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We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD)
with the Langevin equation. The staging transformation of path integral beads is employed for
demonstration. The optimum friction coefficients for the staging modes in the free particle limit
are used for all systems. In comparison to the path integral Langevin equation thermostat, the new
algorithm exploits a different order of splitting for the phase space propagator associated to the
Langevin equation. While the error analysis is made for both algorithms, they are also employed in
the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid
water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a
factor of 4–6 or more for achieving the same accuracy. In addition, the supplementary material shows
the error analysis made for the algorithms when the normal-mode transformation of path integral
beads is used. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954990]

I. INTRODUCTION

In 1953, Feynman first presented imaginary time path
integral to study liquid helium,1 which already demonstrated
the mapping of a quantum system onto a classical model
consisting of the Feynman ring of “beads” (i.e., replicas
of the system) connected by harmonic springs.1 In 1981,
Chandler and Wolynes then suggested the quantum-classical
isomorphism that established the relationship between
quantum concepts and the classical polymer language.2,3

Imaginary time path integral has not only provided a
physical picture but also offered a powerful computational
framework for studying quantum statistical effects.3–5 Such
effects (including zero point energy, tunneling, and quantum
exchange effects) become important at low temperatures
and/or in realistic systems that contain light atoms such as
hydrogen or helium.

In 1984, Parrinello and Rahman proposed that artificial
momenta could be assigned to the mapping polymer such that
molecular dynamics (MD) could be employed to perform the
path integral sampling.6 The normal-mode transformation7–9

or staging transformation10,11 was introduced to deal with
the stiffness of the harmonic springs between the beads.
Thermostatting methods such as the Andersen thermostat,12

Langevin dynamics,13,14 and Nosé-Hoover chain (NHC)10,11

were implemented in path integral molecular dynamics
(PIMD) to ensure a proper canonical distribution of the path
integral beads. As it is often not a trivial task to adjust
moves of path integral Monte Carlo (PIMC) for general
molecular systems, path integral molecular dynamics (PIMD)
thus offers a more convenient computational technique for
simulating structural and thermodynamic properties when
quantum exchange effects are not significant.

a)Electronic mail: jianliupku@pku.edu.cn
b)D. Li and X. Liu contributed equally to this work.

As early as in 1980s, Langevin dynamics was already
introduced for thermostatting PIMD by Gillan13 and by Singer
and Smith.14 It has also been investigated by Müser15 and
by Drozdov and Talkner.16 More recently, Ceriotti et al. have
developed a path integral Langevin equation (PILE) thermostat
that combines a simple (white noise) Langevin thermostat with
the velocity Verlet algorithm to give an efficient sampling of
the canonical distribution for PIMD.17 It is demonstrated that
in terms of sampling efficiency PILE is comparable to the
NHC thermostat10 for PIMD.17 The implementation of PILE
is very straightforward for general molecular systems. These
suggest that it is worth investigating more stochastic methods
for PIMD.

The purpose of this paper is to present a novel, simple, and
accurate algorithm for accomplishing PIMD with Langevin
thermostats. Section II first briefly reviews PIMD with
the staging transformation of path integral beads. After
demonstrating how the PILE thermostat17 can be implemented
for staging PIMD, we introduce a more accurate and robust
integrator for propagating PIMD with the (white noise)
Langevin thermostat. Section III applies both integrators to
three typical realistic molecular systems, namely, the water
molecule, liquid para-hydrogen, and liquid water. The two
integrators are compared by studying two thermodynamic
properties: the average kinetic energy (obtained by either the
primitive or virial estimator) and the average potential energy.
The performance is then investigated as a function of the time
interval of PIMD. (More discussions are given in Appendices
A-C and in the supplementary material.18) Conclusions and
outlook follow in Section IV.

II. THEORY

A. Thermodynamic properties
Any thermodynamic property of the canonical ensemble

is of the general form
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B̂

�
=

1
Z

Tr
(
e−βĤ B̂

)
, (1)

where Z = Tr

e−βĤ

 (β = 1/kBT) is the partition func-
tion, Ĥ is the (time-independent) Hamiltonian of the
system with the total number of degrees of freedom
N , which we assume to be of the standard Cartesian
form

Ĥ =
1
2

p̂TM−1p̂ + V (x̂) , (2)

where M is the diagonal “mass matrix” with elements
�
m j

	
,

and p̂ and x̂ are the momentum and coordinate operators,
respectively; and B̂ is an operator relevant to the specific
property of interest.

