ≡ eLx∆t/2ρn,3 (x, p) ,

(155)

which lead to

ρn+1,0 (x, p) = eLp∆t/2ρn,4 (x, p) . (156)

Although the explicit expression of ρn,i (x, p)
(
i = 0, 4

)
is difficult to obtain, we directly analyze the displacement
squared autocorrelation function〈(

x0 − xeq

)2 (
xn − xeq

)2
〉

i

=

∫
ρ0 (x0, p0) ρn,i (x, p)

(
x0 − xeq

)2 (
x − xeq

)2

× dx0dp0dxdp
(
i = 0, 4

)
. (157)

When the “middle” scheme is employed, the initial distribution
ρ0(x0, p0) is the stationary distribution [Eq. (55)], i.e.,

ρMiddle
0 (x0, p0) =

1
ZN

exp


−β



p2
0

2M

(
1 −

ω2∆t2

4

)−1

+
1
2

Mω2
(
x0 − xeq

)2
] 


(158)

for the one-dimensional harmonic system [Eq. (100)].
Following the strategy in Sec. V A, it is easy to show

that

χn,1 = G̃1χn,0, (159)

χn,2 = G̃2χn,1, (160)

χn,3 = G̃3χn,2 + ˜̃g, (161)

χn,4 = G̃2χn,3, (162)

χn+1,0 = G̃1χn,4, (163)

where

χn,i =

(〈(
x0 − xeq

)2 (
xn − xeq

)2
〉

i
,
〈(

x0 − xeq

)2 (
xn − xeq

)
pn

〉
i
,〈(

x0 − xeq

)2
p2

n

〉
i

)T (
i = 0, 4

)
, (164)

G̃1 =

*.......
,

1 0 0

−Mω2∆t
2

1 0

M2ω4∆t2

4
−Mω2∆t 1

+///////
-

, (165)

G̃2 =

*.......
,

1
∆t
M

∆t2

4M2

0 1
∆t
2M

0 0 1

+///////
-

, (166)

G̃3 =
*..
,

1 0 0

0 e−γ∆t 0

0 0 e−2γ∆t

+//
-

, (167)

and

˜̃g =
(
0, 0,

1 − e−2γ∆t

β2ω2

)T

. (168)

Substituting Eqs. (159)–(162) into Eq. (163), we obtain

χn+1,0 = G̃1G̃2G̃3G̃2G̃1χn,0 + G̃1G̃2 ˜̃g. (169)

A more compact form of Eq. (169) is

χn+1,0 =
¯̄Gχn,0 + ¯̄g, (170)

with
¯̄G = G̃1G̃2G̃3G̃2G̃1 (171)

and
¯̄g = G̃1G̃2 ˜̃g. (172)

When n goes to infinity, ρn,0(x,p) approaches the stationary
distribution, i.e.,

ρn,0 (x, p)→
1

ZN
exp



−β



p2

2M

(
1 −

ω2∆t2

4

)−1

+
1
2

Mω2
(
x − xeq

)2
]}

. (173)

Then it is straightforward to verify that

(〈(
x − xeq

)2
〉2

0
,
〈(

x − xeq

)2
〉

0

〈(
x − xeq

)
p
〉

0
,
〈(

x − xeq

)2
〉

0

〈
p2

〉
0

)T

= χ∞,0

=
(
1 − ¯̄G

)−1 ¯̄g

= *
,

1

β2M2ω4
, 0,

1 − ω2∆t2

4

β2ω2
+
-

T

(174)
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and

χ0,0 −
(
1 − ¯̄G

)−1 ¯̄g = χ0,0 − χ∞,0

=

(〈(
x − xeq

)4
〉

0
−

〈(
x − xeq

)2
〉2

0
,
〈(

x − xeq

)3
p
〉

0
−

〈(
x − xeq

)2
〉

0

〈(
x − xeq

)
p
〉

0
,〈(

x − xeq

)2
p2

〉
0
−

〈(
x − xeq

)2
〉

0

〈
p2

〉
0

)T

=

(
2

β2M2ω4
, 0, 0

)T

. (175)

Rearranging Eq. (170) leads to

χn+1,0 −
(
1 − ¯̄G

)−1 ¯̄g = ¯̄G
[
χn,0 −

(
1 − ¯̄G

)−1 ¯̄g
]

. (176)

The recursion formula, Eq. (176), leads to

χn,0 −
(
1 − ¯̄G

)−1 ¯̄g = ¯̄G
n

[
χ0,0 −

(
1 − ¯̄G

)−1 ¯̄g
]

. (177)

Summing over n from 0 to infinity in both sides of Eq. (177) produces
∞∑

n=0

[
χn,0 −

(
1 − ¯̄G

)−1 ¯̄g
]
=

(
1 − ¯̄G

)−1
[
χ0,0 −

(
1 − ¯̄G

)−1 ¯̄g
]

. (178)

Substituting Eqs. (174) and (175) into Eq. (178), we obtain

*............
,

∞∑
n=0

(〈(
x0 − xeq

)2 (
xn − xeq

)2
〉

0
−

〈(
x − xeq

)2
〉2

0

)
∞∑

n=0

(〈(
x0 − xeq

)2 (
xn − xeq

)
pn

〉
0
−

〈(
x − xeq

)2
〉

0

〈(
x − xeq

)
p
〉

0

)
∞∑

n=0

(〈(
x0 − xeq

)2
p2

n

〉
0
−

〈(
x − xeq

)2
〉

0

〈
p2

〉
0

)

+////////////
-

=
(
1 − ¯̄G

)−1 *...
,

2

β2M2ω4

0
0

+///
-

. (179)

The characteristic correlation time of the potential for a finite
time interval ∆t [Eqs. (150) and (151)] is

τpot = ∆t
∞∑

n=0

〈(
x0 − xeq

)2 (
xn − xeq

)2
〉

0
−

〈(
x − xeq

)2
〉2

0〈(
x − xeq

)4
〉

0
−

〈(
x − xeq

)2
〉2

0

(180)

for the “middle” scheme. Equations (174), (179), and (180)
lead to

τMiddle
pot =

[(
1 − ¯̄G

)−1
]

11
∆t. (181)

Here
[(

1 − ¯̄G
)−1

]

11
represents the element in the first row

and first column of the matrix
(
1 − ¯̄G

)−1
. Substituting Eqs.

(165)–(167) and (171) into Eq. (181) yields the explicit form

τMiddle
pot =

(
1 − e−γ∆t

)2
+

(
1 + e−γ∆t

) (
3 − e−γ∆t

) (
ω∆t

2

)2

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) .

(182)

Interestingly, Eq. (182) indicates that

τMiddle
pot

γ→0
→ ∞, (183)

τMiddle
pot

γ→∞
→

1 + 3
(
ω∆t

2

)2

ω2∆t
. (184)

Equation (183) holds for both an infinitesimal time interval
and a finite one. While in the limit γ→∞ for an infinitesimal
time interval, the characteristic correlation time of the poten-
tial is infinite and that for a finite time interval is, however, a
constant!

The optimal friction coefficient for Eq. (182) is

γ
Middle, opt
pot =

1
∆t

ln

(
2 + ω∆t
2 − ω∆t

)
(185)

such that the characteristic correlation time reaches the mini-
mum value

τMiddle,min
pot =

2 + ω∆t
2ω

. (186)

As ∆t→ 0, Eqs. (182), (185), and (186) approach Eqs. (144)–
(146), respectively.

