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We show a unified second-order scheme for constructing simple, robust, and accurate algorithms for
typical thermostats for configurational sampling for the canonical ensemble. When Langevin dynam-
ics is used, the scheme leads to the BAOAB algorithm that has been recently investigated. We show
that the scheme is also useful for other types of thermostats, such as the Andersen thermostat and
Nosé-Hoover chain, regardless of whether the thermostat is deterministic or stochastic. In addition
to analytical analysis, two 1-dimensional models and three typical real molecular systems that range
from the gas phase, clusters, to the condensed phase are used in numerical examples for demon-
stration. Accuracy may be increased by an order of magnitude for estimating coordinate-dependent
properties in molecular dynamics (when the same time interval is used), irrespective of which type of
thermostat is applied. The scheme is especially useful for path integral molecular dynamics because
it consistently improves the efficiency for evaluating all thermodynamic properties for any type of
thermostat. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4991621]

I. INTRODUCTION

Since the pioneering work of Fermi, Pasta, and Ulam
in 1955,1 molecular dynamics (MD) has presented a use-
ful tool for investigating and predicting properties of a wide
variety of real systems in physics, chemistry, biology, materi-
als, environmental science, etc.2,3 Various thermostat meth-
ods4–24 have been developed for constant temperature MD
simulations. Many cases of them deal with the canonical
ensemble where the number of particles (N), the volume (V ),
and the temperature (T ) are constant. Some prevailing ther-
mostats include the Andersen thermostat,5 Langevin dynam-
ics,4,8,10,15,17,19–22,24–26 Nosé-Hoover chain (NHC),6,9,12–14,27

etc. The Andersen thermostat5 mixes Newtonian dynamics of
the particles (of the system) with stochastic collisions with
a fictitious heat bath. When a particle is chosen to undergo
a collision, its momentum is reselected from the Maxwell-
Boltzmann distribution corresponding to the desired temper-
ature T. Langevin dynamics offers another type of stochastic
thermostat, which is a combination of damping and random
perturbation based on Brownian dynamics.4,8,10,15,17,19–22,24–26

For comparison, the NHC thermostat is deterministic and time-
reversible. NHC was developed by Martyna, Tuckerman, and
co-workers12–14,27 from the original work by Nosé6 and that
by Hoover.9 It couples the equations of motion of the parti-
cles with additional, artificial coordinates and momenta in an
extended system approach.

The time interval (time stepsize) controls both the accu-
racy and efficiency of a MD simulation. While a too small
time interval reduces the sampling efficiency in the full phase
space, a too large one lowers the accuracy or even breaks down

a)Z. Zhang and X. Liu contributed equally to the work.
b)Electronic mail: jianliupku@pku.edu.cn

the propagation of the trajectory. The time interval depends
on both the system of interest and the integrator/algorithm
employed in the MD simulation. It is then both appealing
and challenging to develop integrators/algorithms that use
larger time intervals to improve the sampling efficiency while
maintaining the accuracy.

Most practical thermostat algorithms employ second-
order schemes because of its simplicity and efficiency. Higher
order schemes that factorize the time interval such as the
Suzuki-Yoshida decomposition framework28–31 may in prin-
ciple improve the performance but more force calculations
are required. In addition, the Suzuki-Yoshida decomposition
framework does not perform better than second order schemes
when the time interval is large. Other higher-order factor-
izations such as the Suzuki-Chin factorizations32–36 require
second-order derivatives or even higher order derivatives of
the potential energy surface. Unless the potential energy sur-
face or the force field is of some specific forms, it is often much
more demanding to obtain its second-order or even higher
order derivatives, regardless of whether analytical forms or
finite difference techniques are employed (for computing these
derivatives). So higher order schemes do not offer more eco-
nomic algorithms for general molecular systems. In the paper,
we focus on second-order schemes.

Because all structural properties and most thermodynamic
observables only depend on coordinate variables, it is often
more important to obtain an accurate sampling in the coordi-
nate space rather than in the momentum space. When MD is
used to perform the imaginary time path integral sampling in
the so-called path integral molecular dynamics (PIMD)37,38 for
quantum canonical ensembles, since all thermodynamic prop-
erties depend only on the coordinates of the path integral beads,
it is crucial to faithfully sample the configurational distribu-
tion (of the path integral beads).24 Leimkuhler and Matthews
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have recently proposed an efficient MD algorithm (“BAOAB”)
for sampling the coordinate space with Langevin dynam-
ics for the canonical ensemble.20,22 More recently, we have
employed BAOAB to develop a simple and accurate algorithm
for accomplishing PIMD with the Langevin thermostat.24

The purpose of this paper is to present a unified scheme
that leads to the BAOAB algorithm when Langevin dynam-
ics is used and that may also be applied to other thermostats
for efficient configurational sampling for the canonical ensem-
ble. Section II first briefly reviews several typical thermostats
such as the Andersen thermostat, Langevin dynamics, and
NHC. Section III presents three second-order schemes for the
thermostats. Section IV then shows the error analysis for the
thermostat algorithms in the harmonic limit and that for a gen-
eral system. Numerical examples are demonstrated in Sec. V,
where thermodynamic properties such as the average potential
energy and the average kinetic energy are computed as a func-
tion of the time interval.39 Conclusions and outlook follow in
Sec. VI.

II. THREE TYPICAL THERMOSTATS
FOR MOLECULAR DYNAMICS

Assume the (time-independent) Hamiltonian of the sys-
tem H to be of a standard Cartesian form

H = pT M−1p
/
2 + U (x), (1)

where M is the diagonal “mass matrix” with elements
{
mj

}
,

and p and x are the momentum and coordinate vectors, respec-
tively. N is the number of particles and 3N is the total number
of degrees of freedom. T is the temperature of the system.
(β = 1/kBT with kB as the Boltzmann constant.) Below we
discuss three typical thermostats often used in MD simulations.

A. Langevin dynamics

Langevin dynamics4,8,10,15,17,20–22,24–26 is a type of ther-
mostat that employs stochastic dynamics to achieve the desired
temperature of the MD simulation. Equations of motion in
Langevin dynamics are

*
,

ẋ

ṗ
+
-
=

*...
,

M−1 p

−
∂U (x)
∂x

− γp +

√
2γ
β

M1/2η̃ (t)

+///
-

. (2)

Here η̃ (t) is a vector. Its element η̃(i)
j (t) is an independent

Gaussian-distributed random number with zero mean and unit
variance [

〈
η̃(i)

j (t)
〉
= 0 and

〈
η̃(i)

j (t) η̃(i)
j (t ′)

〉
= δ (t − t ′)], which

is different for each of three degrees of freedom (i.e., x, y, or z)
in the 3-dimensional space (i = 1, 2, 3), each particle

(
j = 1, N

)
,

and each time step. The Langevin friction coefficient γ is the
same for all degrees of freedom

(
i= 1, 3N

)
. (Here we con-

sider γ as a constant for simplicity. The friction is in general a
matrix.)

Equation (2) is often divided into three parts20,22,24–26,40

(
ẋ
ṗ

)
=

(
M−1 p

0

)
︸     ︷︷     ︸ + *.

,

0

−
∂U (x)
∂x

+/
-︸        ︷︷        ︸ +

(
0

−γp + σM1/2η̃ (t)

)
︸                     ︷︷                     ︸ (3)

with σ =
√

2γ
β , and each of the three parts may be

solved “exactly.” The first part of the right-hand side
(RHS) of Eq. (3) for a time interval ∆t is updating the
coordinate

x ← x + M−1p∆t. (4)

While the 2nd part of the RHS of Eq. (3) leads to

p← p −
∂U (x)
∂x

∆t, (5)

the solution to the third part [i.e., the Ornstein-Uhlenbeck (OU)
part] is

p← e−γ∆tp +

√
1 − e−2γ∆t

β
M1/2η̃. (6)

Here η̃ is the independent Gaussian-distributed random num-
ber vector as discussed for Eq. (2).

The phase space propagators for the three parts are then
eLx∆t , eLp∆t , and eLT∆t , respectively. That is, the relevant
Kolmogorov operators are

Lxρ = −pT M−1 ∂ρ

∂x
, (7)

Lpρ =

(
∂U
∂x

)T
∂ρ

∂p
, (8)

LTρ =
∂

∂p
· (γpρ) +

1
β

∂

∂p
·

(
γM

∂ρ

∂p

)
. (9)

It is trivial to verify that the Boltzmann distribution in the
physical phase space

ρBoltzmann (x, p) =
1

ZN
exp

[
−β

(
pT M−1p

/
2 + U (x)

)]
(10)

is a stationary state solution to the Fokker-Planck or forward
Kolmogorov equation

∂ρ

∂t
= Lρ = 0, (11)

with the full Kolmogorov operator L = Lx +Lp +LT . That is,
Langevin dynamics is able to sample the canonical ensemble
(provided that it is ergodic).

B. Andersen thermostat

The Andersen thermostat5 is a type of thermostat that
uses stochastic coupling to impose the desired temperature
in the MD simulation. In the Andersen thermostat, each par-
ticle of the system stochastically collides with a fictitious
heat bath, and once the collision occurs, the momentum of
this particle is chosen afresh from the Maxwell-Boltzmann
momentum distribution. Times between collisions with the
heat bath are selected from a Poisson distribution, i.e., the
probability distribution is P(t;ν) = νe�νt , where the colli-
sion frequency ν specifies the coupling strength between
the particle and the heat bath. Between stochastic colli-
sions, the propagation of the MD trajectory is at constant
energy according to the Hamilton equations of motion or the
Newtonian laws of motion. Below we revisit the Andersen
thermostat.
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The collision step in the algorithm is often described as
follows:

Randomly select a number of particles to undergo a
collision with the heat bath. The probability that a particle
is selected in the time interval ∆t is ν∆t (more accurately,

1� e�ν∆t). If particle j is selected, its momentum is reselected
from a Maxwell momentum distribution at the desired temper-
ature T, while all other particles are unaffected by this collision.

Note that the explicit form for the collision step at a time
interval ∆t can be expressed as

p(j) ←

√
1
β

M1/2
j θj, if µj < ν∆t

(
or more precisely µj < 1 − e−ν∆t

) (
j = 1, N

)
. (12)

Here p(j) is the 3-dimensional momentum vector and Mj is the
3 × 3 diagonal mass matrix for particle j. µj is a uniformly dis-
tributed random number in the range (0,1), which is different
for each particle

(
j = 1, N

)
, and each time when Eq. (12) is

invoked. θj is a 3-dimensional vector. Its element θ(i)
j (t) is an

independent Gaussian-distributed random number with zero
mean and unit variance, which is different for each of three
degrees of freedom (i.e., x, y, or z) in the 3-dimensional space
(i = 1, 2, 3), each particle

(
j = 1, N

)
, and each invocation of

Eq. (12).
Use eLT∆t to represent the phase space propagator for

the thermostat step at a time interval ∆t. Propagation of the
density distribution in the phase space ρ ≡ ρ (x, p) for the col-
lision process can be characterized by the forward Kolmogorov
equation

∂ρ

∂t
= LT ρ = ν

[
ρMB (p)

∫ ∞
−∞

ρ (x, p) dp − ρ (x, p)

]
. (13)

Here ρMB (p) is the Maxwell (or Maxwell-Boltzmann)
momentum distribution

ρMB (p) =

(
β

2π

)3N/2

|M|−1/2 exp

[
−
β

2
pT M−1p

]
. (14)

Using Eqs. (7), (8), and (13), one finds that the full Kolmogorov
operatorL = Lx+Lp+LT for the Andersen thermostat satisfies

Lρ = ν
[
ρMB (p)

∫ ∞
−∞

ρ (x, p) dp − ρ (x, p)

]

−pT M−1 ∂ρ

∂x
+

(
∂U
∂x

)T
∂ρ

∂x
. (15)

It is straightforward to show that the Boltzmann distribution in
the physical phase space [Eq. (10)] is a stationary state solution
to the Fokker-Planck or forward Kolmogorov equation Eq. (11)
with the full Kolmogorov operator given by Eq. (15). That
is, the Andersen thermostat is able to generate the canonical
ensemble (if ergodicity is guaranteed), a well-known statement
from Refs. 3, 5, and 41.