Express Eq. (1) in the coordinate space x, i.e.,



B̂

�
=


dx ⟨x| e−βĤ B̂ |x⟩
dx ⟨x| e−βĤ |x⟩ . (3)

Inserting path integral beads to evaluate the term ⟨x| e−βĤ |x⟩
leads to

Z =


dx ⟨x| e−βĤ |x⟩

x1≡x
= lim

P→∞


dx1


dx2 · · ·


dxP

(
P

2π β~2

)NP/2

|M|P/2 exp


− P

2β~2

P
i=1

(xi+1 − xi)TM (xi+1 − xi)

− β

P

P
i=1

V (xi)


, (4)

where xP+1 ≡ x1 and P is the number of path integral beads. Then the numerator of Eq. (3) becomes
dx ⟨x| e−βĤ B̂ |x⟩ x1≡x

= lim
P→∞


dx1


dx2 · · ·


dxP

(
P

2π β~2

)NP/2

|M|P/2

× exp


− P

2β~2

P
i=1

(xi+1 − xi)TM (xi+1 − xi)

− β

P

P
i=1

V (xi)



B̃ (x1, . . . ,xP) . (5)

The denominator of Eq. (3) takes the same form as Eq. (5)
for B̂ = 1. It is straightforward to show that the estimator
B̃ (x1, . . . ,xP) for any coordinate dependent operator B̂ (x̂) is

B̃ (x1, . . . ,xP) = 1
P

P
j=1

B
�
x j

�
. (6)

When B̂ = 1
2 p̂TM−1p̂ is the kinetic energy operator, the

primitive estimator is

B̃ (x1, . . . ,xP) = N P
2β

−
P
j=1

P
2β2~2

�
x j+1 − x j

�TM
�
x j+1 − x j

�
,

(7)

and the virial version is

B̃ (x1, . . . ,xP) = N
2β
+

1
2P

P
j=1



�
x j − x∗

�T ∂V
�
x j

�

∂x j


, (8)

where

x∗ = xc ≡
1
P

P
j=1

x j, (9)

or x∗ can be any one of the P beads

x∗ = xi, (10)

with i fixed in Eq. (8). It was suggested that the virial estimator
is numerically more favorable than the primitive one as the
number of beads P increases.8

B. Path integral molecular dynamics

Consider the staging transformation of Tuckerman
et al.,10,11,19

ξ1 = x1,

ξ j = x j −
( j − 1) x j+1 + x1

j

(
j = 2,P

)
.

(11)

Its inverse transformation takes the following convenient
recursive form:

x1= ξ1,

x j= ξ j +
j − 1

j
x j+1 +

1
j
ξ1

(
j = 2,P

)
.

(12)

Its close form can be expressed as

x1 = ξ1,

x j = ξ1 +

P
k= j

j − 1
k − 1

ξk
(
j = 2,P

)
.

(13)

If one defines

ωP =

√
P

β~
, (14)
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Eq. (4) becomes

Z
ξ1≡x1
= lim

P→∞

(
P

2π β~2

)NP/2

|M|P/2


dξ1


dξ2 · · ·


dξP

× exp


−β

P
j=1


1
2
ω2

Pξ
T
j M̄jξ j+

1
P

V
�
x j (ξ1, . . . ,ξP)

�

,

(15)

with the (diagonal) mass matrices given by

M̄1 = 0,

M̄ j =
j

j − 1
M

(
j = 2,P

)
.

(16)

If one defines

φ (ξ1, . . . ,ξP) = 1
P

P
j=1

V
�
x j (ξ1, . . . ,ξP)

�
, (17)

one then obtains the chain rule

∂φ

∂ξ1
=

P
i=1

∂φ

∂xi
=

1
P

P
i=1

V ′ (xi) ,
∂φ

∂ξ j
=

∂φ

∂x j
+

j − 2
j − 1

∂φ

∂ξ j−1

(
j = 2,P

) (18)

from Eqs. (11) and (12). Employing the isomorphism strategy
proposed by Chandler and Wolynes,2 one can insert fictitious

momenta (p1, . . . ,pP) into Eq. (15), which leads to

Z
ξ1≡x1
= lim

P→∞

(
P

4π2~2

)NP/2

|M|P/2*.
,

P
j=1

�
M̃ j

�+/
-

−1/2

×


*.
,

P
j=1

dξ jdp j
+/
-

× exp
�
−βHeff (ξ1, . . . ,ξP; p1, . . . ,pP)� , (19)

with the effective Hamiltonian given by

Heff (ξ1, . . . ,ξP; p1, . . . ,pP)