Similarly, the characteristic correlation time of the Hamil-
tonian for a finite time interval∆t for the “middle” scheme may
be shown as
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τMiddle
Ham =

(
1 − e−γ∆t

)2
+

(
3 + e−γ∆t

)2 (ω∆t
2

)2
−

(
3 + e−γ∆t

)2 (ω∆t
2

)4
+

(
3 − e−γ∆t

) (
1 + e−γ∆t

) (
ω∆t

2

)6

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) { [
1 −

(
ω∆t

2

)2
]2

+ 1

} . (187)

Equation (187) leads to

τMiddle
Ham

γ→0
→ ∞, (188)

τMiddle
Ham

γ→∞
→

1 + 9
(
ω∆t

2

)2
− 9

(
ω∆t

2

)4
+ 3

(
ω∆t

2

)6

ω2∆t

{ [
1 −

(
ω∆t

2

)2
]2

+ 1

} . (189)

The characteristic correlation time of the Hamiltonian in the limit γ →∞ for a finite time interval is also a constant.
The optimal friction coefficient for Eq. (187) is

γ
Middle,opt
Ham =

1
∆t

ln




1 + 5
(
ω∆t

2

)2
− 5

(
ω∆t

2

)4
+

(
ω∆t

2

)6
+ ω∆t

[
2 −

(
ω∆t

2

)2
] √

1 +
(
ω∆t

2

)2
−

(
ω∆t

2

)4

[
1 −

(
ω∆t

2

)2
]3




(190)

such that the characteristic correlation time reaches the minimum value

τMiddle,min
Ham = −

φ1∆t
φ2

(191)

with

φ1 = 6ω14
∆t14 − 192ω12

∆t12 + 2400ω10
∆t10 − 13 696ω8

∆t8 + 23 552ω6
∆t6 + 88 064ω4

∆t4 − 294 912ω2
∆t2 − 131 072

+
(
−ω10

∆t10 + 36ω8
∆t8 − 432ω6

∆t6 + 2112ω4
∆t4 − 2048ω2

∆t2 − 10 240
)

×

√
ω2∆t2 (8 − ω2∆t2)2 (

−ω4∆t4 + 4ω2∆t2 + 16
)
,

(192)

φ2 = 32




1 −

(
ω∆t

2

)2

2

+ 1



[
−2ω4

∆t4 + 8ω2
∆t2 + 32 +

√
ω2∆t2 (8 − ω2∆t2)2 (

−ω4∆t4 + 4ω2∆t2 + 16
)]

×

[
ω6
∆t6 − 16ω4

∆t4 + 64ω2
∆t2 + 2

√
ω2∆t2 (8 − ω2∆t2)2 (

−ω4∆t4 + 4ω2∆t2 + 16
)]

.

As ∆t→ 0, Eqs. (187), (190), and (191) approach Eqs. (147)–
(149), respectively.

b. Virtual dynamics case in the middle scheme. Replacing
the phase space propagator for the thermostat eLT∆t by its vir-
tual dynamics version eL

vir
T ∆t in the “middle” scheme [Eq. (23)]

leads to the “middle (vir)” scheme

eL
Middle(vir)∆t = eLp∆t/2eLx∆t/2eL

vir
T ∆teLx∆t/2eLp∆t/2. (193)

Note that Eq. (158) is also the stationary density distribution
for the virtual dynamics case “middle (vir)” for the harmonic
system.

Similar to Eq. (155), we have

ρn,0 (x, p) ≡ ρ (x, p; n∆t |x0, p0; 0 )

=
(
eL

Middle(vir)∆t
)n
δ (x − x0) δ (p − p0) ,

ρn,1 (x, p) ≡ eLp∆t/2ρn,0 (x, p) ,

ρn,2 (x, p) ≡ eLx∆t/2ρn,1 (x, p) ,

ρn,3 (x, p) ≡ eL
vir
T ∆t ρn,2 (x, p) ,

ρn,4 (x, p) ≡ eLx∆t/2ρn,3 (x, p) ,

(194)

which lead to

ρn+1,0 (x, p) = eLp∆t/2ρn,4 (x, p) . (195)

We define χi,n in the same way as in the real dynamics case
[Eq. (164)]. Analogously, we may verify

χn,1 = G̃1χn,0,

χn,2 = G̃2χn,1,

χn,3 = G̃
′

3χn,2 + ˜̃g,

χn,4 = G̃2χn,3,

χn+1,0 = G̃1χn,4,

(196)

with G̃1, G̃2, and ˜̃g defined in Eqs. (165), (166), and (168),
respectively, and

G̃
′

3 =
*.
,

1 0 0
0 −e−γ∆t 0
0 0 e−2γ∆t

+/
-

. (197)

Equation (196) leads to

χn+1,0 =
¯̄G′χn,0 + ¯̄g, (198)

with ¯̄G′ = G̃1G̃2G̃
′

3G̃2G̃1 and ¯̄g = G̃1G̃2 ˜̃g. Following the
same procedure as in the real dynamics case, the characteristic
correlation time of the potential for “middle (vir)” may be
shown as
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τMiddle(vir)
pot =

[(
1 − ¯̄G′

)−1
]

11
∆t

=

(
1 + e−γ∆t

)2
+

(
1 − e−γ∆t

) (
3 + e−γ∆t

) (
ω∆t

2

)2

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) . (199)

Similarly, we obtain the characteristic correlation time of the Hamiltonian for “middle (vir)” as

τMiddle(vir)
Ham =

(
1 + e−γ∆t

)2
+

(
3 − e−γ∆t

)2 (ω∆t
2

)2
−

(
3 − e−γ∆t

)2 (ω∆t
2

)4
+

(
3 + e−γ∆t

) (
1 − e−γ∆t

) (
ω∆t

2

)6

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) { [
1 −

(
ω∆t

2

)2
]2

+ 1

} . (200)

In the virtual dynamics case of the “middle” scheme, the characteristic correlation length of either the potential or the Hamiltonian
monotonically decreases as the friction γ increases.

It is easy to show that

τMiddle(vir)
pot − τMiddle

pot =

4e−γ∆t
[
1 −

(
ω∆t

2

)2
]

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) > 0,

(201)

τMiddle(vir)
Ham − τMiddle

Ham

=

4e−γ∆t
[
1 −

(
ω∆t

2

)2
]3

ω2∆t
(
1 + e−γ∆t ) (1− e−γ∆t ) { [

1−
(
ω∆t

2

)2
]2

+ 1

} > 0,

(202)

i.e., τMiddle(vir)
pot > τMiddle

pot and τMiddle(vir)
Ham > τMiddle

Ham when the
friction coefficient γ is finite. The characteristic correlation
time for the virtual dynamics case is always larger than that
for the real dynamics case.

Interestingly, for a finite time interval ∆t, we have

τMiddle(vir)
pot

γ→∞
→

1 + 3
(
ω∆t

2

)2

ω2∆t
, (203)

τMiddle(vir)
Ham

γ→∞
→

1 + 9
(
ω∆t

2

)2
− 9

(
ω∆t

2

)4
+ 3

(
ω∆t

2

)6

ω2∆t

{ [
1 −

(
ω∆t

2

)2
]2

+ 1

} ,

(204)

TABLE II. Characteristic correlation time of the potential energy.