Integration over time in Eq. (13) leads to

eLT∆t ρ=
(
1− e−ν∆t

)
ρMB (p)

∫ ∞
−∞

ρ (x, p) dp + e−ν∆t ρ (x, p).

(16)

It is much more convenient to use Eq. (13) or Eq. (16) to present
the analytical analysis for the Andersen thermostat. Note that
when ν∆t is small, an approximation of Eq. (16) produces

eLT∆t ρ = ν∆tρMB (p)
∫ ∞
−∞

ρ (x, p) dp + (1 − ν∆t) ρ (x, p),

(17)

which corresponds to the conventional description for the
collision step in the Andersen thermostat.3,5

C. Nosé-Hoover chain

Nosé-Hoover chain (NHC)6,9,12–14,27 is a type of thermo-
stat that performs deterministic MD in an extended-system
approach to control the temperature in the simulation.

The equations of motion of NHC27 read

ẋi =
pi

mi

ṗi = −
∂U
∂xi
−

p
η

(i)
1

Q1
pi

η̇(i)
j =

p
η

(i)
j

Qj

ṗ
η

(i)
1
=

p2
i

mi
− kBT −

p
η

(i)
2

Q2
p
η

(i)
1

ṗ
η

(i)
j
=

p2
η

(i)
j−1

Qj−1
− kBT −

p
η

(i)
j+1

Qj+1
p
η

(i)
j

(
j = 2, MNHC − 1

)

ṗ
η

(i)
MNHC

=

p2
η

(i)
MNHC−1

QMNHC−1
− kBT




(
i = 1, 3N

)
, (18)
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where MNHC pairs of additional variables
{
η(i)

j , p
η

(i)
j

}
(
j = 1, MNHC

)
in the so-called “Nosé-Hoover chain” are cou-

pled to each physical degree of freedom
(
i = 1, 3N

)
, and

the parameters Q1, . . . , QMNHC are called the NHC thermostat
masses.12,14 An optimal choice for the NHC thermostat masses
suggested by Martyna, Tuckerman, and co-workers12,14 is

Qj = kBT τ̃2
NHC

(
j = 1, MNHC

)
, (19)

where τ̃NHC is the characteristic time of the system. It is
claimed in Ref. 12 that the choice of τ̃NHC in NHC is much
less critical than that in the Nosé–Hoover method (i.e., MNHC

= 1 in NHC).
For the equations of motion in Eq. (18), the conserved

quantity is

H ′ =
1
2

pT M−1p + U (x) +
3N∑
i=1

MNHC∑
j=1

*..
,

p2
η

(i)
j

2Qj
+ kBTη(i)

j

+//
-
. (20)

Equation (20) is the Hamiltonian for an extended system. That
is, the real system is extended by addition of artificial degrees
of freedom. Note that Eq. (18) cannot be derived from the
Hamilton equations of motion from Eq. (20). Instead, Eq. (18)
is a kind of non-Hamiltonian dynamics, in which the phase
space volume of the extend-system is not preserved during
the propagation. The evolution of the phase space volume
satisfies

dxtdptdηtdpη,t =

�������

∂
(
xt , pt , ηt , pη,t

)
∂

(
x0, p0, η0, pη,0

) �������
dx0dp0dη0dpη,0

= exp

[∫ t

0

∂

∂x
· ẋ +

∂

∂p
· ṗ

+
3N∑
i=1

MNHC∑
j=1

*.
,

∂η̇(i)
j

∂η(i)
j

+
∂ṗ

η
(i)
j

∂p
η

(i)
j

+/
-
dt


× dx0dp0dη0dpη,0. (21)

Here η≡
{
η(i)

j
���j = 1, MNHC, i= 1, 3N

}
and pη ≡

{
p
η

(i)
j
|j

= 1, MNHC, i = 1, 3N
}
. Substituting Eq. (18) into Eq. (21)

leads to

�������

∂
(
xt , pt , ηt , pη,t

)
∂
(
x0, p0, η0, pη,0

)�������
= exp


−

3N∑
i=1

MNHC∑
j=1

η(i)
j (t) +

3N∑
i=1

MNHC∑
j=1

η(i)
j (0)


,

(22)

or equivalently,

exp



3N∑
i=1

MNHC∑
j=1

η(i)
j (t)


dxtdptdηtdpη,t

= exp



3N∑
i=1

MNHC∑
j=1

η(i)
j (0)


dx0dp0dη0dpη,0. (23)

That is, the weighted phase space volume is conserved. The
microcanonical partition function can then be constructed by

using the weighted phase space volume [Eq. (23)] and the
conserved quantity [Eq. (20)], which produces

Z =
∫

dxdpdηdpη exp *.
,

3N∑
i=1

MNHC∑
j=1

η(i)
j

+/
-
δ

(
1
2

pT M−1p

+ U (x) +
3N∑
i=1

MNHC∑
j=1

*..
,

p2
η

(i)
j

2Qj
+ kBTη(i)

j

+//
-
− C

+//
-

, (24)

with C, a constant. Integration over η in Eq. (24) reaches

Z =
eβC

kBTV3NMNHC−1
η

∫
dxdpdpη exp

[
−β

(
1
2

pT M−1p

+ U (x) +
3N∑
i=1

MNHC∑
j=1

p2
η

(i)
j

2Qj

+//
-


, (25)

where Vη represents the volume of the 1-dimensional space for
each η(i)

j

(
j = 1, MNHC, i = 1, 3N

)
. Integration over pη further

leads to

Z =
eβC

kBTV3NMNHC−1
η

*.
,

MNHC∏
j=1

2πQj

β
+/
-

3N /2

×

∫
dxdp exp

[
−β

(
1
2

pT M−1p + U (x)

)]
, (26)

which is the product of the canonical partition function (of
the physical phase space) and a constant factor. That is, the
NHC thermostat in principle produces the exact canonical dis-
tribution for the system (provided that it is ergodic), as shown
in Ref. 42. Note that the auxiliary variables η are redundant
for the dynamics in NHC [i.e., Eq. (18)]. They are used in
the equations of motion only for monitoring the conserved
quantity, Eq. (20). The framework in Eq. (18) is known as
the “massive” thermostat,27,43 which is employed throughout
this paper. Similarly, one can couple a Nosé-Hoover chain to
each particle (the “local” thermostat) or couple it to the whole
system (the “global” thermostat).27

III. THREE TYPICAL THERMOSTAT SCHEMES

Numerical MD integrators for a time interval ∆t are
often consisted of a step for updating the coordinate
x (t + ∆t)← x (t) + M−1p (t)∆t, that for updating the momen-
tum p (t + ∆t) ← p (t) − U ′ (x (t))∆t, and that for the ther-
mostat process that controls the temperature. Use eLx∆t , eLp∆t ,
and eLT∆t to represent the phase space propagators for the
three steps, respectively. Here Lx, Lp, and LT are the relevant

Kolmogorov operators. For instance, Lxρ = −pT M−1 ∂ρ
∂x and

Lpρ =
(
∂U
∂x

)T ∂ρ
∂p , where ρ is a density distribution in the phase

space.
Efficient thermostat MD integrators for a time interval ∆t

were often suggested to be of the form

eL∆t ≈ eL
Side∆t = eLT∆t/2eLp∆t/2eLx∆teLp∆t/2eLT∆t/2. (27)

That is, the thermostat step is applied for half an interval ∆t/2
before and after a whole step of the velocity Verlet algorithm
for constant energy MD is implemented. As the thermostat
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process is arranged at both the beginning and end of each
time interval, we note it as the “side” scheme. Such as the
NHC algorithm proposed by Martyna, Tuckerman, and co-
workers12,14,27,44 and the Langevin dynamics algorithm pro-
posed by Bussi and Parrinello25 fall into the category. The path
integral Langevin equation (PILE) thermostat recently devel-
oped by Ceriotti et al.26 also employed Langevin dynamics
in the “side” scheme for sampling the canonical distribu-
tion for PIMD. The numerical examples presented by Ceriotti
et al.26 demonstrate that in terms of sampling efficiency
PILE is comparable to the NHC algorithm of Tuckerman
et al.27,45,46 for PIMD. That is, Langevin dynamics is compa-
rable to NHC for sampling the quantum canonical ensemble
via PIMD when the “side” scheme is employed. For conve-
nience, when the “side” scheme is employed in the Andersen
thermostat, Langevin dynamics, and NHC, we denote the algo-
rithms “side-Andersen,” “side-Langevin,” and “side-NHC,”
respectively.

Close to the “side” scheme, another scheme was used even
earlier

eL∆t ≈ eL
End∆t = eLT∆teLp∆t/2eLx∆teLp∆t/2. (28)

That is, the thermostat process is applied after a whole step of
the velocity Verlet algorithm is implemented. As the thermo-
stat procedure is only used at the end of each time interval, we
note it as the “end” scheme. For example, the original algo-
rithm for the Andersen thermostat3,5 in 1980 employed the
“end” scheme. When the “end” scheme is used in the Andersen
thermostat, Langevin dynamics, and NHC, we denote the algo-
rithms “end-Andersen,” “end-Langevin,” and “end-NHC,”
respectively.

When the thermostat MD integrators are of the form

eL∆t ≈ eL
Middle∆t = eLp∆t/2eLx∆t/2eLT∆teLx∆t/2eLp∆t/2, (29)

i.e., the thermostat is arranged in the middle, we note it as
the “middle” scheme. It also leads to the velocity-Verlet algo-
rithm for constant-energy MD when the thermostat vanishes.
The “middle” scheme [Eq. (29)] has already been proposed
for the Langevin thermostat for MD20 and for PIMD.24 It has
already been shown that Langevin dynamics with Eq. (29)
greatly improve the efficiency in sampling the coordinate
space in MD22 and in sampling the configurational distribu-
tion of path integral beads in PIMD.24 It is important to note
that the “middle” scheme may be generalized to other ther-
mostats for either MD or PIMD. When the “middle” scheme
is applied in the Andersen thermostat, Langevin dynam-
ics, and NHC, we denote the algorithms “middle-Andersen,”
“middle-Langevin,” and “middle-NHC,” respectively.

The thermostat algorithms in the three typical schemes
are described in detail in Appendix C.

IV. ERROR ANALYSIS FOR DIFFERENT
THERMOSTAT ALGORITHMS
A. Stationary state distribution for a harmonic
system for a finite time interval

Consider a harmonic system where the potential energy
function is

U (x) =
(
x − xeq

)T
A

(
x − xeq

)
/2. (30)

Equation (8) then becomes

Lpρ = (x − xeq)T A
∂ρ

∂p
. (31)

Equation (7) and the Taylor expansion eLx∆t =
∞∑

n=0

1
n!

(
−pT M−1

∆t ∂∂x

)n
lead to a shift operator

eLx∆t f (x) = f (x −M−1p∆t). (32)

Similarly, one obtains

eLp∆tg(p) = g
(
p + A

(
x − xeq

)
∆t

)
. (33)

1. Andersen thermostat

Appendix A presents the derivation of the stationary state
distribution for a 1-dimensional harmonic system for a finite
time interval ∆t. Below we show the multi-dimensional case.

Here we adopt the strategy proposed in Appendix C of
Ref. 24. When the Andersen thermostat is used, the collision
process [Eq. (12) or Eq. (16)] leaves the Maxwell momentum
distribution unchanged, i.e.,

eLT∆t exp

{
−β

[
1
2

pT M−1p
]}
= exp

{
−β

[
1
2

pT M−1p
]}

.