=

P
j=1

1
2

pT
j M̃−1

j p j +Ueff (ξ1, . . . ,ξP) , (20)

where

Ueff (ξ1, . . . ,ξP) =
P
j=1

1
2
ω2

Pξ
T
j M̄jξ j + φ (ξ1, . . . ,ξP) . (21)

The fictitious masses are chosen as

M̃1 = M,

M̃ j = M̄ j

(
j = 2,P

)
,

(22)

such that all staging modes (ξ2, . . . ,ξP) will move on the
same time scale. The thermodynamic property Eq. (3) is then
expressed as



B̂

�
= lim

P→∞

 (
P
j=1

dξ jdp j

)
exp

�
−βHeff (ξ1, . . . ,ξP; p1, . . . ,pP)	 B̃ (x1, . . . ,xP)

 (
P
j=1

dξ jdp j

)
exp

�
−βHeff (ξ1, . . . ,ξP; p1, . . . ,pP)	

. (23)

One can sample (ξ1, . . . ,ξP,p1, . . . ,pP) in a molecular dynamics (MD) scheme for evaluating the thermodynamic property. That
is, Eq. (23) leads to

ξ̇ j = M̃−1
j p j,

ṗ j = −ω2
PM̄ jξ j −

∂φ

∂ξ j

(
j = 1,P

)
.

(24)

The equations of motion for (ξ1, . . . ,ξP,p1, . . . ,pP) in Eq. (24) must be coupled to a thermostatting method to ensure a
proper canonical distribution for (ξ1, . . . ,ξP,p1, . . . ,pP). Note that only the configurational distribution of PIMD is important in
Eq. (23).

C. Algorithms for PIMD with Langevin thermostats

When a simple (white noise) Langevin dynamics is employed to the thermostat of the staging path integral variables
(ξ1, . . . ,ξP,p1, . . . ,pP) in PIMD, Eq. (24) becomes

*
,

ξ̇ j

ṗ j

+
-
=

*....
,

M̃−1
j p j

−ω2
PM̄ jξ j −

∂φ

∂ξ j
− γ

( j)
Langp j +


2γ( j)Lang

β

�
M̃ j

�1/2
η j (t)

+////
-

(
j = 1,P

)
. (25)

Here η j (t) is a vector. Its (white-noise) element η i
j (t) is

an independent Gaussian-distributed random number with
zero mean and unit variance [


η i
j (t)


= 0 and


η i
j (t) η i

j (t ′)
 = δ (t − t ′)], which is different for each physical degree of

freedom
(
i = 1,N

)
, each staging mode

(
j = 1,P

)
, and each

time step. The Langevin friction coefficient γ( j)Lang is the same
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for the staging modes
(
j = 2,P

)
and all degrees of freedom(

i = 1,N
)

because they share the same frequency ωP. The
optimum value for the friction coefficient γ( j)Lang is

γ
opt
Lang = ωP, (26)

which offers the most efficient configurational sampling in the
free particle limit for the staging variables (ξ2, . . . ,ξP)20,21

(see the Appendix A). Because the number of path

integral beads P in principle approaches infinity in PIMD
for obtaining exact quantum thermodynamic properties
[Eq. (23)], the optimum friction coefficient γopt

Lang for overall
sampling of the configurational distribution is then often
considerably large for converged results according to Eqs. (14)
and (26).

Because the harmonic force term −ω2
PM̄ jξ j often varies

much more frequently than the force term − ∂φ
∂ξ j

, Eq. (25) can
be divided into three parts,

*
,

ξ̇ j

ṗ j

+
-
= *

,

M̃−1
j p j

−ω2
PM̄ jξ j

+
-                  

A

+
*..
,

0

− ∂φ

∂ξ j

+//
-        

B

+ *
,

0

−γ( j)Langp j + σ j

�
M̃ j

�1/2
η j (t)

+
-                                                                    

O

(
j = 1,P

)
, (27)

with σ j =


2γ( j)Lang

β
and each of the three parts may be solved “exactly.” In case of the harmonic part (i.e., part A), the analytical

solution for a time interval ∆t is

ξ1 ← ξ1 + M̃−1
1 p1∆t,

*
,

ξ j

p j

+
-
← *

,

cos (ωP∆t) 1 sin (ωP∆t) /ωP M̃−1
j

−ωP sin (ωP∆t) M̃ j cos (ωP∆t) 1
+
-

*
,

ξ j

p j

+
-

(
j = 2,P

)
.