Scheme τpot

Middle(vir)
(
1 + e−γ∆t

)2
+

(
1 − e−γ∆t

) (
3 + e−γ∆t

) (
ω∆t

2

)2

ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

)
PV-middle(vir)

Middle
(
1 − e−γ∆t

)2
+

(
1 + e−γ∆t

) (
3 − e−γ∆t

) (
ω∆t

2

)2

ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

)
PV-middle

End(vir) (
1 + e−γ∆t

)2
− e−γ∆t

(
2 + e−γ∆t

)
ω2∆t2

(
1 − ω2∆t2

4

)
ω2∆t

(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

)PV-end(vir)
beginning(vir)
PV-beginning(vir)

Side(vir) (
1 − e−γ∆t

)2
+ e−γ∆t

(
2 − e−γ∆t

)
ω2∆t2

(
1 − ω2∆t2

4

)
ω2∆t

(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

)side PV-side(vir)
PV-side end
PV-end beginning
PV-beginning

Middle-pT
2
(
1 − e−γ∆t

)
+ω2∆tγ−1

(
3 − e−γ∆t

)
4ω2γ−1

(
1 − e−γ∆t

)

Side-pT

[
ω4
∆t2e−γ∆t

(
1 − e−γ∆t

) (
2 − e−γ∆t

)
−2ω2

∆tγe−γ∆t
(
1 + e−γ∆t

) (
2 − e−γ∆t

)
− γ2

(
1 − e−γ∆t

) (
1 + e−γ∆t

)2
]

ω2
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [
ω2∆t

(
1 − e−γ∆t

)
− 2γ

(
1 + e−γ∆t

)]

Middle-xT
See supplementary material

side-xT

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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TABLE III. Characteristic correlation time of the Hamiltonian.

Scheme τHam

Middle(vir)



(
1 + e−γ∆t

)2
+

(
3 − e−γ∆t

)2
(
ω∆t

2

)2

−
(
3 − e−γ∆t

)2
(
ω∆t

2

)4

+
(
3 + e−γ∆t

) (
1 − e−γ∆t

) (
ω∆t

2

)6

ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [(
1 − ω2∆t2

4

)2
+ 1

]

Middle



(
1 − e−γ∆t

)2
+

(
3 + e−γ∆t

)2
(
ω∆t

2

)2

−
(
3 + e−γ∆t

)2
(
ω∆t

2

)4

+
(
3 − e−γ∆t

) (
1 + e−γ∆t

) (
ω∆t

2

)6

ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [(
1 − ω2∆t2

4

)2
+ 1

]

PV-middle(vir)

[
256

(
1 + e−γ∆t

)2
− 128

(
e−2γ∆t + 6e−γ∆t − 3

)
ω2
∆t2

+16
(
3e−2γ∆t + 22e−γ∆t − 13

)
ω4
∆t4 − 8

(
e−2γ∆t + 6e−γ∆t − 5

)
ω6
∆t6

−
(
3 + e−γ∆t

) (
1 − e−γ∆t

)
ω8
∆t8

]

256ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]

PV-middle

[
256

(
1 − e−γ∆t

)2
− 128

(
e−2γ∆t − 6e−γ∆t − 3

)
ω2
∆t2

+16
(
3e−2γ∆t − 22e−γ∆t − 13

)
ω4
∆t4 − 8

(
e−2γ∆t − 6e−γ∆t − 5

)
ω6
∆t6

−
(
3 − e−γ∆t

) (
1 + e−γ∆t

)
ω8
∆t8

]

256ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]

End(vir) beginning(vir)

[
64

(
1 + e−γ∆t

)2
+ 128

(
1 − e−γ∆t

)
ω2
∆t2

−16
(
5 − 2e−γ∆t + e−2γ∆t

)
ω4
∆t4 + 4

(
4 + e−2γ∆t

)
ω6
∆t6 −ω8

∆t8
]

64ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]

End beginning

[
64

(
1 − e−γ∆t

)2
+ 128

(
1 + e−γ∆t

)
ω2
∆t2

−16
(
5 + 2e−γ∆t + e−2γ∆t

)
ω4
∆t4 + 4

(
4 + e−2γ∆t

)
ω6
∆t6 −ω8

∆t8
]

64ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]

PV-end(vir) PV-beginning(vir)

[
16

(
1 + e−γ∆t

)2
+

(
28 − 40e−γ∆t − 4e−2γ∆t

)
ω2
∆t2

−
(
4 − 16e−γ∆t − 4e−2γ∆t

)
ω4
∆t4 − e−γ∆t

(
2 + e−γ∆t

)
ω6
∆t6

]

16ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [(
1 − ω2∆t2

4

)2
+ 1

]

PV-end PV-beginning

[
16

(
1 − e−γ∆t

)2
+

(
28 + 40e−γ∆t − 4e−2γ∆t

)
ω2
∆t2

−
(
4 + 16e−γ∆t − 4e−2γ∆t

)
ω4
∆t4 + e−γ∆t

(
2 − e−γ∆t

)
ω6
∆t6

]

16ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [(
1 − ω2∆t2

4

)2
+ 1

]

Side(vir) side

[(
1 − e−γ∆t

)2
+ e−γ∆t

(
2 − e−γ∆t

)
ω2
∆t2

(
1 −

ω2∆t2

4

)
+2e−γ∆tω2

∆t2
(
1 −

ω2∆t2

4

)2

+ω2
∆t2

(
1 −

ω2∆t2

4

)3

ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) (
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]
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TABLE III. (Continued.)

Scheme τHam

PV-side(vir) PV-side

[
16

(
1 − e−γ∆t

)2
+

(
−20e−2γ∆t + 72e−γ∆t + 12

)
ω2
∆t2

+8e−γ∆t
(
e−γ∆t − 3

)
ω4
∆t4 + e−γ∆t

(
2 − e−γ∆t

)
ω6
∆t6

]

16ω2∆t
(
1 + e−γ∆t

) (
1 − e−γ∆t

) [(
1 − ω2∆t2

4

)2
+ 1

]

Middle-pT side-pT middle-xT side-xT See supplementary material

that is, as γ → ∞, the characteristic correlation time for the
virtual dynamics case approaches the same limit as that for the
real dynamics case does.

2. Trajectory-based approach

a. Real dynamics case in the middle scheme. Equation (80)
leads to

Rn − R̄ = M̃
n
R0 +

n−1∑
j=0

M̃
j (

F0 + Ω̃n−1−j

)

−
*.
,

lim
m→∞

M̃
m

R0 +
∞∑

j=0

M̃
j
F0

+/
-

= M̃
n *.

,
R0 − lim

m→∞
M̃

m
R0 −

∞∑
j=0

M̃
j
F0

+/
-

+
n−1∑
j=0

M̃
j
Ω̃n−1−j

= M̃
n (

R0 − R̄
)

+
n−1∑
j=0

M̃
j
Ω̃n−1−j. (205)

Substituting Eqs. (105) and (106) into Eq. (205) produces

xn − xeq =
(
v11u11ε

n
1 + v12u21ε

n
2

) (
x0 − xeq

)
+

(
v11u12ε

n
1 + v12u22ε

n
2

)
p0

+
n−1∑
j=0

(
cx1ε

j
1 + cx2ε

j
2

)
Ωn−1−j. (206)

Because the stationary density distribution of the “middle”
scheme [Eq. (55)] is a product of the position distribution and

TABLE IV. Characteristic correlation time of the potential energy in the limit
γ→∞.

Scheme τ
γ→∞
pot

Middle

1 + 3
4ω

2∆t2

ω2∆t

PV-middle
Middle(vir)
PV-middle(vir)

End

1

ω2∆t
(
1 − ω2∆t2

4

)

Beginning
Side
PV-end
PV-beginning
PV-side
End(vir)
Beginning(vir)
Side(vir)
PV-end(vir)
PV-beginning(vir)
PV-side(vir)

the momentum distribution, then it is straightforward to show
that〈(

xn − xeq

)2 (
x0 − xeq

)2
〉
−

〈(
xn − xeq

)2
〉 〈(

x0 − xeq

)2
〉

=
(
v11u11ε

n
1 + v12u21ε

n
2

)2
[〈(

x0 − xeq

)4
〉

−

〈(
x0 − xeq

)2
〉2

]
. (207)

Equation (150) for the real dynamics case then becomes

CMiddle
pot (n∆t) =

(
v11u11ε

n
1 + v12u21ε

n
2

)2
. (208)

The characteristic correlation time of the potential energy is

τMiddle
pot =

∞∑
n=0

(
v11u11ε

n
1 + v12u21ε

n
2

)2
∆t

=

∞∑
n=0

[
(v11u11)2 ε2n

1 + (v12u21)2 ε2n
2

+ 2v11u11v12u21ε
n
1ε

n
2

]
∆t. (209)

The summation over n in Eq. (209) produces

TABLE V. Characteristic correlation time of the Hamiltonian in the limit
γ→∞.