(34)

Consider the density distribution

ρSide =
1

ZN
exp

[
−β

(
1
2

pT M−1p +
1
2

(
x − xeq

)T

× (1 − AM−1∆t2

4
)A

(
x − xeq

))]
, (35)

where ZN is the normalization constant. Using Eqs. (27) and
(31)–(34), it is straightforward to verify

eL
Side∆t ρSide = ρSide. (36)

That is, Eq. (35) is the stationary state distribution for the “side”
scheme.

Similarly, while the stationary state distribution for the
“end” scheme for the harmonic system is the same as Eq. (35),
i.e.,

ρEnd =
1

ZN
exp

[
−β

(
1
2

pT M−1p +
1
2

(
x − xeq

)T

× (1 − AM−1∆t2

4
)A

(
x − xeq

))]
, (37)

that for the “middle” scheme is

ρMiddle =
1

ZN

exp

[
−β

(
1
2

pT (M − A
∆t2

4
)−1p

+
1
2

(
x − xeq

)T
A

(
x − xeq

))]
, (38)

where ZN is the normalization constant.
When the time interval ∆t is finite, both the “side” and

“end” schemes produce the exact momentum distribution but
not the exact configurational distribution in the harmonic limit.
For comparison, the “middle” scheme leads to the exact config-
urational distribution but not the exact momentum distribution
for the harmonic system.
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2. Langevin dynamics

When Langevin dynamics is employed as the thermostat,
the OU process [Eq. (6) or Eq. (9)] keeps the Maxwell momen-
tum distribution unchanged.24 That is, Eq. (34) also holds in
Langevin dynamics.24 It is then trivial to show that the Ander-
sen thermostat and Langevin dynamics approach the same
stationary state distribution in the harmonic limit, when the
same scheme is applied. The conclusion holds for any other
thermostats as long as they also keep the Maxwell momentum
distribution unchanged in the thermostat step.

3. Nosé-Hoover chain

We first consider that the exact phase space propagator
eLT∆t for the NHC thermostat part [Eq. (C17)] was available.
It is then straightforward to verify that the propagator for the
thermostat part [Eq. (C17)] keeps the Maxwell-Boltzmann dis-
tribution for both the physical momentum and the auxiliary
momentum variables unchanged, i.e.,

eLT∆t exp



−β



1
2

pT M−1p +
3N∑
i=1

MNHC∑
j=1

p2
η

(i)
j

2Qj






= exp



−β



1
2

pT M−1p +
3N∑
i=1

MNHC∑
j=1

p2
η

(i)
j

2Qj






. (39)

The stationary state marginal distribution of the variables(
x, p, pη

)
for the harmonic system obtained by “side-NHC” is

ρSide−NHC =
1

ZN
′ exp

[
−β

(
1
2

pT M−1p +
1
2

(
x − xeq

)T

× (1 − AM−1∆t2

4
)A

(
x − xeq

)
+

3N∑
i=1

MNHC∑
j=1

p2
η

(i)
j

2Qj

+//
-


.

(40)

Here, Z ′
N is the normalization constant. Integration over pη in

Eq. (40) leads to the stationary state marginal distribution for
the physical phase space variables (x, p), which is the same as
Eq. (35). Similarly, the stationary state marginal distribution
of the physical phase space variables (x, p) for the harmonic
system obtained by “end-NHC” also leads to Eq. (35), while
that produced by “middle-NHC” is the same as Eq. (38).

Although the analytical solution for the exact phase space
propagator eLT∆t for the NHC thermostat part [Eq. (C17)] is
difficult to obtain, the multiple time scale scheme such as
the reference system propagator algorithm13 (RESPA) and
a higher-order (than ∆t2) factorization such as the Suzuki-
Yoshida decomposition framework28–30 and the optimized
Forest–Ruth-like algorithm47 can be applied to the NHC ther-
mostat part to achieve effectively accurate numerical results.
Note that the higher-order (than ∆t2) factorization is only used
for the NHC thermostat part, not for the physical degrees
of freedom. The numerical performance of NHC is in prac-
tice similar to that of Langevin dynamics or the Andersen
thermostat.

B. Comparison between the “side” and “end” schemes
for a general system

We compare the accuracy of the “side” scheme [Eq. (27)]
to that of the “end” scheme [Eq. (28)] for a general system.

1. Andersen thermostat

We first consider the Andersen thermostat. Note that
Eq. (16) is an exact solution to Eq. (13), the Fokker-Planck
or forward Kolmogorov equation for the collision process in
the Andersen thermostat. We first prove the equality

eLT∆t ρ
(
p0; 0

)
= eLT∆t/2eLT∆t/2ρ

(
p0; 0

)
. (41)

Here ρ(p0; 0) is an arbitrary probability distribution of p0 at
time 0. The Kolmogorov operator LT for the collision process
is defined in Eq. (13). The left-hand side (LHS) of Eq. (41)
can be expressed as

eLT∆t ρ
(
p0; 0

)
=

∫
dp0ρ

(
p;∆t ��p0; 0

)
ρ
(
p0; 0

)
. (42)

Here ρ
(
p;∆t ��p0; 0

)
is the conditional probability distribution

of p at time ∆t given p0 at time 0. Equation (13) leads to

ρ
(
p;∆t ��p0; 0

)
= e−ν∆tδ

(
p − p0

)
+
(
1 − e−ν∆t

)
ρMB (p), (43)

an exact solution for the Fokker-Planck or forward Kol-
mogorov equation

∂

∂t
ρ = LT ρ (44)

for the collision process in the Andersen thermostat. It is then
trivial to show that

ρ(p;∆t ��p0; 0 )=
∫
ρ(p;∆t ��p1;∆t/2 )ρ(p1;∆t/2 ��p0; 0 )dp1,

(45)

which produces Eq. (41). It is then straightforward to verify
that the stationary state distribution of “side-Andersen” and
that of “end-Andersen” have the relation

ρEnd-ADS (x, p) = eLT∆t/2ρSide-ADS (x, p). (46)

Because the Andersen thermostat does not change the marginal
distribution of x, “end-Andersen” and “side-Andersen” share
the same stationary state marginal distribution of the coordi-
nate

ρEnd-ADS
x (x) = ρSide-ADS

x (x). (47)

Integration over x in Eq. (46) produces

ρEnd-ADS
p (p) = eLT∆t/2ρSide-ADS

p (p). (48)

Implementing Eq. (16), one obtains

ρEnd-ADS
p (p) = e−ν∆t/2ρSide-ADS

p (p) +
(
1 − e−ν∆t/2

)
ρMB (p)

(49)
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from Eq. (48). Rearranging Eq. (49) leads to

ρEnd-ADS
p (p) − ρMB (p) = e−ν∆t/2

[
ρSide-ADS

p (p) − ρMB (p)
]
.

(50)

Taking the absolute value in Eq. (50), one finds

���ρ
End-ADS
p (p) − ρMB (p)��� = e−ν∆t/2 ���ρ

Side-ADS
p (p) − ρMB (p)��� .

(51)

Since the inequality e−ν∆t/2 ≤ 1 always holds, the sta-
tionary state marginal distribution of the momentum produced
by “end-Andersen” is not less accurate than that obtained by
“side-Andersen.”

Consider the averaged kinetic energy produced by “end-
Andersen”

1
2

〈
pT M−1p

〉
End-ADS

=

∫
1
2

pT M−1pρEnd-ADS
p (p) dp. (52)

Substituting Eq. (49) into the RHS of Eq. (52) and performing
the integral, we obtain

1
2

〈
pT M−1p

〉
End-ADS

= e−ν∆t 1
2

〈
pT M−1p

〉
Side-ADS

+
(
1 − e−ν∆t

) 3N
2β

, (53)

or equivalently

�����
1
2

〈
pT M−1p

〉
End-ADS

−
3N
2β

�����

= e−ν∆t
�����
1
2

〈
pT M−1p

〉
Side-ADS

−
3N
2β

�����
. (54)

Because the exact value of the averaged kinetic energy is
3N /2β, Eq. (54) suggests that the averaged kinetic energy pro-
duced by “end-Andersen” is more accurate than that produced
by “side-Andersen.”

2. Langevin dynamics

Note that Eq. (6) is an exact solution for the OU pro-
cess for a finite time interval ∆t. It is trivial to verify that
Eq. (41) also holds for Langevin dynamics. This suggests that
the stationary state distribution of “side-Andersen” and that of
“end-Andersen” have the relation

ρEnd-Lang (x, p) = eLT∆t/2ρSide-Lang (x, p). (55)

Since eLT∆t/2 in the Langevin thermostat does not change
the marginal distribution of x, “end-Langevin” and “side-
Langevin” share the same stationary state marginal distribution
of the coordinate

ρ
End-Lang
x (x) = ρSide-Lang

x (x) . (56)

Integration over x in Eq. (55) produces

ρ
End-Lang
p (p) = eLT∆t/2ρ

Side-Lang
p (p) (57)

or equivalently

ρ
End-Lang
p (p) =

[
β

2π
(
1 − e−γ∆t ) ]3N/2

|M|−1/2
∫

dp0ρ
Side-Lang
p

(
p0

)
× exp

[
−

β

2
(
1 − e−γ∆t ) (

p − e−γ∆t/2p0

)T
M−1

(
p − e−γ∆t/2p0

)]
. (58)

It is easy to verify that the difference between the marginal distribution of the momentum in Eq. (58) and the Maxwell momentum
distribution ρMB (p) [Eq. (14)] is

ρ
End-Lang
p (p) − ρMB (p) =

[
β

2π
(
1 − e−γ∆t ) ]3N/2

|M|−1/2
∫

dp0

[
ρ

Side-Lang
p

(
p0

)
− ρMB

(
p0

)]
exp

[
−

β

2
(
1 − e−γ∆t ) (

p − e−γ∆t/2p0

)T
M−1

(
p − e−γ∆t/2p0

)]
. (59)

Consider the absolute value ���ρ
End-Lang
p (p) − ρMB (p)���. Equation (59) leads to the inequality

���ρ
End-Lang
p (p) − ρMB (p)��� ≤

[
β

2π
(
1 − e−γ∆t ) ]3N/2

|M|−1/2
∫

dp0
���ρ

Side-Lang
p

(
p0

)
− ρMB

(
p0

) �� exp

[
−

β

2
(
1 − e−γ∆t ) (

p − e−γ∆t/2p0

)T
M−1

(
p − e−γ∆t/2p0

)]
, (60)

where the equality holds if and only if ρSide-Lang
p (p) ≡ ρMB (p). Integration of Eq. (60) over p produces

∫
���ρ

End-Lang
p (p) − ρMB (p)��� dp ≤

[
β

2π
(
1 − e−γ∆t ) ]3N /2

|M|−1/2
∫

dpdp0
���ρ

Side-Lang
p

(
p0

)
− ρMB

(
p0

) ���

× exp

[
−

β

2
(
1 − e−γ∆t ) (

p − e−γ∆t/2p0

)T
M−1

(
p − e−γ∆t/2p0

)]
. (61)
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Integration over p in the RHS of Eq. (61) leads to the following
inequality

∫
���ρ

End-Lang
p (p) − ρMB (p)��� dp

≤

∫
���ρ

Side-Lang
p (p) − ρMB (p)��� dp, (62)

where the equality holds if and only if ρ
Side-Lang
p (p)

≡ ρMB (p). That is, the stationary state marginal distribu-
tion of the momentum produced by “end-Langevin” is not
less accurate than that obtained by “side-Langevin.” (Here
we consider the absolute-value norm or the L1 norm of
the difference between the Maxwell momentum distribu-
tion and the stationary state marginal distribution of the
momentum.)

Consider the averaged kinetic energy produced by “end-
Langevin”

1
2

〈
pT M−1p

〉
End-Lang

=

∫
1
2

pT M−1pρEnd−Lang
p (p) dp. (63)

Substituting Eq. (58) into Eq. (63) and performing the integral,
we obtain

1
2

〈
pT M−1p

〉
End-Lang

= e−γ∆t 1
2

〈
pT M−1p

〉
Side-Lang

+
(
1 − e−γ∆t

) 3N
2β

, (64)

or equivalently

�����
1
2

〈
pT M−1p

〉
End-Lang

−
3N
2β

�����

= e−γ∆t
�����
1
2

〈
pT M−1p

〉
Side-Lang

−
3N
2β

�����
. (65)

That is, the averaged kinetic energy produced by “end-
Langevin” is in principle more accurate than that produced
by “side-Langevin.”