(28)

The similar technique is often employed in MD when the
harmonic system is used as the reference.22,23 While part B
leads to

p j ← p j −
∂φ

∂ξ j
∆t, (29)

the solution to the Ornstein-Uhlenbeck (OU) part (i.e., part
O) is

p j ← e−γ
( j)
Lang∆tp j +


1 − e−2γ( j)Lang∆t

β

�
M̃ j

�1/2
η j . (30)

Here η j is the independent Gaussian-distributed random
number vector as discussed for Eq. (25).

By employing the velocity Verlet algorithm with a
(white noise) Langevin thermostat for MD,24,25 Ceriotti et al.
constructed the PILE algorithm17 for PIMD, which used
the splitting in Eq. (27) for a time interval ∆t by the
composition

eL∆t ≈ eLO∆t/2eLB∆t/2eLA∆teLB∆t/2eLO∆t/2, (31)

for the phase space propagator eL∆t associated to the Langevin
equation. For comparing with the new integrator that will be
shortly introduced, we note it OBABO according to the order
of splitting. The OBABO algorithm (or equivalently PILE)
for propagating the PIMD trajectory through a time interval
∆t for Eq. (25) is

p j ← c( j)1 p j + c( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
, (32)

p j ← p j −
∂φ

∂ξ j

∆t
2

(
j = 1,P

)
, (33)

ξ1 ← ξ1 + M̃−1
1 p1∆t,

*
,

ξ j

p j

+
-
← *

,

cos (ωP∆t) 1 sin (ωP∆t) /ωP M̃−1
j

−ωP sin (ωP∆t) M̃ j cos (ωP∆t) 1
+
-

*
,

ξ j

p j

+
-

(
j = 2,P

)
,

(34)

p j ← p j −
∂φ

∂ξ j

∆t
2

(
j = 1,P

)
, (35)

p j ← c( j)1 p j + c( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
. (36)
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Here the independent Gaussian-distributed random number
vector η j is different for each invocation of Eq. (32) or
Eq. (36). The coefficients c( j)1 and c( j)2 are

c( j)1 = exp

−γ( j)Lang∆t/2



c( j)2 =


1 −

(
c( j)1

)2

(
j = 1,P

)
, (37)

respectively. While the forces in Eq. (33) are obtained from
the previous time step, those in Eq. (35) at the current time
step can be efficiently evaluated by the chain rule Eq. (18).
The OBABO (or PILE) algorithm [Eqs. (32)–(36)] for staging
PIMD has already been employed in Ref. 20.

Leimkuhler and Matthews have recently tested various
algorithms for thermostatting MD with Langevin dy-
namics.26–28 It is suggested that the splitting

eL∆t ≈ eLB∆t/2eLA∆t/2eLO∆teLA∆t/2eLB∆t/2 (38)

leads to the most efficient MD algorithm for sampling
the configurational space in the high friction limit.26,27

When the order of splitting Eq. (38) is implemented to
construct a PIMD algorithm for Eq. (27), we note it
BAOAB. Such a BAOAB integrator for propagating the
PIMD trajectory through a time interval ∆t for Eq. (25)
is

p j ← p j −
∂φ

∂ξ j

∆t
2

(
j = 1,P

)
, (39)

ξ1 ← ξ1 + M̃−1
1 p1
∆t
2
,

*
,

ξ j

p j

+
-
← *

,

cos (ωP∆t/2) 1 sin (ωP∆t/2) /ωP M̃−1
j

−ωP sin (ωP∆t/2) M̃ j cos (ωP∆t/2) 1
+
-

*
,

ξ j

p j

+
-

(
j = 2,P

)
,

(40)

p j ← c̃( j)1 p j + c̃( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
, (41)