Scheme τ
γ→∞
Ham

1 + 9
4ω

2∆t2 − 9
16ω

4∆t4 + 3
64ω

6∆t6

ω2∆t

[(
1 − ω2∆t2

4

)2
+ 1

]
Middle
Middle (vir)

PV-middle
256 + 384ω2∆t2 − 208ω4∆t4 + 40ω6∆t6 − 3ω8∆t8

256ω2∆t
(
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]
PV-middle (vir)

End
64 + 128ω2∆t2 − 80ω4∆t4 + 16ω6∆t6 −ω8∆t8

64ω2∆t
(
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]Beginning
End(vir)
Beginning(vir)

PV-end
4 + 7ω2∆t2 −ω4∆t4

4ω2∆t

[(
1 − ω2∆t2

4

)2
+ 1

]PV-beginning
PV-end(vir)
PV-beginning(vir)

1 +ω2∆t2
(
1 − ω2∆t2

4

)3

ω2∆t
(
1 − ω2∆t2

4

) [(
1 − ω2∆t2

4

)2
+ 1

]Side
Side(vir)

PV-side

4 + 3ω2∆t2

4ω2∆t

[(
1 − ω2∆t2

4

)2
+ 1

]

PV-side(vir)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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τMiddle
pot =


(v11u11)2 1

1 − ε2
1

+ (v12u21)2 1

1 − ε2
2

+ 2v11u11v12u21
1

1 − ε1ε2


∆t. (210)

Substituting the elements of Eqs. (101), (113), and (114) into Eq. (210), we obtain

τMiddle
pot =

1

4Dsinh2λ



(
√

D sinh λ +
1 − D

2

)2 1

1 − ε2
1

+

(
√

D sinh λ −
1 − D

2

)2 1

1 − ε2
2

+ 2

(
√

D sinh λ +
1 − D

2

) (
√

D sinh λ −
1 − D

2

)
1

1 − ε1ε2

]
∆t. (211)

FIG. 1. Results for the fluctuation of
the potential energy, kinetic energy,
and Hamiltonian using different time
intervals for the harmonic system U(x)
= 1

2 x2. The friction coefficient γ = 1,
which is the optimal γ for the charac-
teristic correlation time of the potential
energy for infinitesimal time interval.
(a) The fluctuation of potential energy
for all the schemes in the real dynamics
case. (b) Same as in (a) but for the vir-
tual dynamics case. (c) Same as in (a) but
for the fluctuation of kinetic energy. (d)
Same as in (c) but for the virtual dynam-
ics case. (e) Same as in (a) but for the
fluctuation of Hamiltonian. (f) Same as
in (e) but for the virtual dynamics case.
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Using Eqs. (101), (102), and (111), we may express Eq. (211)
in a more simplified form as

τMiddle
pot =

(
5 − 2D + D2 − 3T + DT

)
∆t

4 (D + 1 − T ) (1 − D)

=

(
1 − e−γ∆t

)2
+

(
1 + e−γ∆t

) (
3 − e−γ∆t

) (
ω∆t

2

)2

ω2∆t
(
1 + e−γ∆t ) (

1 − e−γ∆t ) ,

(212)

that is, the trajectory-based approach also leads to the same
result as Eq. (182).

We may follow the same procedure to prove that the char-
acteristic correlation time of the Hamiltonian for a finite time
interval ∆t is the same as Eq. (187).

b. Virtual dynamics case in the middle scheme. Analo-
gously, we may obtain the characteristic correlation time of the
potential and that of the Hamiltonian for the virtual dynamics

FIG. 2. Same as in Fig. 1 but for the
quartic system U(x) = 1

4 x4 and the
friction coefficient γ = 1.2, which is
nearly the optimal γ for the character-
istic correlation time of the potential for
infinitesimal time interval.
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case of the “middle” scheme, which are the same as Eqs. (199)
and (200), respectively.

3. Other schemes

It is straightforward to use either the phase space prop-
agator approach or the trajectory-based one to obtain the

FIG. 3. Analytic results for the characteristic correlation time of the poten-
tial energy for the harmonic system U(x) = 1

2 Mω2x2. The curves depict
the equations that τpotω and γ/ω satisfy for the parameter ω∆t → 0+,
ω∆t = 0.6,

√
2, and 1.9, respectively. (a) For the “(PV-)middle” schemes. (b)

For the “(PV-)side/side(vir)/end/beginning” schemes. (c) For the “middle-xT”
scheme.

characteristic correlation time for other schemes. While
Table II presents the characteristic correlation time of the

FIG. 4. Analytic results of the characteristic correlation time of the Hamil-
tonian for the harmonic system U(x) = 1

2 Mω2x2. The curves depict
the equations that τHamω and γ/ω satisfy for the parameter ω∆t →
0+, ω∆t = 0.6,

√
2, and 1.9, respectively. (a) For the “middle”

scheme. (b) For the “side”/“side (vir)” schemes. (c) For the “middle-xT”
scheme.
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potential for each scheme, Table III shows that of the
Hamiltonian.

Since the characteristic correlation time reaches a plateau
in the limit γ → ∞ in any one of the eight schemes that
employ the first type of repartition, Tables IV and V present

FIG. 5. Characteristic correlation time of the potential for the quartic system
U(x) = 1

4 x4. Three time intervals ∆t = 0.1, 0.3, and 0.4 are used. The unit of
all the parameters is atomic unit (a.u.). Statistical error bars are included.
(a) For the “middle” scheme. Hollow symbols with dotted line: numeri-
cal results for the virtual dynamics case. Solid symbols: numerical results
for the real dynamics case. (b) Same as in (a) but for the “side” scheme.
(c) For the “middle-xT” scheme. Solid symbols with dotted line: numerical
results.

the plateau value of the characteristic correlation time of the
potential and that of the Hamiltonian, respectively. It should
be stressed that for the harmonic system, the real and virtual
dynamics cases in the “side” scheme share effectively the same
behaviors (in Tables II–V). This is also true for the “PV-side”
scheme.

Finally, we note that Leimkuhler and Matthews employed
a different approach to obtain the mean and second-order
moments of the stationary state distribution for a few Langevin

FIG. 6. Same as in Fig. 5 but for the characteristic correlation time of the
Hamiltonian.
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dynamics algorithms for a one-dimensional harmonic poten-
tial when the time interval is finite,21 but they did not show the
form of the stationary state distribution neither did they study
the characteristic correlation time.

FIG. 7. The characteristic correlation time of the potential and that of the
Hamiltonian in the limitγ→∞ for the harmonic system U(x) = 1

2 Mω2x2. The
eight schemes that employ the first type of repartition are considered. (a) The
characteristic correlation time of the potential energy in the limitγ→∞ for all
the eight schemes. (b) The characteristic correlation time of the Hamiltonian
in the limit γ→∞ for the “middle”, “side”, and “end”/“beginning” schemes.
(c) Same as in (b) but for the “PV-middle”, “PV-side”, and “PV-end”/“PV-
beginning” schemes.

VI. EXAMPLES AND DISCUSSIONS
A. Comparison of the schemes for one-dimensional
models

We first test two standard 1-dimensional models—a
harmonic oscillator

U (x) =
1
2

Mω2x2 (213)

[i.e., A = Mω2 and xeq = 0 in Eq. (100)] and a quartic potential

U (x) = x4/4. (214)

Since the quartic potential has no harmonic terms, it presents
a challenging model to verify the conclusions drawn from the
analytical analysis for the harmonic system.