In summary, when either the “side” or “end” scheme
is employed, as long as the thermostat process maintains
the Maxwell momentum distribution even when ∆t is finite,
the exact momentum distribution is approached in the har-
monic limit, regardless of the time interval ∆t (as long as
the matrix 1 − AM−1 ∆t2

4 is positive-definite). More interest-
ingly, when such a thermostat process is applied to a general
system, it is proved that both the “side” and “end” schemes
lead to the same configurational distribution, while the “end”
scheme in principle produces a more accurate momentum dis-
tribution than the “side” scheme does. As the “side” scheme
is more symmetrized than the “end” scheme, one would
expect that the former should perform better than the lat-
ter. Our analysis, however, reveals that the “end” scheme is
superior to the “side” scheme in sampling the whole phase
space.

The same conclusions could be drawn for NHC when the
numerical solution for the exact phase space propagator eLT∆t

for the NHC thermostat part [Eq. (C17)] is effectively accurate.
This is also verified by the numerical examples in Sec. V.

V. NUMERICAL EXAMPLES
A. Classical canonical ensembles via MD
1. Simulation detail

We perform numerical tests for several typical systems.
The two 1-dimensional models are a harmonic potential
U (x) =mω2x2/2 (with the mass m = 1 and the frequency
ω = 1) for the inverse temperature β = 8 and a quartic poten-
tial U (x) = x4/4 (with the mass m = 1) for β = 8. Note that
the second model contains no harmonic term. So it presents a
good example to test numerical behaviors of an algorithm in
the anharmonic region.

Three typical real systems are also investigated. The first
example is the H2O molecule with the accurate potential
energy surface developed by Partridge and Schwenke from
extensive ab initio calculations and experimental data.48 As
the explicit form of the PES is available, that of the force
can be expressed. The MD simulations are performed for T
= 100 K. The time interval ranges from ∼0.24 fs to ∼2.66 fs
(10∼ 110a.u.) or to the value that breaks down the propagation
of the thermostat. After equilibrating the system, 20 trajecto-
ries with each propagated up to ∼1.2 ns are used for estimat-
ing the energies. The second molecular system is (Ne)13, a
Lennard-Jones (LJ) cluster. The parameters of the system are
described in Ref. 49. The MD simulations are performed for T
= 14 K. The time interval ranges from 1 fs to 80∼82 fs. After the
system is equilibrated, 20 trajectories with each propagated up
to ∼1 ns are used for estimating the energies. The third exam-
ple is liquid water, a condensed phase system. We employ the
POLI2VS—a flexible, polarizable-type force field for liquid
water developed by Hasegawa and Tanimura.50 MD simula-
tions are carried out at T = 298.15 K with the liquid density
ρl = 0.997 g · cm�3 for a system of 216 water molecules in a
box with periodic boundary conditions applied using the min-
imum image convention. After equilibrating the system, 20
MD trajectories with each propagated up to ∼100 ps are used
for estimating thermodynamic properties. The time interval
is from 0.1 fs to 1.6 fs or to the value that breaks down the
propagation of the thermostat.

Both the average potential energy and the average kinetic
energy are computed.39 Each of these thermodynamic proper-
ties is plotted as a function of the time interval ∆t. In principle,
as ∆t is small enough, the same converged results should be
obtained for all schemes and for all thermostats.

2. Results and discussions

a. Comparison between the “side” and “end” schemes. We
first compare the performance of the “side” scheme to that of
the “end” scheme, where the Andersen thermostat, Langevin
dynamics, and NHC are employed as the thermostats. We study
classical canonical ensembles via MD. The first three systems
(the harmonic oscillator, the quartic potential, and the H2O
molecule) are employed for demonstration. While the MD
results for the average potential energy are shown in Fig. 1,
those for the average kinetic energy are depicted in Fig. 2.
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FIG. 1. MD results for the average potential energy using different time inter-
vals. (a) The harmonic potential at β = 8 [unit: atomic units (a.u.)]. (b) The
quartic potential at β = 8 (unit: a.u.). (c) Average potential energy per atom
〈U(x)〉

/
(NatomkB) (unit: Kelvin) for H2O at T = 100 K. The unit of the

time interval is a.u. in panels (a) and (b), while that is femtosecond (fs) in
panel (c). Statistical error bars are included. The interval is increased until the
propagation of the thermostat fails.

FIG. 2. As in Fig. 1 , but for MD results for the average kinetic energy
using different time intervals. Exact value of kinetic energy: (a) 0.0625 a.u.,
(b) 0.0625 a.u., and (c) 150 K (per atom) Results of the “end” scheme are
closer to the exact value than those of the “side” scheme.

The MD results in Figs. 1 and 2 are consistent with our ana-
lytical analysis for the “side” and “end” schemes in Sec. IV.
For the harmonic system, both the “side” and “end” schemes
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produce the same results for either the kinetic or poten-
tial energy. For general systems, the “end” scheme leads
to more accurate results for the kinetic energy than the
“side” scheme does, while both schemes produce the
same results for the potential energy, irrespective of which
type of thermostat is employed. The numerical results in
Figs. 1 and 2 agree well with our analysis presented in
Sec. IV.

Because the “side” and “end” schemes in principle gen-
erate the same configurational distribution, below we only
compare the “side” and “middle” schemes.

b. Comparison between the “side” and “middle” schemes.
We first study the two 1-dimensional models. Figure 3(a) com-
pares the algorithms for the 1-dimensional harmonic poten-
tial. In agreement with our previous analysis in the harmonic
limit, the “middle” scheme produces an accurate average
potential energy value that is insensitive to the time inter-
val ∆t, while the “side” scheme does progressively worse

FIG. 3. MD results for the average potential energy using different time inter-
vals. (a) The harmonic potential at β = 8. (b) The quartic potential at β = 8.
Atom units (a.u.) are used. Statistical error bars are included. The time interval
is increased until the propagation of the thermostat fails.

as ∆t increases. Figure 3(b) then depicts the results for
the 1-dimensional quartic potential. It also shows that the
“middle” scheme is more accurate and more robust than

FIG. 4. MD results for the averaged potential energy per atom
〈U(x)〉

/
(NatomkB) (unit: Kelvin) using different time intervals. (a) H2O at

T = 100 K. (b) (Ne)13 at T = 14 K. (c) Liquid water at T = 298.15 K. Statistical
error bars are included.
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the “side” one, regardless of which type of thermostat is
employed.

We then investigate the three typical molecular systems.
The first system is the H2O molecule. Figure 4(a) shows that
all algorithms approach the same results as the time interval
is decreased. This agrees with the fact that the algorithms are
in principle equivalent as the time interval approaches zero.
The fully converged result is obtained at ∆t = 0.24 fs. As
the time interval increases, the deviation from the converged
result for the “side” scheme is about an order of magnitude
(or more) larger than that for the “middle” scheme, regardless
of which type of thermostat is used. The absolute deviation
of the average potential energy per atom 〈U (x)〉/(NatomkB)
for the “middle” scheme is less than ∼0.05 K at ∆t = 0.48 fs
and less than 0.27 K at ∆t = 2.18 fs. For comparison, the
same property for the “side” scheme increases from ∼0.9 K
at ∆t = 0.48 fs to more than ∼63 K at ∆t = 2.18 fs. The
three types of thermostats produce similar results in either
scheme.

The second molecular system is the cluster (Ne)13.
Figure 4(b) depicts performances of different integrators for
simulating (Ne)13. All the integrators approach to one another
as the time interval decreases. While the absolute deviation
of the average potential energy per atom 〈U (x)〉/(NatomkB)
from the converged result for the “middle” scheme is ∼0.04 K
at ∆t = 30 fs and ∼0.14 K at ∆t = 70 fs, that for the
“side” scheme is ∼0.18 K at ∆t = 30 fs and ∼1 K at
∆t = 70 fs.

The third example is liquid water. As presented in
Fig. 4(c), all integrators lead to the same converged result
(within the statistical error) when the time interval ∆t ≤ 0.2 fs.
The “middle” scheme is more robust than the “side” one.
While the “side” scheme fails when the time interval ∆t is
greater than ∼1.46 fs, the “middle” scheme still performs well
until ∼1.6 fs. The absolute deviation of the average poten-
tial energy per atom 〈U (x)〉/(NatomkB) produced by the “side”
scheme is as large as ∼34 K at the time interval ∆t = 1.4 fs.
For comparison, the same property calculated by the “mid-
dle” scheme is ∼2 K at ∆t = 1.4 fs and less than ∼2.7 K at
∆t ∼ 1.6 fs.

While Figs. 3 and 4 of the paper demonstrate the MD
results for the average potential energy for the five systems,
Figs. 5 and 6 show the MD results for the average kinetic
energy for the same systems. While the “middle” scheme
is superior to the “side” scheme in sampling the coordinate
space, the momentum distribution produced by the “mid-
dle” scheme is less accurate than that obtained by the “side”
scheme.

The results in Figs. 1–6 suggest that the “end” scheme is
the best of the three ones for sampling the momentum space,
while the “middle” scheme demonstrates the best performance
for sampling the coordinate space.

B. Quantum canonical ensembles via PIMD

As discussed in Appendix D, all thermodynamic prop-
erties depend on the configurational sampling of the path
integral beads in the PIMD simulations. Because the
“side” and “end” schemes in principle generate the same

FIG. 5. MD results for the average kinetic energy using different time inter-
vals. (a) The harmonic potential at β = 8. (b) The quartic potential at β
= 8. The units of both the energy and the time interval are atomic units (a.u.).
Statistical error bars are included.

configurational distribution, both schemes in principle pro-
duce the same results for any thermodynamic properties for
quantum canonical ensembles. So we only compare the “side”
and “middle” schemes.

We apply the two schemes to PIMD simulations for study-
ing the (quantum) canonical ensemble for liquid water at the
state point T = 298.15 K and ρl = 0.997 g cm�3. The same
force field (POLI2VS) is used.50 P = 48 path integral beads
are employed for simulating 216 water molecules in a box
with periodic boundary conditions applied using the mini-
mum image convention. After the system approaches equilib-
rium, 8 PIMD trajectories with each propagated up to ∼50 ps
are used to evaluating thermodynamic properties. The time
interval for PIMD ranges from 0.1 fs to 0.75 fs or to the
value that breaks down the propagation of the thermostat.
The staging transformation45,46,51 of path integral beads is
employed.
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FIG. 6. MD results for the averaged kinetic energy per atom〈
pT M−1p

〉/
(2NatomkB) (unit: Kelvin) using different time intervals. (a) H2O

at T = 100 K. (b) (Ne)13 at T = 14 K. (c) Liquid water at T = 298.15 K.
The unit of the time interval is femtosecond (fs). Statistical error bars are
included.