ξ1 ← ξ1 + M̃−1
1 p1
∆t
2
,

*
,

ξ j

p j

+
-
← *

,

cos (ωP∆t/2) 1 sin (ωP∆t/2) /ωP M̃−1
j

−ωP sin (ωP∆t/2) M̃ j cos (ωP∆t/2) 1
+
-

*
,

ξ j

p j

+
-

(
j = 2,P

)
,

(42)

p j ← p j −
∂φ

∂ξ j

∆t
2

(
j = 1,P

)
, (43)

where the independent Gaussian-distributed random number
vector η j is different for each invocation of Eq. (41), and the
coefficients are

c̃( j)1 = exp

−γ( j)Lang∆t


,

c̃( j)2 =


1 −

(
c̃( j)1

)2

(
j = 1,P

)
. (44)

The implementation of the BAOAB algorithm [Eqs. (39)–(43)]
is very simple, which has already been done in our earlier
work.21,29

D. Accuracy of the PIMD integrators

BAOAB and OBABO approach each other in the limit
∆t → 0. Both BAOAB and OBABO exploit an analytic
knowledge of path integral staging mode frequencies in the
free particle limit [Eq. (26)]. It is trivial to verify that either
of BAOAB and OBABO is exact in the free particle limit.

Eq. (27) can be expressed in a more compact form as

*
,

ξ̇

ṗ
+
-
= *

,

M̃−1 p
−ω2

PM̄ξ
+
-              

A

+
*..
,

0

− ∂φ

∂ξ

+//
-      

B

+ *
,

0
−γLangp + σ M̃1/2η (t)

+
-                                                      

O

.

(45)

Here,

ξ =

*....
,

ξ1
...

ξP

+////
-

, p =
*....
,

p1
...

pP

+////
-

,

M̄ =
*....
,

M̄1

. . .

M̄P

+////
-

, M̃ =
*....
,

M̃1

. . .

M̃P

+////
-

,

η(t) =
*....
,

η1(t)
...

ηP(t)

+////
-

,

γLang =

*....
,

γ
(1)
Lang · 1N×N

. . .

γ
(P)
Lang · 1N×N

+////
-

and

σ =

*....
,

σ1 · 1N×N
. . .

σP · 1N×N

+////
-

.
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Eq. (20) then becomes

Heff (ξ; p) = 1
2

pTM̃−1p +
1
2
ω2

Pξ
TM̄ξ + φ (ξ)

=
1
2

pTM̃−1p +Ueff (ξ) . (46)

The density evolves according to the Fokker-Planck or forward
Kolmogorov equation,

∂ρ

∂t
= Lρ, (47)

where the relevant Kolmogorov operator L is defined by

L = LLD = LA + LB + LO, (48)

with

LAρ = −pTM̃−1 ∂

∂ξ
ρ + ω2

Pξ
TM̄

∂

∂p
ρ, (49)

LBρ =

(
∂φ

∂ξ

)T
∂

∂p
ρ, (50)

LOρ =
∂

∂p
·
(
γLangpρ

)
+

1
2

∂

∂p
·
(
σ2M̃

∂ρ

∂p

)
. (51)

It is straightforward to verify that

ρeq (ξ; p) = Z−1
eff exp

�
−βHeff (ξ; p)� (52)

is a steady state of Eq. (47). Here Zeff is the normalization
constant of the density distribution, Zeff =


dξdp exp

�
−βHeff (ξ; p)	 =  (

P
j=1

dξ jdp j

)
exp

�
−βHeff (ξ1, . . . ,ξP; p1,

. . . ,pP)}.
The exact phase space propagator for a time interval ∆t

for Eq. (47) is eLLD∆t. When the BAOAB integrator [Eq.
(38)] is employed, the “approximate” phase space propagator
is

eLB∆t/2eLA∆t/2eLO∆teLA∆t/2eLB∆t/2 = eLBAOAB∆t . (53)

Using the Baker–Campbell–Hausdorff formula to expand the
left-hand side of Eq. (53), one then obtains

LBAOAB = LA + LB + LO +
1
24

{2 [LO, [LO,LA + LB]]
+ 2 [LA, [LA,LB]] + 2 [LO, [LA,LB]]
+ 2 [LA, [LO,LB]] − [LA, [LA,LO]]
− [LB, [LB,LO]] − [LB, [LB,LA]]}∆t2 +O

�
∆t4�

= LLD + LBAOAB
2 ∆t2 +O

�
∆t4�

. (54)

It is straightforward to show that

LBAOAB
2 ρeq = ρeq


1
4

(
∂

∂ξ
·
(
γLangM̃

−1∂φ

∂ξ

)
− βpTγLangM̃

−1φ′′M̃−1p
)

+
β

4
pTM̃−1φ′′M̃−1∂φ

∂ξ
− β

12
pTM̃−1 ∂

∂ξ

�
pTM̃−1φ′′M̃−1p

�

+
β

12
ω2

P

(
pTM̃−1M̄M̃−1∂φ

∂ξ
+ 3pTM̃−1φ′′M̄M̃−1ξ

)
, (55)

where φ′′ = ∂2φ

∂ξ2
is a Hessian matrix.