1. Thermal fluctuations

We consider thermal fluctuations of the potential energy,
kinetic energy, and Hamiltonian, which indicate the accuracy
of an underlying algorithm for sampling the configurational
space, the momentum space, and the whole phase space,
respectively. Figures 1 and 2 demonstrate the thermal fluc-
tuation as a function of the time interval for the harmonic
oscillator and for the quartic model. The numerical results in
Figs. 1 and 2 show that the “middle/middle (vir)” scheme is
the most accurate in sampling the configurational space, while
the “PV-end/PV-end (vir)” scheme is the best in sampling the
momentum space. It is easy to follow the proof in Sec. IV of
our earlier work25 to prove that the “PV-end”/“PV-side”/“PV-
beginning” schemes lead the same stationary state marginal
distribution of the coordinate for a general system while the
“end”/“side”/“beginning” schemes do so as well, regardless of
whether real or virtual dynamics is implemented. Analogously,
we may follow Ref. 25 to prove that the ascending order for

TABLE VI. The range ofω∆t where the optimal friction coefficient is finite
for the harmonic system U(x) = 1

2 Mω2x2.

Scheme Range

Middle
τpot (0,2)

PV-middle

End beginning

τpot (0,
√

2) and (
√

2, 2)

side
side(vir)
PV-end
PV-beginning
PV-side
PV-side(vir)

Middle τHam (0,2)

End beginning τHam (0,
√

2) and (
√

2, 2)

Side side(vir) τHam (0, 0.806 064) and (1.709 276, 2)

PV-middle τHam (0,
√

5 − 1) and (
√

5 − 1, 2)

PV-end
τHam (0,

√
2) and (

√
2, 2)

PV-beginning

PV-side
τHam (0, 0.732 05)

PV-side(vir)
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the error of the momentum distribution for a general system
is

PV-end ≤ PV-side ≤ PV-beginning

and
end ≤ side ≤ beginning

irrespective of whether the real or virtual dynamics case is
employed. Figures 1 and 2 also demonstrate that when the
friction coefficient γ takes a reasonable value, the “middle-
xT” scheme is the most accurate in sampling the phase space
among the twelve schemes.

In addition to thermal fluctuations, we also calculate the
average values for the potential energy and kinetic energy (see
the supplementary material). The results agree well with the
conclusion that we draw.

2. Characteristic correlation time

We then study the characteristic correlation time as a func-
tion of the friction coefficient γ. The twelve schemes may
be divided into three categories. The stationary distribution
in the harmonic limit is independent of γ for any one of the
first eight schemes. The first category consists of the “side”
and “PV-side” schemes since in either scheme results of the
real dynamics case and those of the virtual dynamics case
share effectively the same behaviors (at least for the two one-
dimensional model systems). The rest six schemes fall into
the second category. In each of these schemes, virtual dynam-
ics yields a substantially different algorithm from what real

dynamics leads to. For demonstration, we choose the “side”
scheme in the first category and the “middle” scheme in the
second category. The third category includes the schemes of
which the stationary distribution in the harmonic limit depends
on γ. The last four schemes fall into this category. We choose
the “middle-xT” scheme for demonstration. While Figs. 3 and
4 demonstrate the analytic results on the characteristic cor-
relation time of the potential and on that of the Hamiltonian,
respectively, for the “middle”/“side”/“middle-xT” schemes for
the harmonic system [Eq. (213)], Figs. 5 and 6 show the
numerical results for the three schemes for the quartic model
[Eq. (214)].

Consider the real dynamics case in the first eight schemes.
While the characteristic correlation time goes to infinity as
the friction coefficient approaches zero, it gradually reaches
a plateau as the friction coefficient approaches infinity [see
panels (a) and (b) of Figs. 3–6]. As shown in Fig. 7 for the
harmonic system, the product of the plateau value and the
frequency τγ→∞ω is a function of ω∆t (the explicit form
of which is given in Table IV or Table V). In the “middle”
scheme, the plateau value τγ→∞ (overall) decreases as the time
interval ∆t increases, regardless of whether the characteristic
correlation time of the potential or that of the Hamiltonian is
considered.

When the real dynamics case in any one of these schemes
is employed, the optimal friction coefficient that produces the
minimum characteristic correlation time is often a function
of the time interval ∆t. The optimal friction coefficient is often

FIG. 8. The “middle,” “side”/“side
(vir),” and “middle-xT” schemes
are considered as examples for the
harmonic system U(x) = 1

2 Mω2x2.
(a) τmin

pot ω as a function of ω∆t, where

τmin
pot is the minimum value of the

characteristic correlation time of the
potential. (b) γ

opt
pot/ω as a function

of ω∆t, where γ
opt
pot is the optimal

friction coefficient for the characteristic
correlation time of the potential. (c)
and (d) are the same as in (a) and (b),
respectively, but for the characteristic
correlation time of the Hamiltonian.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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finite. That is, while the characteristic correlation time decays
as the friction coefficient increases from zero to the optimal
friction, it increases to reach a plateau as the friction coef-
ficient increases from the optimal value to infinity. For the
schemes other than “middle,” the optimal friction coefficient
is not always finite (i.e., the characteristic correlation time may
monotonically decay as the friction coefficient increases) [see
panel (b) of Figs. 3 and 4]. For the harmonic system, the range
of ω∆t where the optimal friction coefficient is finite is listed
for each of the first eight schemes in Table VI. While panels
(b) and (d) of Fig. 8 show the optimal friction coefficient as a
function of the time interval ∆t, panels (a) and (c) of Fig. 8 do
so for the corresponding minimum characteristic correlation
time. In the “middle” scheme (for the harmonic system), the
optimal friction coefficient is always finite for either of the
characteristic correlation time of the potential and that of the
Hamiltonian, as long as the dynamics is in the stable region
ω∆t < 2.

When ∆t is reasonably large without loss of much accu-
racy, both the minimum and the plateau (in the high friction
limit) of the characteristic correlation time are considerably
small in such a scheme as “middle,” which indicates that it
may be efficient and robust within a broad range of the friction
coefficient [see panels (a) and (b) of Figs. 3–6, Fig. 7, and pan-
els (a) and (c) of Fig. 8]. So in terms of sampling efficiency,
it is often more favorable to choose a relatively and reason-
ably large friction coefficient rather than a small one in the

“middle” scheme, when no knowledge of the optimal friction
coefficient for a system is available.

The virtual dynamics case of any one scheme in the first
category (i.e., “side” or ”PV-side”) is effectively identical to
the real dynamics case of the same scheme [see panel (b) of
Figs. 3–6]. In contrast to the characteristic correlation time in
the real dynamics case of each scheme of the second category,
the corresponding virtual dynamics case always monotoni-
cally decreases as the friction coefficient increases. When the
friction coefficient approaches infinity, the characteristic cor-
relation time in the virtual dynamics case reaches the same
plateau as that in the real dynamics case of the same scheme
does [see panel (a) of Figs. 3–6].