As presented in Fig. 7(a), all algorithms (in the two
schemes) lead to nearly the same result for the primitive esti-
mator for the average kinetic energy per atom at the time

FIG. 7. PIMD results using different time intervals for liquid water at T =
298.15 K. (a) The average kinetic energy per atom

〈
pT M−1p

〉/
(2NatomkB)

(unit: Kelvin). The primitive estimator is used. (b) Absolute difference
between the primitive and virial estimators (unit: Kelvin). (c) The averaged
potential energy per atom 〈U(x)〉

/
(NatomkB) (unit: Kelvin). Statistical error

bars are included.
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interval ∆t = 0.1 fs. As suggested in Ref. 24, the difference
∆Ekin between the result of the primitive estimator and that of
the virial estimator52 is a reasonable quantity for measuring
the behavior of the PIMD integrator. Figure 7(b) shows that
the difference ∆Ekin is close to zero at ∆t = 0.1 fs. While the
difference ∆Ekin for the “middle” scheme is less than 0.8 K
at ∆t = 0.2 fs and less than 1.4 K at ∆t = 0.6 fs, that for
the “side” scheme is already larger than 19 K at ∆t = 0.2 fs
and around ∼180 K at ∆t = 0.6 fs. Figure 7(c) demonstrates
that the average potential energy per atom obtained by the
“middle” scheme agrees well with that produced by the “side”
scheme within the statistical error bar at the time interval ∆t
= 0.1 fs, regardless of which thermostat is used. While the
absolute deviation (from the converged result at ∆t = 0.1 fs)
for the “middle” scheme is less than∼3 K at∆t = 0.6 fs, that for
the “side” scheme is already greater than 37 K at ∆t = 0.6 fs.
Comparing to the “side” scheme, the “middle” scheme reduces
the error by about an order of magnitude for the same time
interval.

VI. CONCLUSION REMARKS

As demonstrated in Figs. 1–7 for the numerical tests in the
two 1-dimensional models and three typical real molecular
systems that range from the gas phase, clusters, to the con-
densed phase, different thermostats show similar numerical
performance behaviors in evaluating thermodynamic proper-
ties when the same scheme is applied. The three typical ther-
mostats (the Andersen thermostat, Langevin dynamics, and
NHC) are comparable to one another when the same scheme
is employed. The conclusion may be generalized to other types
of thermostats for the canonical ensemble.

It is then often a matter of taste or of convenience to
choose a type of thermostat in a simulation. While the Ander-
sen thermostat and Langevin dynamics are stochastic, NHC is
deterministic and time-reversible. Although all algorithms in
principle lead to the same converged results as the time interval
∆t approaches zero, the scheme of choice is particularly impor-
tant in terms of accuracy as a function of the (finite) time inter-
val. The average kinetic energy (per degree of freedom) is often
used for estimating how well the temperature is controlled by
the thermostat algorithm, i.e.,

〈
pT M−1p

〉
/3NkB =T . In this

regard, the “side” or “end” scheme seems to perform well in
controlling the temperature in the simulation. This is perhaps
why the “side” or “end” scheme has earlier been implemented
in many different thermostat algorithms. While the “middle”
scheme appears to do worse in controlling the temperature in
the simulation, it actually performs better for configurational
sampling for the canonical ensemble—it increases the time
interval of the propagation from a factor of 4∼5 to an order
of magnitude for achieving the same accuracy. Because most
thermodynamic properties depend on configurational sam-
pling in MD simulations and all thermodynamic properties
do so in PIMD simulations, the “middle” scheme [Eq. (29)]
offers a simple, robust, efficient, and accurate approach for
a thermostat, regardless of whether it is stochastic or deter-
ministic. That is, the original work on Langevin dynamics for
MD20 and that for PIMD24 may be generalized to other types of
thermostats.

In summary, we suggest that the “middle” scheme should
be considered for use in MD and PIMD simulations for canon-
ical ensembles (and even more generally, isothermal-isobaric
ensembles, grand canonical ensembles, etc.), regardless of
which type of thermostat is preferred to implement. Since it is
straightforward to integrate the code for the “middle” scheme
for any typical thermostats in simulation packages, we expect
that the results that we present in the paper will encourage
others to use the “middle” scheme as well as to study systems
of their interest.

Finally, we note that in the paper we have not used
any multiple time scale techniques for physical degrees
of freedom. Multiple time scale techniques may certainly
be employed for the physical degrees of freedom in all
the schemes when they improve the efficiency while not
losing much accuracy. The “middle” scheme is still expected
to perform better than other schemes for configurational
sampling. [For instance, it has already been demonstrated
when RESPA13 is used for Eq. (D23) for PIMD.24] We
also note that some more sophisticated thermostats with
isokinetic constraints [e.g., the isokinetic Nosé-Hoover
RESPA (INR) method,53,54 Nosé-Hoover-Langevin (NHL)
method,55 stochastic-isokinetic Nosé-Hoover RESPA (SIN(R))
method56] have been recently developed, especially with the
multiple time scale technique such as RESPA13 for physi-
cal degrees of freedom of systems that have different time
scales. We also note that in the paper we have not used
the SHAKE57/RATTLE58 algorithms for systems with con-
straints for bond lengths or angles, for which additional care
should be taken care of (e.g., see Ref. 59). It will certainly
be interesting to investigate the “middle” scheme and other
ones with holonomic and/or isokinetic constraints in future
work.60

SUPPLEMENTARY MATERIAL

See supplementary material for more discussion on
Appendix A and on optimal thermostat parameters. Please see
Secs. S1 and S2.
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APPENDIX A: STATIONARY STATE DISTRIBUTION
OF THE ANDERSEN THERMOSTAT FOR A FINITE
TIME INTERVAL

Consider a 1-dimensional harmonic system where
Eq. (30) becomes

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027726
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U (x) = A
(
x − xeq

)2
/2. (A1)

When the time interval∆t is finite, the full Kolmogorov opera-
tor for the Andersen thermostat is broken down into three parts
L = Lp + Lx + LT with

Lpρ = A
(
x − xeq

) ∂ρ
∂p

, (A2)

Lx ρ = −
p
m
∂ρ

∂x
, (A3)

and

LT ρ = ν

[
ρMB (p)

∫
ρdp − ρ

]
. (A4)

Use the “middle” scheme [Eq. (29)] as the example.
Define the following densities

ρn,0 (x, p) ≡
(
eL

Middle∆t
)n
ρ0 (x, p)

ρn,1 (x, p) ≡ eLp∆t/2ρn,0 (x, p)

ρn,2 (x, p) ≡ eLx∆t/2ρn,1 (x, p)

ρn,3 (x, p) ≡ eLT∆t ρn,2 (x, p)

ρn,4 (x, p) ≡ eLx∆t/2ρn,3 (x, p) ,

(A5)

which leads to

ρn+1,0 (x, p) = eLp∆t/2ρn,4 (x, p) . (A6)

We introduce the notation

〈O〉n,i ≡

∫
ρn,i (x, p) O (x, p) dxdp, i = 0, . . . , 4, (A7)

where O(x, p) is a physical property of interest. For example,
the mean coordinate displacement and the mean momentum
can be expressed as

ζ (1)
n+1,0 ≡

*
,

〈
x − xeq

〉
n+1,0

〈p〉n+1,0

+
-
=

*...
,

∫
ρn+1,0 (x, p)

(
x − xeq

)
dxdp∫

ρn+1,0 (x, p) p dxdp

+///
-

.

(A8)

Substituting Eq. (A6) into Eq. (A8) and then performing the
integral lead to

ζ (1)
n+1,0 =

*.
,

〈
x − xeq

〉
n,4

〈p〉n,4 − A
∆t
2

〈
x − xeq

〉
n,4

+/
-
= A(1)

1 ζ (1)
n,4, (A9)

with

A(1)
1 =

*.
,

1 0

−A
∆t
2

1
+/
-

. (A10)

Similarly, one could obtain

ζ (1)
n,4 = A(1)

2 ζ (1)
n,3

ζ (1)
n,3 = A(1)

3 ζ (1)
n,2

ζ (1)
n,2 = A(1)

2 ζ (1)
n,1

ζ (1)
n,1 = A(1)

1 ζ (1)
n,0

(A11)

with

A(1)
2 =

(
1 ∆t

2m
0 1

)
, (A12)

A(1)
3 =

(
1 0
0 e−ν∆t

)
. (A13)

Define Ã1 = A(1)
1 A(1)

2 A(1)
3 A(1)

2 A(1)
1 . Eqs. (A9) and (A11) then

lead to

ζ (1)
n+1,0 = Ã1ζ

(1)
n,0, (A14)

or equivalently

ζ (1)
n,0 = Ã

n
1ζ

(1)
0,0. (A15)

Because the spectral radius of matrix Ã1 is less than 1 (see the
supplementary material), we have

ζ (1)
n,0 → 0 as n→ ∞. (A16)

Analogously, the evolution of the second-order moment
vector

ζ (2)
n,0 ≡

(〈(
x − xeq

)2
〉

n,0
,
〈(

x − xeq

)
p
〉

n,0
,
〈
p2

〉
n,0

)T

(A17)

satisfies

ζ (2)
n+1,0 = A(2)

1 ζ (2)
n,4

ζ (2)
n,4 = A(2)

2 ζ (2)
n,3

ζ (2)
n,3 = A(2)

3 ζ (2)
n,2 + b2

ζ (2)
n,2 = A(2)

2 ζ (2)
n,1

ζ (2)
n,1 = A(2)

1 ζ (2)
n,0,

(A18)

where

A(2)
1 =

*.......
,

1 0 0

−A
∆t
2

1 0

A2∆t2

4
−A∆t 1

+///////
-

, A(2)
2 =

*.........
,

1
∆t
m
∆t2

4m2

0 1
∆t
2m

0 0 1

+/////////
-

,

A(2)
3 =

*....
,

1 0 0

0 e−ν∆t 0

0 0 e−ν∆t

+////
-

, b2 =

(
0, 0,

m
β

(
1 − e−ν∆t

))T

.

(A19)

Define Ã2 = A(2)
1 A(2)

2 A(2)
3 A(2)

2 A(2)
1 and b̃2 = A(2)

1 A(2)
2 b2 so that

we obtain

ζ (2)
n+1,0 = Ã2ζ

(2)
n,0 + b̃2. (A20)

Rearranging Eq. (A20) leads to

ζ (2)
n+1,0 −

(
I − Ã2

)−1
b̃2 = Ã2

[
ζ (2)

n,0 −
(
I − Ã2

)−1
b̃2

]
, (A21)

or equivalently,

ζ (2)
n,0 −

(
I − Ã2

)−1
b̃2 = Ã

n
2

[
ζ (2)

0,0 −
(
I − Ã2

)−1
b̃2

]
. (A22)
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It is easy to verify that the spectral radius of matrix Ã2 is
less than 1 (see the supplementary material), so we may show

ζ (2)
n,0 →

(
I − Ã2

)−1
b̃2 as n → ∞. Using Eq. (A19), we obtain

the explicit expression

ζ (2)
n,0 →

(
1
βA

, 0,
m
β
−

A∆t2

4β

)T

as n→ ∞. (A23)

With the mean value [Eq. (A16)] and the second-order
moments [Eq. (A23)], it is not sufficient to obtain the

stationary state distribution. Higher-order moments are
necessary. We denote the kth order moment vector as

ζ (k)
n,0 ≡

(〈(
x − xeq

)k−j
pj

〉
n,0

, j = 0, . . . , k

)T

, the evolution of

which satisfies

ζ (k)
n+1,0 = A(k)

1 A(k)
2 A(k)

3 A(k)
2 A(k)

1 ζ (k)
n,0 + A(k)

1 A(k)
2 bk,n (A24)

with

A(k)
1 =

*..........
,

1

−A
∆t
2

1
...

. . .
. . .(

−A
∆t
2

)k

· · · −A
k∆t
2

1

+//////////
-

, A(k)
2 =

*..........
,

1
k∆t
2m
· · ·

(
∆t
2m

)k

1
. . .

...
. . .

∆t
2m
1

+//////////
-

, A(k)
3 =

*.....
,

1
e−ν∆t

. . .
e−ν∆t

+/////
-

, (A25)

bk,n =

(
0, 0,

〈(
x − xeq

)k−2
〉

n,2

m
β

(
1 − e−ν∆t

)
, · · ·

)T

.