We then consider the last four schemes (“middle-
xT”/“side-xT”/“middle-pT”/“side-xT”). The characteristic
correlation time of the potential (or the Hamiltonian) also
has a minimum value. The optimal value of the friction coef-
ficient that produces the minimum characteristic correlation
time is also a function of the time interval ∆t. The charac-
teristic correlation time goes to infinity as the friction coeffi-
cient approaches either zero or infinity. Unlike the first eight
schemes, the last four schemes do not lead to a plateau of the
characteristic correlation time in the high friction limit. The
characteristic correlation time is much more sensitive to the
friction coefficient in the last four schemes [see panel (c) of
Figs. 3–6]. Figure 8 compares “middle-xT” to “middle” and
“side” on the minimum value of the characteristic correlation

FIG. 9. Results for the averaged poten-
tial energy and the thermal fluctuation
of the potential using different friction
coefficients γ. (a) and (b) for the 1-
dimensional harmonic model. Two time
intervals ∆t = 1.0 and 1.8 are used. (c)
and (d) for the 1-dimensional quartic
model. Three time intervals ∆t = 0.3,
0.4, and 0.45 are used. The unit of all
the parameters is atomic unit (a.u.) in the
figure. “real-1.0” represents the numer-
ical results obtained by real dynamics
for ∆t = 1.0 au; “vir-1.0” stands for
those produced by virtual dynamics for
∆t = 1.0 a.u., etc. Statistical error bars
are included.
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time and the corresponding optimal friction coefficient for the
harmonic system. Such as the “middle-xT” scheme in the third
category may offer an alternative good algorithm if the optimal
friction region is easy to obtain for anharmonic systems.

In conclusion, the curves in Figs. 3 and 4 represent the
analytic results of the characteristic correlation time for the
harmonic system36 presented in Sec. V and Tables II–VI,
and the numerical results in Figs. 5 and 6 for the quartic
potential suggest that the similar behavior of the characteristic
correlation time also exists for anharmonic systems.

B. Numerical performance of the “middle” scheme

Since the configurational sampling is often more impor-
tant in molecular simulations, the “middle/middle(vir)”
scheme is then recommended for Langevin dynamics simula-
tions. In addition to the two one-dimensional models, two typi-
cal “real” systems are investigated for studying the dependence
of the accuracy and efficiency of the “middle/middle(vir)”
scheme on the friction coefficient. The first molecular sys-
tem is the H2O molecule with the accurate potential energy
surface developed by Partridge and Schwenke from extensive
ab initio calculations and experimental data.37 As the explicit
form of the PES is available, that of the force can be expressed.
The simulations are performed for T = 100 K. The second
“real” system is (Ne)13, a Lennard-Jones (LJ) cluster. The

parameters of the system are described in Ref. 38. The
simulations are performed for T = 14 K.

First, consider the dependence of accuracy (of numerical
results) on the friction coefficient. Two coordinate-dependent
properties are studied, which include the average potential
energy and the fluctuation of the potential. For the harmonic
system, the “middle/middle(vir)” scheme leads to the exact
configurational distribution regardless of the value of the
friction coefficient. This indicates that coordinate-dependent
properties obtained from the “middle/middle(vir)” schemes
are exact and independent of the friction coefficient in the har-
monic limit. The numerical results in panels (a) and (b) of Fig.
9 are in good agreement (within statistical error bars) with the
analytical analysis. Similarly, it is shown in panels (c) and (d)
of Fig. 9 and in Fig. 10 that for anharmonic and/or “real” sys-
tems the results produced by the “middle/middle(vir)” scheme
are also relatively insensitive to the friction coefficient in a
broad region when the time interval is fixed. The region ranges
from around the optimal value to infinity.

Since the dependence of accuracy on the friction coeffi-
cient is weak in such a wide range, the characteristic corre-
lation time is the next important factor to consider. Figure
11 shows that the characteristic correlation time gradually
approaches a plateau in the high friction limit for the two
“real” systems. This is consistent with the behavior of the
characteristic correlation time depicted in Figs. 3–6 for the

FIG. 10. Results for the averaged
potential energy and the thermal
fluctuation of the potential using
different friction coefficients γ (unit:
fs�1). (a) and (b) for the H2O molecule.
Three time intervals ∆t = 1.9, 2.2, and
2.4 (unit: fs) are used. (c) and (d) for
the (Ne)13 cluster. Two time intervals
∆t = 20 and 50 (unit: fs) are used. [(a)
and (c) display the averaged potential
energy per atom 〈U(x)〉/(NatomkB)
(unit: Kelvin). (b) and (d) display the
thermal fluctuation of the potential

per atom
√
〈U2〉 − 〈U〉2/(NatomkBT ).]

“real-1.9” represents the numerical
results obtained by real dynamics
for ∆t = 1.9 fs; “vir-1.9” stands for
those produced by virtual dynamics
for ∆t = 1.9 fs, etc. Statistical error
bars are included. [For comparison the
converged results are obtained with the
parameters: [(a) and (b)] γ = 0.68 fs�1,
∆t = 0.24 fs; [(c) and (d)] γ = 0.001
fs�1, ∆t = 10 fs.]
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FIG. 11. Characteristic correlation
time of the potential (a) and that of
the Hamiltonian (b) for the “middle”
scheme for the H2O molecule at 100
K. (c) and (d) are the same as in (a)
and (b) but for the (Ne)13 cluster at 14
K. While two time intervals ∆t = 0.24
and 1.2 (unit: fs) are used for the H2O
molecule in (a) and (b), those used for
the (Ne)13 cluster at 14 K are ∆t = 20
and 50 (unit: fs). The unit of all the
parameters is per femtosecond (fs�1).
Statistical error bars are included.
Hollow squares/circles with dotted
lines: numerical results for the virtual
dynamics case. Solid squares/circles:
numerical results for the real dynamics
case. “vir-num-1.2” represents the
numerical results from the virtual
dynamics case for ∆t = 1.2 fs; “real-
num-1.2” stands for the numerical
results from the real dynamics case for
∆t = 1.2 fs, etc.

two one-dimensional systems. It is then suggested that a rea-
sonable value for the friction should be around the optimal
value [Eq. (185)] or larger.

In summary, the results of Figs. 3–6 and 9–11 suggest that
both the accuracy and efficiency of the “middle/middle(vir)”
scheme are insensitive to the friction coefficient in a broad
range even for anharmonic and/or “real” systems.

VII. CONCLUSION REMARKS

To present a unified theoretical framework for under-
standing the Boltzmann thermostat based on Langevin dynam-
ics, we give a comprehensive study on the performance of
different numerical schemes for solving the Langevin equa-
tion. Three types of repartition of the Langevin equation
describing the finite-time change of the phase-space point
are thus proposed and investigated. While the first type of
repartition [Eq. (10)] of the Langevin equation involves the
exact realization of the Ornstein-Uhlenbeck noise [Eq. (13)],
of which numerical algorithms include both real and vir-
tual dynamics cases. This type of repartition includes the
first eight schemes (“middle”/“end”/“beginning”/“side”/“PV-
middle”/“PV-end”/“PV-beginning”/“PV-side”). The second
and third types of repartition [Eqs. (31) and (36)] do

not “obviously” result in the virtual dynamics analogue
giving the correct Boltzmann distribution.39 They lead
to the last four schemes (“middle-pT”/“side-pT”/“middle-
xT”/“side-xT”). Other types of repartition may also be intro-
duced (see more discussion in the supplementary material).

By either directly solving the discrete equations of motion
or using the related phase space propagators, we introduce
two different theoretical approaches to obtain both the station-
ary state distribution and characteristic correlation time for
the harmonic system when the time interval ∆t is finite. It is
shown that the stationary distribution of each of the first eight
schemes is independent of the friction coefficient, regardless
of whether the real or virtual dynamics case is employed. In
contrast, the stationary distribution of each of the last four
schemes depends on the friction coefficient. When the friction
coefficient approaches infinity, the stationary distribution (in
each of the last four schemes) is even not well-defined.

The characteristic correlation time may be used as a mea-
sure for the simulation efficiency. It turns out that the real
dynamics algorithm in any one of the schemes often has a
minimum correlation time when the time interval ∆t is in a
certain range. The optimal value of the friction coefficient
that produces the minimum correlation time is often a func-
tion of the time interval ∆t. In any one of the schemes, the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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characteristic correlation time goes to infinity as the fric-
tion coefficient approaches zero. As the friction coeffi-
cient approaches infinity, the characteristic correlation time
in each of the last four schemes goes to infinity while
that in each of the first eight schemes gradually reaches
a plateau. It is then expected that simulation results pro-
duced by the first eight schemes are much less sensitive to
the friction coefficient than those obtained by the last four
schemes.

The real and virtual dynamics cases of the “side” scheme
share the same/similar behaviors, so are those of the “PV-
side” scheme. More interesting is the virtual dynamics case
in each of the “middle”/“end”/“beginning”/“PV-middle”/“PV-
end”/“PV-beginning” schemes, which is substantially different
from the corresponding real dynamics case. The character-
istic correlation time in the virtual dynamics case monoton-
ically decreases as the friction coefficient increases, which
eventually approaches the same plateau in the high friction
limit as that in the real dynamics case of the same scheme
does.

The numerical examples show that the conclusions drawn
from the analytical analysis for the harmonic system are appli-
cable to anharmonic models and “real” molecular systems. The
real dynamics case of the “middle” scheme is recommended
as the best (second-order) algorithm for performing Langevin
dynamics. It has two important properties:

(1) It produces the most accurate configurational sampling.
Its numerical performance in accuracy is relatively
insensitive to the friction coefficient in a wide range
from around the optimal value to the high friction value.

(2) Its characteristic correlation time always has a plateau as
an upper bound in the high friction limit when the time
interval is finite. This guarantees the sampling efficiency
when the friction coefficient is chosen in a wide range
from around the optimal value to the high friction value
for a reasonably large time interval.

Note that the Boltzmann distribution e−βH(x,p)

= exp
[
−βpT M−1p/2

]
exp

[
−βU (x)

]
is a product of the con-

figurational distribution e−βU(x) and the Maxwell momentum
distribution. Because the latter is simply a Gaussian function,
it is trivial to employ Monte Carlo (techniques) for accurate
momentum sampling. We may use the “middle” scheme to
obtain the marginal distribution of the coordinate while sam-
pling the momentum space separately by Monte Carlo. Such an
approach will offer accurate and efficient phase space sampling
for the Boltzmann distribution.

Finally, we note that our investigation has implications to
other types of thermostats. Our recent study25 indicates that
the conclusions for numerical schemes with the first type of
repartition of the Langevin equation in the present work may
in principle apply to other thermostats. Further investigation
along the direction is certainly warranted.

SUPPLEMENTARY MATERIAL

See supplementary material for more results of the numer-
ical examples in Sec. VI A and for more discussion on
numerical algorithms on Langevin dynamics.
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APPENDIX A: PHASE SPACE PROPAGATOR
APPROACH FOR DERIVING THE STATIONARY STATE
DISTRIBUTION FOR THE HARMONIC SYSTEM

We may employ phase space propagators to do the analy-
sis for all the twelve schemes. Here we adopt a strategy similar
to what we have recently developed for the analysis of the
Andersen thermostat.25

1. Schemes that employ the second or third type
of repartition

Since it is more difficult to obtain the stationary state dis-
tribution for the harmonic system for the last four schemes
[Eqs. (34), (35), (48), and (49)] that employ the second or
third type of repartition, we choose “middle-xT” (of these four
schemes) for the demonstration of the derivation procedure.

Consider a one-dimensional harmonic system where
Eq. (50) becomes Eq. (100). Use the “middle-xT” scheme
[Eq. (48)] as the example. The relevant Kolmogorov operators
in Eqs. (21) and (47) become

Lpρ = A
(
x − xeq

) ∂ρ
∂p

, (A1)

Lx−T ρ = −
p
M
∂ρ

∂x
+
∂

∂p
(γp · ρ) +

γM
β

∂2ρ

∂p2
. (A2)

We define the following density distributions:

ρn,0 (x, p) ≡
(
eL

Middle-xT∆t
)n
ρ0 (x, p) ,

ρn,1 (x, p) ≡ eLp∆t/2ρn,0 (x, p) ,

ρn,2 (x, p) ≡ eLx−T∆t ρn,1 (x, p) ,

(A3)

which lead to

ρn+1,0 (x, p) = eLp∆t/2ρn,2 (x, p) . (A4)

Then we may define υn,i as

υn,i =

(
〈x〉n,i
〈p〉n,i

) (
i = 0, 2

)
, (A5)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-024741
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with

〈x〉n,i =

∫
ρn,i (x, p) x dxdp

(
i = 0, 2

)
, (A6)

〈p〉n,i =

∫
ρn,i (x, p) p dxdp

(
i = 0, 2

)
. (A7)

It is easy to verify that

〈x〉n,1 =

∫
ρn,1 (x, p) x dxdp

=

∫
eLp∆t/2ρn,0 (x, p) x dxdp

=

∫
ρn,0 (x, p) x dxdp

= 〈x〉n,0 (A8)

and

〈p〉n,1 =

∫
ρn,1 (x, p) p dxdp

=

∫
eLp∆t/2ρn,0 (x, p) p dxdp

=

∫
ρn,0 (x, p)

[
p −
∆t
2

A
(
x − xeq

)]
dxdp

= 〈p〉n,0 −
∆t
2

A〈x〉n,0 +
∆t
2

Axeq, (A9)

which can be expressed as

υn,1 = J1υn,0 + j (A10)

with

J1 =
*..
,

1 0

−
∆t
2

A 1

+//
-

, (A11)

j =
*..
,

0

∆t
2

Axeq

+//
-

. (A12)

Analogously, we may obtain

υn,2 = J2υn,1, (A13)

υn+1,0 = J1υn,2 + j, (A14)

with

J2 =
*...
,

1
1 − e−γ∆t

γM

0 e−γ∆t

+///
-

. (A15)

Substituting Eqs. (A10) and (A13) into Eq. (A14), we have

υn+1,0 = J̄υn,0 + j̄, (A16)

with J̄ = J1J2J1 and j̄ = (1 + J1J2) j. Then the averaged
phased-space point can be obtained by

*.
,

x̄

p̄

+/
-
= lim

n→∞

(
〈x〉n,0
〈p〉n,0

)
= υ∞,0

=
(
1 − J̄

)−1
j̄

=

(
xeq

0

)
. (A17)

Consider a series of vectors ξn,i defined as

ξn,i =

(〈(
x − xeq

)2
〉

n,i
,
〈(

x − xeq

)
p
〉

n,i
,
〈
p2

〉
n,i

)T (
i = 0, 2

)
,

(A18)

with〈(
x − xeq

)2
〉

n,i
=

∫
ρn,i (x, p)

(
x − xeq

)2
dxdp

(
i = 0, 2

)
,

(A19)〈(
x − xeq

)
p
〉

n,i
=

∫
ρn,i (x, p)

(
x − xeq

)
p dxdp

(
i = 0, 2

)
,

(A20)

and 〈
p2

〉
n,i
=

∫
ρn,i (x, p) p2dxdp

(
i = 0, 2

)
. (A21)

Following the same strategy in Eqs. (A10), (A13), and (A14),
we may show that

ξn,1 = G1ξn,0, (A22)

ξn,2 = G2ξn,1 + g, (A23)

ξn+1,0 = G1ξn,2, (A24)

with

G1 =

*.......
,

1 0 0

−A
∆t
2

1 0

A2∆t2

4
−A∆t 1

+///////
-

, (A25)

G2 =

*........
,

1
2
(
1 − e−γ∆t

)
γM

(
1 − e−γ∆t

)2

γ2M2

0 e−γ∆t
e−γ∆t

(
1 − e−γ∆t

)
γM

0 0 e−2γ∆t

+////////
-

, (A26)

and

g =

*...........
,

2γ∆t − 3 + 4e−γ∆t − e−2γ∆t

βγ2M(
1 − e−γ∆t

)2

βγ

M
(
1 − e−2γ∆t

)
β

+///////////
-

. (A27)