Here bk ,n is related to the lower-order moments ζ (k−2)
n,2 , ζ (k−4)

n,2 , and so on. Define Ãk = A(k)
1 A(k)

2 A(k)
3 A(k)

2 A(k)
1 and b̃k,n = A(k)

1 A(k)
2 bk,n.

The general formula for Eq. (A24) is then

ζ (k)
n,0 = Ã

n
kζ

(k)
0,0 +

n−1∑
m=0

Ã
n−1−m
k b̃k,m. (A26)

Use mathematical induction. Assume that the limits of the lower-order moments ζ (k−2)
n,2 , ζ (k−4)

n,2 , . . . exist when n→ ∞, and

lim
n→∞

ζ
(j)
n,0 =




0, for odd j

*
,

(
1
βA

) j/2

(j − 1)!!, 0, . . . , 0,

(
m
β
−

A∆t2

4β

) j/2

(j − 1)!!+
-

T

, for even j
(A27)

holds for all j < k. So b̄k ≡ lim
n→∞

b̃k,n exists and

b̄k =




0, for odd k

A(k)
1 A(k)

2
*.
,
0, 0, (k − 3)!!

(
1
βA
−
∆t2

4βm

) k−2
2 m
β

(
1 − e−ν∆t

)
, . . .+/

-

T

, for even k
. (A28)

It is straightforward to verify that the spectral radius of matrix Ãk is less than 1 (see the supplementary material). We may then
prove that the limit of Eq. (A26) exists as n→ ∞ and is

lim
n→∞

ζ (k)
n,0 =

(
I − Ãk

)−1
b̄k . (A29)

It is easy to show that

y =




0, for odd k

*
,

(
1
βA

)k/2

(k − 1)!!, 0, . . . , 0,

(
m
β
−

A∆t2

4β

)k/2

(k − 1)!!+
-

T

, for even k
(A30)

is a solution to linear equations
(
I − Ãk

)
y = b̄k . Because of

the non-singularity of matrix I − Ãk , Eq. (A30) is its unique

solution that is equivalent to
(
I − Ãk

)−1
b̄k , which gives the

value of the RHS of Eq. (A29). In accordance to the princi-
ple of induction, Eq. (A27) holds for all j ≥ 1. With all kth
order moments, it is straightforward to construct the moment

generating function

g (z1, z2) = lim
n→∞

〈
ez1(x−xeq)+z2p

〉
n,0

= exp


z2
1

2βA
+

(
m
β
−

A∆t2

4β

)
z2

2

2


, (A31)
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which does exist and is equal to that of the Gaussian distribu-
tion

ρMiddle =
1

Z̄N
exp

[
−
β

2
A
(
x − xeq

)2
−

βp2

2m
(
1 − A∆t2/4m

) ]
,

(A32)

where Z̄N is the normalization constant. That is, Eq. (A32) is
the stationary state distribution of “middle-Andersen.”

It is straightforward to follow the same procedure to show
that either “side-Andersen” or “end-Andersen” produces the
stationary state distribution

ρSide = ρEnd =
1

ZN
exp

[
−
β

2
A

(
1−

A
m
∆t2

4

) (
x − xeq

)2
−
βp2

2m

]
.

(A33)

where ZN is the normalization constant.
The above procedure may also be used to obtain the

stationary state distribution for Langevin dynamics for the one-
dimensional harmonic potential [Eq. (A1)]. Leimkuhler and
Matthews employed a different approach to get the mean and
the second-order moments of the stationary state distribution
for Langevin dynamics for a one-dimensional harmonic poten-
tial when the time interval is finite,22 but they did not compute
higher-order moments, neither did they show the form of the
stationary state distribution.

APPENDIX B: OPTIMAL COLLISION FREQUENCY
FOR THE ANDERSEN THERMOSTAT

Consider A = mω2, that is, Eq. (A1) becomes

U (x) = mω2
(
x − xeq

)2
/2. (B1)

The propagation of the density distribution in the phase space
can be expressed by

∂ρ

∂t
= Lρ = − p

m
∂ρ

∂x
+ mω2(x − xeq)

∂ρ

∂p

+ ν

[
ρMB (p)

∫
ρdp − ρ

]
. (B2)

Assume that the conditional density distribution function
ρ≡ ρ (x, p; t |x0, p0; 0 ) is a solution to Eq. (B2). Although
the explicit expression of ρ (x, p; t |x0, p0; 0 ) is difficult to
obtain, we directly analyze the coordinate displacement square
autocorrelation function, which can be expressed by ρ as〈(

x (0) − xeq

)2 (
x (t) − xeq

)2
〉

=

∫
ρ0 (x0, p0) ρ

(
x0 − xeq

)2 (
x − xeq

)2
dx0dp0dxdp,

(B3)

where the initial condition satisfies the Boltzmann distribution
that is a stationary state distribution for Eq. (B2), i.e.,

ρ0 (x0, p0) =
βω

2π
e
−β

[
1
2 mω2(x0−xeq)2+

p2
0

2m

]

. (B4)

Consider the time derivative of Eq. (B3), i.e.,

∂

∂t

〈(
x(0) − xeq

)2 (
x(t) − xeq

)2
〉

=

∫
ρ0(x0, p0)

∂ρ

∂t

(
x0 − xeq

)2 (
x − xeq

)2
dx0dp0dxdp.

(B5)

Substituting Eq. (B2) into Eq. (B5) and using integration by
parts, we obtain

∂

∂t

〈(
x (0) − xeq

)2 (
x (t) − xeq

)2
〉

=
2
m

〈(
x (0) − xeq

)2 (
x (t) − xeq

)
p (t)

〉
. (B6)

Similarly, it is straightforward to verify

∂

∂t

〈(
x(0) − xeq

)2 (
x(t) − xeq

)
p(t)

〉
=

1
m

〈(
x(0) − xeq

)2
p2(t)

〉
− mω2

〈(
x (0) − xeq

)2 (
x (t) − xeq

)2
〉

− ν
〈(

x (0) − xeq

)2
x
(
(t) − xeq

)
p (t)

〉
(B7)

and
∂

∂t

〈(
x (0) − xeq

)2
p2 (t)

〉
= −2mω2

〈(
x (0) − xeq

)2 (
x (t) − xeq

)
p (t)

〉
+

ν

β2ω2
− ν

〈(
x (0) − xeq

)2
p2 (t)

〉
. (B8)

Equations (B6)–(B8) then form a closed set of first-order linear ODE, expressed in a compact form as

χ̇ = Aχ + b, (B9)

where

χ (t) = (χ1 (t) , χ2 (t) , χ3 (t))T =

(〈(
x (0) − xeq

)2 (
x (t) − xeq

)2
〉

,
〈(

x (0) − xeq

)2 (
x (t) − xeq

)
p (t)

〉
,
〈(

x (0) − xeq

)2
p2 (t)

〉)T
,

(B10)

b =
(
0, 0,

ν

β2ω2

)T

, (B11)
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and the linear coefficient matrix

A = *.
,

0 2/m 0
−mω2 −ν 1/m

0 −2mω2 −ν

+/
-

. (B12)

Solving the ODE [Eq. (B9)] with the initial value given by

χ (0) =

(
3

β2m2ω4
, 0,

1

β2ω2

)T

, (B13)

one obtains

χ (t) = eAt
[
A−1b + χ (0)

]
− A−1b. (B14)

The characteristic time of the potential energy autocorrelation
function

τUU =

∫ ∞
0

〈U (0) U (t)〉 − 〈U〉2〈
U2〉 − 〈U〉2 dt (B15)

can be shown as

τUU =
1
2

∫ ∞
0

[(
βmω2

)2
χ1 (t) − 1

]
dt. (B16)

Substituting Eq. (B14) into Eq. (B16), we obtain the explicit
expression for the characteristic time of the potential autocor-
relation function for the one-dimensional harmonic potential
[Eq. (B1)]

τUU =
1
2

(
ν

ω2
+

2
ν

)
. (B17)

The smaller the τUU , the more efficiently the Andersen ther-
mostat explores the potential energy surface and samples the
configurational space. When

ν = ν
(opt)
UU =

√
2ω, (B18)

the characteristic correlation time τUU reaches its minimum
value

τmin, ADS
UU =

√
2/ω. (B19)

Similarly, the characteristic time of the Hamiltonian autocor-
relation function for the one-dimensional harmonic potential
[Eq. (B1)] may be shown as

τHH =
ν

4ω2
+

2
ν

. (B20)

When
ν = ν

(opt)
HH = 2

√
2ω, (B21)

τHH reaches its minimum value

τmin, ADS
HH =

√
2/ω. (B22)

The procedure above also offers a useful approach to
derive the characteristic correlation time for other stochastic
thermostats. For instance, in addition to the Andersen thermo-
stat, the approach may be applied to Langevin dynamics.

It is interesting to compare the minimum value of the
characteristic time of the potential or Hamiltonian autocorrela-
tion function for the Andersen thermostat to that for Langevin
dynamics for the harmonic potential [Eq. (B1)]. The latter
may also be derived from a different approach presented in
Appendix A of Ref. 24 or from other different approaches.61,62

The minimum characteristic time of the potential or Hamilto-
nian autocorrelation function for Langevin dynamics24,26,61,62

is

τ
min, Lang
UU = τ

min, Lang
HH = 1/ω. (B23)

The minimum value in Eq. (B19) or Eq. (B22) for the
Andersen thermostat is only

√
2 times of that in Eq. (B23)

for Langevin dynamics. That is, in terms of sampling effi-
ciency, the Andersen thermostat is comparable to Langevin
dynamics.

The analysis for the harmonic system may apply to general
systems. As demonstrated in numerical examples in Section S2
of the supplementary material, for general systems, the optimal
value of the collision frequency of the Andersen thermostat is
about

√
2 times of that of the friction coefficient of Langevin

dynamics.

APPENDIX C: NUMERICAL ALGORITHMS
FOR THE THERMOSTATS
1. Andersen thermostat

In the conventional algorithm for the Andersen thermo-
stat,5 the collision process is applied after a whole step of
the velocity Verlet algorithm is implemented.3 That is, the
phase space propagator eL∆t employs the splitting in the
“end” scheme [Eq. (28)]. The “end-Andersen” algorithm for
propagating the MD trajectory through a time interval ∆t
is

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

,

(C1)

p(j) ←

√
1
β

M1−2
j θj, if µj< 1 − e−ν∆t

(
j = 1, N

)
. (C2)

Here p(j), Mj, µj, and θj are the same as discussed for Eq. (12).
Note that both µj and θj are different for each invocation of
Eq. (C2).

When the “side” scheme [Eq. (27)] is used, the “side-
Andersen” algorithm for propagating the MD trajectory
through a time interval ∆t reads

p(j) ←

√
1
β

M1/2
j θj, if µj< 1− e−ν∆t/2

(
j = 1, N

)
, (C3)

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

, (C4)

p(j) ←

√
1
β

M1/2
j θj, if µj < 1 − e−ν∆t/2

(
j = 1, N

)
,

(C5)
where µj is a uniformly distributed random number between
0 and 1 and θj is a 3-dimensional Gaussian-distributed ran-
dom number vector as discussed for Eq. (12). Note that both
µj and θj are different for each invocation of Eq. (C3) or
Eq. (C5).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-027726
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Similarly, when the “middle” scheme [Eq. (29)] is imple-
mented, the “middle-Andersen” algorithm for propagating the
MD trajectory through a time interval ∆t is then

p← p − U ′(x)
∆t
2

x ← x + M−1p
∆t
2

, (C6)

p(j) ←

√
1
β

M1/2
j θj, if µj < 1 − e−ν∆t

(
j = 1, N

)
, (C7)

x ← x + M−1p
∆t
2

p← p − U ′(x)
∆t
2

, (C8)

where both µj and θj are different for each invocation of
Eq. (C7). Here p(j), Mj, µj and θj are the same as discussed
for Eq. (12).

2. Langevin dynamics

The Langevin thermostat algorithm proposed by Bussi
and Parrinello25 in 2007 employs the splitting in the “side”
scheme [Eq. (27)]. The “side-Langevin” algorithm for prop-
agating the MD trajectory through a time interval ∆t for
Eq. (27) becomes

p← c̃1p + c̃2

√
1
β

M1/2η̃, (C9)

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

, (C10)

p← c̃1p + c̃2

√
1
β

M1/2η̃, (C11)

where the coefficients c̃1 = e−γ∆t/2 and c̃2 =

√
1 − c̃2

1. η̃ is
the independent Gaussian-distributed random number vector
as discussed for Eq. (2). Note that η̃ is different for each
invocation of Eq. (C9) or Eq. (C11).