Substituting Eqs. (A22) and (A23) into Eq. (A24), we have

ξn+1,0 = Ḡξn,0 + ḡ, (A28)

with Ḡ = G1G2G1 and ḡ = G1g. It is straightforward to verify
that(〈(

x − xeq

)2
〉

,
〈(

x − xeq

)
p
〉

,
〈
p2

〉)T

= lim
n→∞

(〈(
x − xeq

)2
〉

n,0
,
〈(

x − xeq

)
p
〉

n,0
,
〈
p2

〉
n,0

)T

= ξ∞,0

=
(
1 − Ḡ

)−1
ḡ. (A29)
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We may then obtain(〈(
x − xeq

)2
〉

,
〈(

x − xeq
)

p
〉

,
〈
p2

〉)T

=

*..............
,

1
βA

2
[
γ2

(
1 − e−2γ∆t

)
+

(
e−2γ∆t + 2γ∆te−γ∆t − 1

)
A
M

]

γ
(
1 − e−γ∆t

) [
2γ

(
1 + e−γ∆t

)
− ∆t

(
1 − e−γ∆t

)
A
M

]

1
β

(
1 + e−γ∆t

) [
γ∆t

(
1 + e−γ∆t

)
− 2

(
1 − e−γ∆t

)](
1 − e−γ∆t

) [
∆t

(
1 − e−γ∆t

)
A
M − 2γ

(
1 + e−γ∆t

)]

M
β

θ1

θ2

+//////////////
-

(A30)

with

θ1 =

{
1
2

(
1 + e−γ∆t

)3 A
M
γ2
∆t2 +

1
2

(
1 − e−γ∆t

)2 (
1 + e−γ∆t

)
×


4γ2 +

(
A
M

)2

∆t2

−

A
M
γ∆t

(
1 − e−γ∆t

)
×

[
3
(
1 + e−2γ∆t

)
+ e−γ∆t

(
A
M
∆t2 − 2

)]}
,

θ2 = γ
(
1 − e−γ∆t

)2
[
2γ

(
1 + e−γ∆t

)
−

A
M
∆t

(
1 − e−γ∆t

)]
.

(A31)

Define the fluctuation correlation matrix

W = *
,

Wxx Wxp

Wpx Wpp

+
-

(A32)

with
Wxx =

〈(
x − xeq

)2
〉

,

Wxp = Wpx =
〈(

x − xeq

)
p
〉

,

Wpp =
〈
p2

〉
.

(A33)

Substituting Eq. (A30) into Eq. (A32) generates the
second-order moments for the “middle-xT” scheme. The mean
[Eq. (A17)] and the second-order moments [Eq. (A32)] are not
sufficient to obtain the stationary state distribution. Higher-
order moments are required. It is straightforward (though
tedious) to obtain all the higher-order moments and then the
moment generating function, similar to our recent work on the
Andersen thermostat (Appendix A of Ref. 25).

Another method is to assume that the stationary state dis-
tribution is of a Gaussian form, where the mean [Eq. (A17)]
and the fluctuation correlation matrix [Eq. (A32)] are suf-
ficient to determine the distribution. It is trivial to follow
Sec. IV A to prove that the stationary state for the one-
dimensional harmonic potential [Eq. (100)] produced by the
“middle-xT” scheme is

ρ (x, p) =
1

Z̃
exp

[
−

1
2

(
R − R̄

)T
W−1

(
R − R̄

)]
, (A34)

where R = (x, p)T , R̄ =
(
xeq, 0

)T
, and Z̃ is a normalization

constant.
Similarly, we may prove that the stationary state of any one

of the last four schemes [Eqs. (34), (35), (48), and (49)] shares
the same form as Eq. (A34) except that the corresponding

fluctuation correlation matrix is different. The results are listed
in Table I.

2. Schemes that employ the first type of repartition

One may follow the derivation procedure in the first part
of Appendix A to prove that the one-dimensional version of
Eq. (55), Eq. (57), Eq. (58), or Eq. (59) is the stationary state for
the corresponding scheme (for either real dynamics or virtual
dynamics cases) for the one-dimensional harmonic system.

APPENDIX B: RELATION BETWEEN TWO LANGEVIN
DYNAMICS ALGORITHMS

The update of the position and momentum based on
Grønbech-Jensen and Farago’s algorithm10 can be expressed
as

xn+1 = xn +
1 + a

2
∆tM−1pn −

1 + a
4
∆t2M−1∇xn U(xn)

+
1 + a

4
∆tM−1

√
2MγGF∆t

β
µn, (B1)

pn+1 = apn −
∆t
2

(
a∇xn U(xn) + ∇xn+1 U(xn+1)

)
+

1 + a
2

√
2MγGF∆t

β
µn. (B2)

Here

a =
(
1 +

1
2
γGF
∆t

)−1 (
1 −

1
2
γGF
∆t

)
(B3)

with γGF as the (diagonal) friction coefficient matrix defined
in Grønbech-Jensen and Farago’s algorithm and

µn ≡ µ (n∆t,∆t) (B4)

is a standard-Gaussian-random-number vector defined by
Eqs. (17) and (18). Note that Eqs. (B1) and (B2) can be
rewritten as

xn+1 = xn +
1 + a

2
∆tM−1pn −

1 + a
4
∆t2M−1∇xn U(xn)

+
∆t
2

M−1

√
M
β

(
1 − a2)µn, (B5)

pn+1 = apn −
∆t
2

(
a∇xn U(xn) + ∇xn+1 U(xn+1)

)
+

√
M
β

(
1 − a2)µn. (B6)

The update of the position and momentum in the “middle”
scheme [Eq. (23)] is expressed as Eqs. (62) and (63). Note that
the Gaussian random number vector Ωn in Eqs. (62) and (63)
may be rewritten as

Ωn ≡ Ω(n∆t,∆t) =

√
1
β

M1/2
(
1 − e−2γ∆t

)1/2
µn(n∆t,∆t)

(B7)



184104-32 Li et al. J. Chem. Phys. 147, 184104 (2017)

with the standard-Gaussian-random-number vector µn

≡ µ(n∆t,∆t) defined by Eqs. (17) and (18). Equations (62)
and (63) then become

xn+1 = xn +
∆t
2

M−1
(
1 + e−γ∆t

) [
pn −

∆t
2
∇xn U(xn)

]

+
∆t
2

√
1
β

M−1/2
(
1 − e−2γ∆t

)1/2
µn, (B8)

pn+1 = e−γ∆t
[
pn −

∆t
2
∇xn U(xn)

]
−
∆t
2
∇xn+1 U(xn+1)

+

√
1
β

M1/2
(
1 − e−2γ∆t

)1/2
µn. (B9)

Grønbech-Jensen and Farago’s algorithm10 is equivalent to the
“middle” scheme when

a = e−γ∆t . (B10)

Substituting Eq. (B10) into Eq. (B3), we obtain

γGF =
2
∆t

(
1 + e−γ∆t

)−1 (
1 − e−γ∆t

)
. (B11)

That is, the friction coefficient γGF defined in Grønbech-Jensen
and Farago’s algorithm is not the true friction coefficient γ
defined in the original Langevin equation, Eqs. (2) and (3), but
a function of both γ and the time interval ∆t. γGF is equivalent
to γ only in the limit ∆t → 0.

Analogously, it is straightforward to verify that when

a = −e−γ∆t , (B12)

Grønbech-Jensen and Farago’s algorithm10 is equivalent to the
“middle (vir)” scheme. Substituting Eq. (B12) into Eq. (B3),
we obtain

γGF =
2
∆t

(
1 − e−γ∆t

)−1 (
1 + e−γ∆t

)
. (B13)
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