Similarly, the phase space propagator eL∆t may also
use the splitting in the “end” scheme [Eq. (28)]. The “end-
Langevin” algorithm for propagating the MD trajectory
through a time interval ∆t for Eq. (28) is

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

, (C12)

p← c1p + c2

√
1
β

M1/2η̃, (C13)

where the coefficients c1 = e−γ∆t and c2 =

√
1 − c2

1. η̃ is the
independent Gaussian-distributed random number vector as
discussed for Eq. (2), which is different for each invocation of
Eq. (C13).

When the “middle” scheme [Eq. (29)] is implemented for
the phase space propagator, the “middle-Langevin” algorithm
for propagating the MD trajectory through a time interval ∆t
for Eq. (29) reads

p← p − U ′(x)
∆t
2

x ← x + M−1p
∆t
2

, (C14)

p← c1p + c2

√
1
β

M1/2η̃, (C15)

x ← x + M−1p
∆t
2

p← p − U ′(x)
∆t
2

, (C16)

where the coefficients c1 and c2 are the same as those
defined in Eq. (C13). As used in Eq. (C13), the inde-
pendent Gaussian-distributed random number vector η̃ is
different for each invocation of Eq. (C15). The “middle-
Langevin” algorithm was proposed earlier by Leimkuhler
and Matthews20 and also by Gronbech-Jensen and Farago.21

Leimkuhler and Matthews have recently suggested that the
“middle-Langevin” is the most efficient Langevin dynamics
algorithm for configurational sampling20,22 of the canonical
ensemble.

3. Nosé-Hoover chain

For the equations of motion [Eq. (18)] of NHC, the three
relevant Kolmogorov operators are Lx as in Eq. (7), Lp as in
Eq. (8), and LT defined as

LT =

3N∑
i=1



η(i)
1

Q1

∂

∂pi
(pi·) +

MNHC−1∑
j=1

p
η

(i)
j+1

Qj+1

∂

∂p
η

(i)
j

(
p
η

(i)
j
·

)

−

MNHC∑
j=1

G(i)
j

∂

∂p
η

(i)
j

−

MNHC∑
j=1

p
η

(i)
j

Qj

∂

∂η(i)
j


, (C17)

with G(i)
j defined by

G(i)
1 =

p2
i

mi
− kBT

G(i)
j =

p2
η

(i)
j−1

Qj−1
− kBT

(
j = 2, MNHC

)
.

(
i = 1, 3N

)
. (C18)

The relevant phase space propagator eLT∆t for the LT part for
NHC may not be exactly obtained because it involves nonlin-
ear differential equations that are difficult to solve analytically.
[For comparison, the exact expression for eLT∆t for a finite
time interval ∆t in the Andersen or Langevin thermostat may
be analytically derived such that Eq. (34) is satisfied.] Nev-
ertheless, the numerical implementation of the phase space
propagator eLT∆t for the NHC thermostat part may often be
effectively accurate. The multiple time scale technique such
as the reference system propagator algorithm13 (RESPA) and
a higher-order (than ∆t2) factorization such as the Suzuki-
Yoshida decomposition framework28–30 may be used to guar-
antee the accuracy.27 For instance, the equations of motion
for the LT part of NHC for a finite time interval ∆t may be
expressed as27
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p
η

(i)
MNHC

← p
η

(i)
MNHC

+ G(i)
MNHC

δα
2

p
η

(i)
j
← p

η
(i)
j

exp *
,
−

p
η

(i)
j+1

Qj+1

δα
4

+
-

p
η

(i)
j
← p

η
(i)
j

+ G(i)
j

δα
2

p
η

(i)
j
← p

η
(i)
j

exp *
,
−

p
η

(i)
j+1

Qj+1

δα
4

+
-




(
j = MNHC − 1, 1

)

η(i)
j ← η(i)

j +
p
η

(i)
j

Qj
δα

(
j = 1, MNHC

)
pi ← pi exp

(
−

p
η

(i)
1

Q1
δα

)
p
η

(i)
j
← p

η
(i)
j

exp *
,
−

p
η

(i)
j+1

Qj+1

δα
4

+
-

p
η

(i)
j
← p

η
(i)
j

+ G(i)
j

δα
2

p
η

(i)
j
← p

η
(i)
j

exp *
,
−

p
η

(i)
j+1

Qj+1

δα
4

+
-




(
j = 1, MNHC − 1

)

p
η

(i)
MNHC

← p
η

(i)
MNHC

+ G(i)
MNHC

δα
2




(
α = 1,nSY

)
(
k = 1,nRESPA

)
(
i = 1, 3N

) . (C19)

Here, we use RESPA to divide an integration step for the
NHC thermostat into nRESPA equal parts and implement
the Suzuki-Yoshida decomposition framework28–30 to further
divide each part into nSY smaller parts with different weights
{wα}. The value of nSY depends on the order of the Suzuki-
Yoshida decomposition. Throughout our work, the sixth order
Suzuki-Yoshida factorization is employed. In this case, nSY = 7
and

w1 = w7 = 0.784 513 610 477 560
w2 = w6 = 0.235 573 213 359 357
w3 = w5 = −1.177 679 984 178 87
w4 = 1 − w1 − w2 − w3 − w5 − w6 − w7

. (C20)

The parameter δα =
wα

nRESPA
∆t is the time step size for the αth of

the nSY smaller parts. When half a time interval ∆t/2 is used
for the physical degrees of freedom, the parameter becomes
δα =

wα

nRESPA

∆t
2 .

The conventional algorithm for NHC12,14,27 employs the
“side” scheme [Eq. (27)]. The “side-NHC” algorithm for
propagating the MD trajectory through a time interval ∆t is

Eq. (C19) with δα =
wα

nRESPA

∆t
2

, (C21)

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

, (C22)

Eq. (C19) with δα =
wα

nRESPA

∆t
2

. (C23)

Here, Eqs. (C21) and (C23) share the same form as
Eq. (C19) except that the time step size for each smaller part
is δα =

wα

nRESPA

∆t
2 .

When the “end” scheme [Eq. (28)] is used, the “end-NHC”
algorithm for propagating the MD trajectory through a time
interval ∆t reads

p← p − U ′(x)
∆t
2

x ← x + M−1p∆t

p← p − U ′(x)
∆t
2

, (C24)

Eq. (C19) with δα =
wα

nRESPA
∆t. (C25)

Similarly, when the “middle” scheme [Eq. (29)] is
implemented, the “middle-NHC” algorithm for propagat-
ing the MD trajectory through a time interval ∆t is
then

p← p − U ′(x)
∆t
2

x ← x + M−1p
∆t
2

,
(C26)

Eq. (C19) with δα =
wα

nRESPA
∆t, (C27)

x ← x + M−1p
∆t
2

p← p − U ′(x)
∆t
2

. (C28)

When MNHC = 1, NHC is reduced to the conventional
Nosé-Hoover thermostat, which is easier to implement but
more likely suffers the nonergodic problem.12 It is trivial to
obtain the Nosé-Hoover algorithms for the three schemes.
Some similar work was done for the Nosé-Hoover thermostat
by Itoh et al.63
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APPENDIX D: THERMOSTAT INTEGRATORS
FOR PATH INTEGRAL MOLECULAR DYNAMICS

Imaginary time path integral maps a quantum system onto
a classical ring polymer of “beads” (i.e., replicas of the sys-
tem) connected by harmonic springs.37,64,65 Because fictitious
momenta could be assigned to the beads, MD can then be
employed to sample the path integral beads.38 This approach is
noted path integral molecular dynamics (PIMD), which offers
a convenient and effective way for sampling quantum statisti-
cal properties in complex real systems.24,26,45,46,66,67 Quantum
statistical effects (such as zero point energy and tunneling)
become important at low temperatures and/or in molecular
systems that contain light atoms (e.g., hydrogen or helium).

1. Thermodynamic properties

Any thermodynamic property of the canonical ensemble
is of the general form〈

B̂
〉

=
1
Z

Tr
(
e−βĤ B̂

)
, (D1)

where Z = Tr
[
e−βĤ

]
is the partition function and B̂ is an

operator relevant to the specific property of interest. Equation
(D1) can be expressed in the coordinate space x, i.e.,〈

B̂
〉

= ∫
dx 〈x| e−βĤ B̂ |x〉

∫ dx 〈x| e−βĤ |x〉
. (D2)

The denominator leads to

Z =
∫

dx 〈x| e−βĤ |x〉
x1≡x
= lim

P→∞

∫
dx1

∫
dx2 · · ·

∫
dxP

(
P

2π β~2

)3NP/2

|M|P/2,

× exp


−

P

2β~2

P∑
i=1

[
(xi+1 − xi)

T M (xi+1 − xi)
]
−
β

P

P∑
i=1

U (xi)



(D3)

where xP+1 ≡ x1 and P is the number of path integral beads. Similarly, the numerator of Eq. (D2) is∫
dx 〈x| e−βĤ B̂ |x〉

x1≡x
= lim

P→∞

∫
dx1

∫
dx2 · · ·

∫
dxP

(
P

2π β~2

)3NP/2

|M|P/2

× exp


−

P

2β~2

P∑
i=1

[
(xi+1 − xi)

T M (xi+1 − xi)
]
−
β

P

P∑
i=1

U (xi)



B̃ (x1, . . . , xP) . (D4)

It is straightforward to show that the estimator B̃ (x1, . . . , xP)
for any coordinate dependent operator B̂ (x̂) is

B̃ (x1, . . . , xP) =
1
P

P∑
j=1

B
(
xj

)
. (D5)

When B̂ = 1
2 p̂T M−1p̂ is the kinetic energy operator, the

primitive estimator is

B̃(x1, . . . , xP)=
NP
2β
−

P∑
j=1

P

2β2~2

[(
xj+1 − xj

)T
M

(
xj+1 − xj

)]

(D6)

and the virial version is

B̃ (x1, . . . , xP) =
N
2β

+
1

2P

P∑
j=1



(
xj − x∗

)T ∂U
(
xj

)
∂xj


, (D7)

where x∗ can be the centroid of the path integral beads52

x∗ = xc ≡
1
P

P∑
j=1

xj (D8)

or x∗ can be any one of the P beads

x∗ = xi, (D9)

with i fixed in Eq. (D7).

2. Staging path integral molecular dynamics

Consider the staging transformation of
Tuckerman et al.27,45,46,51

ξ1 = x1,

ξj = xj −
(j − 1) xj+1 + x1

j

(
j = 2, P

) . (D10)

Its inverse transformation takes the recursive form

x1 = ξ1,

xj = ξj +
j − 1

j
xj+1 +

1
j
ξ1

(
j = 2, P

) . (D11)

Define

ωP =

√
P
β~

. (D12)

Equation (D3) becomes

Z
ξ1≡x1
= lim

P→∞

(
P

2π β~2

)3NP/2

|M|P/2
∫

dξ1

∫
dξ2 · · ·

∫
dξP

× exp


−β

P∑
j=1

[
1
2
ω2

Pξ
T
j M̄jξj +

1
P

U
(
xj (ξ1, . . . , ξP)

)]


,

(D13)

with the (diagonal) mass matrices given by

M̄1 = 0,

M̄j =
j

j−1 M
(
j = 2, P

) . (D14)

Define

φ (ξ1, . . . , ξP) =
1
P

P∑
j=1

U
(
xj (ξ1, . . . , ξP)

)
. (D15)
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It is easy to verify the chain rule

∂φ

∂ξ1
=

P∑
i=1

∂φ

∂xi
=

1
P

P∑
i=1

U ′ (xi) ,

∂φ

∂ξj
=
∂φ

∂xj
+

j − 2
j − 1

∂φ

∂ξj−1

(
j = 2, P

)
,

(D16)

from Eqs. (D10) and (D11). Employing the isomorphism strat-
egy proposed by Chandler and Wolynes,37 one can insert
fictitious momenta (p1, . . . , pP) into Eq. (D13), which leads to

Z
ξ1≡x1
= lim

P→∞

(
P

4π2~2

)3NP/2

|M|P/2*.
,

P∏
j=1

���M̃j
���
+/
-

−1/2∫
*.
,

P∏
j=1

dξjdpj
+/
-

× exp
[
−βHeff

(
ξ1, . . . , ξP; p1, . . . , pP

)]
(D17)

with the effective Hamiltonian given by

Heff
(
ξ1, . . . , ξP; p1, . . . , pP

)
=

P∑
j=1

1
2

pT
j M̃

−1
j pj

+ Ueff (ξ1, . . . , ξP) , (D18)

where

Ueff (ξ1, . . . , ξP) =
P∑

j=1

1
2
ω2

Pξ
T
j M̄jξj + φ (ξ1, . . . , ξP) . (D19)

The fictitious masses are chosen as

M̃1 =M

M̃j = M̄j

(
j = 2, P

) (D20)

such that all staging modes (ξ2, . . . , ξP) will move on the same
time scale. The thermodynamic property, Eq. (D2), is then
expressed as

〈
B̂
〉

= lim
P→∞

∫

(
P∏

j=1
dξjdpj

)
exp

{
−βHeff

(
ξ1, . . . , ξP; p1, . . . , pP

)}
B̃ (x1, . . . , xP)

∫

(
P∏

j=1
dξjdpj

)
exp

{
−βHeff

(
ξ1, . . . , ξP; p1, . . . , pP

)} . (D21)

One may sample
(
ξ1, . . . , ξP, p1, . . . , pP

)
in a molecular

dynamics (MD) scheme for evaluating the thermodynamic
property. That is, Eq. (D21) leads to

ξ̇j = M̃
−1
j pj,

ṗj = −ω
2
PM̄jξj −

∂φ

∂ξj

(
j = 1, P

)
.
. (D22)

The equations of motion for
(
ξ1, . . . , ξP, p1, . . . , pP

)
in Eq.

(D22) must be coupled to a thermostat to ensure a proper
canonical distribution for

(
ξ1, . . . , ξP, p1, . . . , pP

)
. Note that

only the configurational distribution of PIMD is important in
Eq. (D21) for evaluating thermodynamic properties.

It is often claimed in conventional PIMD algorithms that
it is more favorable to employ the decomposition of Eq. (D22)

*
,

ξ̇j

ṗj

+
-
= *

,

M̃
−1
j pj

−ω2
PM̄jξj

+
-︸         ︷︷         ︸ +

*..
,

0

−
∂φ

∂ξj

+//
-︸   ︷︷   ︸

(
j = 1, P

)
(D23)

because the harmonic force term −ω2
PM̄jξj often varies much

more frequently than the force term − ∂φ∂ξj . Note that the exact

solution to the first term of the RHS of Eq. (D23) is available26

(that is, the multiple time scale technique such as RESPA13 is
applied). Our recent work,24 however, shows that(

ξ̇j

ṗj

)
=

(
M̃
−1
j pj
0

)
︸     ︷︷     ︸ + *.

,

0

−ω2
PM̄jξj −

∂φ

∂ξj

+/
-︸                  ︷︷                  ︸

=

(
M̃
−1
j pj
0

)
︸     ︷︷     ︸ +

*..
,

0

−
∂Ueff

∂ξj

+//
-︸      ︷︷      ︸

(
j = 1, P

)
(D24)

instead is a more accurate and more efficient decomposition
when the “middle” scheme is applied to the thermostat for
PIMD.

When the Langevin thermostat is employed, it has been
proved in Appendix C of Ref. 24 (and its supplementary
material68) that Eq. (D24) leads to the exact configura-
tional distribution of the path integral beads in the har-
monic limit, while Eq. (D23) does not. It is trivial to show
that the conclusion can be extended to any thermostat as
long as the thermostat rigorously preserves the Maxwell
momentum distribution in its thermostat step. For exam-
ple, the Andersen thermostat has the same property when
the “middle” scheme is used for PIMD. When the NHC
thermostat part is effectively accurate, it is expected that
Eq. (D24) is also numerically more favorable when NHC
is used for thermostatting PIMD in the “middle” scheme.
(This is verified by the numerical results in Fig. 7 of the
paper.)

Although the staging transformation of the path integral
beads is used for demonstration, all conclusions hold for any
other types of transformations of the beads (such as the normal
mode transformation26,52,68,69).

3. PIMD algorithms/integrators

The PIMD algorithms/integrators for the “middle,”
“side,” and “end” schemes share the same forms as their MD
counterparts as listed in Appendix C. That is, replace the classi-
cal Hamiltonian [Eq. (1)], the phase space variables (x,p), and
the mass matrix M by the effective Hamiltonian [Eq. (D18)],(
ξ1, . . . , ξP, p1, . . . , pP

)
, and

{
M̃j

}
, respectively. Similarly,
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the collision frequency ν is replaced by
{
ν(l)

(
l = 1, P

)}
for the

P staging coordinate variables
{
ξl

(
l = 1, P

)}
in the Ander-

sen thermostat, the friction coefficient γ by
{
γ(l)

(
l = 1, P

)}

in Langevin dynamics, and the characteristic time τ̃NHC of
Eq. (19) by

{
τ̃(l)

NHC

(
l = 1, P

)}
in NHC. When staging PIMD

is employed, the optimal values for friction coefficients{
γ(l)

(
l = 2, P

)}
are ωP in the free particle limit, while those

for collision frequencies
{
ν(l)

(
l = 2, P

)}
are
√

2ωP in the free
particle limit. It is trivial to extend the results to normal-mode
PIMD.

APPENDIX E: THERMOSTAT PARAMETERS

Table I lists the parameters in the three thermostats used
for MD simulations of the five systems in the paper.

The thermostat parameters of the first staging bead ξ1

in staging PIMD are the same as those in MD for all ther-
mostats (listed in Table I). The Langevin friction coefficients
for the rest P � 1 staging beads ξl

(
l = 2, P

)
are all chosen to be

γ(l) =ωP, as suggested in our previous work.24 Similarly, while
the collision frequencies (in the Andersen thermostat) for the
P � 1 staging beads ξl

(
l = 2, P

)
are all chosen to be ν(l) = ωP

(around their optimal values ν(l) =
√

2ωP in the free particle
limit), the parameter τ̃(l)

NHC of Eq. (19) in NHC for those staging

beads ξl

(
l = 2, P

)
is ω−1

P .

APPENDIX F: COMPARISON BETWEEN THE
VELOCITY AND POSITION VERLET ALGORITHMS
IN THE “MIDDLE” SCHEME

When the thermostat vanishes, the schemes presented in
the paper are reduced to the velocity Verlet algorithm for
constant energy MD that generates the microcanonical ensem-
ble. Alternatively, one may develop similar schemes using
the position Verlet algorithm instead. For instance, when the
position Verlet algorithm is employed instead of the veloc-
ity Verlet algorithm, the “middle” scheme is then changed
to

eL∆t ≈ eL
Middle∆t = eLx∆t/2eLp∆t/2eLT∆teLp∆t/2eLx∆t/2. (F1)

TABLE I. Parameters for different thermostats for the five systems in the
paper.

System ν Andersen γ Langevin τ̃−1
NHC NHCa

U(x) = mω2x2/2 1.4 a.u. 1 a.u. 0.125 a.u.
U(x) = x4/4 1 a.u. 1 a.u. 0.125 a.u.

H2O
0.83 fs�1 0.68 fs�1 0.083 fs�1

(0.02 a.u.)b (0.0164 a.u.)b (0.002 a.u.)b

(Ne)13 0.001 fs�1 0.001 fs�1 0.000 8 fs�1

Liquid water 0.005 fs�1 0.005 fs�1 0.002 85 fs�1

aMNHC = 4 coupling thermostats in each chain; nRESPA = 1, nSY = 7 (the 6th order
Suzuki-Yoshida factorization, its order of accuracy is O(∆t6)) for (Ne)13 and liquid water,
nRESPA = 4, nSY = 7 for the one-dimensional harmonic and quartic model systems and
the H2O molecule.
b~ν or ~γ is considered similar to ~ω when converting the parameters from atomic units
to SI units. [For example, see Eq. (B18) or (B21).]

FIG. 8. MD results for the average potential energy using different time inter-
vals. (a) The harmonic potential at β = 8 (unit: a.u.). (b) The quartic potential
at β = 8 (unit: a.u.). (c) Potential energy per atom 〈U(x)〉

/
(NatomkB) (unit:

Kelvin) for H2O at T = 100 K. The units are a.u. in panels (a) and (b), while
that of the time interval is femtosecond (fs) in panel (c). Statistical error bars
are included. The interval is increased until the propagation of the thermostat
fails.
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We note Eq. (F1) the “PV-middle” scheme. It is easy to verify
that, when the Andersen thermostat or Langevin dynamics is
employed, the stationary state distribution produced by the
“PV-middle” scheme for the harmonic system Eq. (30) is

FIG. 9. As in Fig. 8, but for MD results for the average kinetic energy using
different time intervals.

ρPV-Middle =
1

Z̄ ′N
exp

[
−β

(
1
2

pT (1 −M−1A
∆t2

4
)M−1p

+
1
2

(
x − xeq

)T
A

(
x − xeq

))]
. (F2)

That is, the “PV-middle” scheme also leads to the exact con-
figurational distribution in the harmonic limit, regardless of
any finite time interval ∆t (as long as the matrix 1−M−1A∆t2

4
is positive-definite). Figure 8 compares the MD results for the
average potential energy produced by the “PV-middle” scheme
to those given by the “middle” scheme. It is demonstrated that
the “middle” scheme performs better in configurational sam-
pling for anharmonic systems than the “PV-middle” scheme
does. The numerical performance of NHC is similar when the
NHC thermostat part is effectively accurate, as supported by
the results in Fig. 8.

In the harmonic limit, the “middle” scheme always under-
estimates the average kinetic energy, while the “PV-middle”
scheme overestimates it. Similar behaviors are observed in the
two anharmonic systems, as shown in Fig. 9 where the aver-
age kinetic energy is estimated by both schemes. In terms of
accuracy as a function of the finite time interval ∆t, the “mid-
dle” scheme is also superior to the “PV-middle” scheme in
sampling the momentum space.

Similarly, the position Verlet algorithm can be imple-
mented in other schemes (e.g., “side” or “end”) to construct
“PV-side” or “PV-end.” None of these PV-type schemes per-
forms better than the “middle” scheme for configurational
sampling, regardless of which type of thermostat is used.
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H.-B. Schüttler (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995), pp.
169–174.

35S. A. Chin, Phys. Lett. A 226(6), 344–348 (1997).
36S. A. Chin, Phys. Rev. E 71(1), 016703 (2005).
37D. Chandler and P. G. Wolynes, J. Chem. Phys. 74(7), 4078–4095 (1981).
38M. Parrinello and A. Rahman, J. Chem. Phys. 80(2), 860–867 (1984).
39The difference between the configurational or momentum distribution func-

tions at different time intervals is hardly noticeable. The average potential
or kinetic energy is a rather more sensitive quantity to plot as a function of
the time interval.

40J. Liu and Z. Zhang, J. Chem. Phys. 144(3), 034307 (2016).
41N. G. vanKampen, Stochastic Processes in Physics and Chemistry (North-

Holland, Amsterdam, 1981).
42M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J. Martyna, J. Chem. Phys.

115(4), 1678–1702 (2001).
43D. J. Tobias, G. J. Martyna, and M. L. Klein, J. Phys. Chem. 97(49), 12959–

12966 (1993).
44M. E. Tuckerman, J. Alejandre, R. López-Rendón, A. L. Jochim, and
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