Consider the steady state ρBAOAB for the relevant
Kolmogorov operator LBAOAB, which satisfies

∂ρBAOAB

∂t
= LBAOABρ

BAOAB = 0. (56)

Assume that ρBAOAB takes the form

ρBAOAB = ρeq
�
1 − βω2

P∆t2 f BAOAB
2 +O(ω4

P∆t4)� . (57)

Substituting Eqs. (54) and (57) into Eq. (56) leads to

LLD(ρeq f BAOAB
2 ) = 1

βω2
P

LBAOAB
2 ρeq. (58)

When Eq. (26) is used as the optimum friction coefficients,
γLang is then expressed as γLang = ωPγ1. Since the number
of beads P is often large, ε = 1/ωP is small. f BAOAB

2 can be
expressed as

f BAOAB
2 = f BAOAB

2,0 + f BAOAB
2,1 ε + f BAOAB

2,2 ε2 +O
�
ε3�

. (59)

Substituting Eq. (59) into Eq. (58) and then dividing both
sides by ω2

P, one finds
�
L0 + εL1 + ε

2L2
� 

f BAOAB
2,0 + f BAOAB

2,1 ε + f BAOAB
2,2 ε2 +O

�
ε3�

= gBAOAB
2 ε2 + gBAOAB

3 ε3 + gBAOAB
4 ε4, (60)

where

L0ρ = ξ
TM̄

∂

∂p
ρ, (61)

L1ρ =
1
β

∂

∂p
·
(
γ1M̃

∂ρ

∂p

)
− pTγ1

∂ρ

∂p
, (62)

L2ρ =

(
∂φ

∂ξ

)T
∂ρ

∂p
− pTM̃−1∂ρ

∂ξ
, (63)

gBAOAB
2 =

1
12

(
pTM̃−1M̄M̃−1∂φ

∂ξ
+ 3pTM̃−1φ′′M̄M̃−1ξ

)
, (64)

gBAOAB
3 =

1
4

(
1
β

∂

∂ξ
·
(
γ1M̃

−1∂φ

∂ξ

)
− pTγ1M̃

−1φ′′M̃−1p
)
, (65)

gBAOAB
4 =

1
4

pTM̃−1φ′′M̃−1∂φ

∂ξ

− 1
12

pTM̃−1 ∂

∂ξ

�
pTM̃−1φ′′M̃−1p

�
.

(66)
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Equating powers of ε in Eq. (60), one obtains

L0 f BAOAB
2,0 = 0,

L1 f BAOAB
2,0 + L0 f BAOAB

2,1 = 0,

L0 f BAOAB
2,2 + L1 f BAOAB

2,1 + L2 f BAOAB
2,0 = gBAOAB

2 ,

· · ·

(67)

Truncating at the 2nd order of ε, one finds a solution of
Eq. (67)

f BAOAB
2,0 = − 1

12
φ + G0,

f BAOAB
2,1 =

1
12

pTγ−1
1 M̃−1(1 − M̄M̃−1)∂φ

∂ξ
− G1 (ξ) ,

f BAOAB
2,2 =

1
8


pTM̃−1φ′′M̃−1p− 1

β

∂

∂ξ
·
(
M̃−1∂φ

∂ξ

)
−G2 (ξ) .

(68)

Here G0 is a constant, and G1 (ξ) and G2 (ξ) are functions to
be determined by the equations for the 3rd and higher orders
of ε in Eq. (67). (In the free particle limit, G0, G1 (ξ), and
G2 (ξ) all approach zero.)

Note that only the configurational distribution of PIMD
is useful, i.e.,

ρ
config
eq (ξ) =


dpρeq (ξ; p) = 1

Zconfig exp
�
−βUeff (ξ)� , (69)

with a new normalization coefficient Zconfig. Integration of
ρBAOAB [Eq. (57)] over p produces

ρ
config
BAOAB (ξ) = ρ

config
eq (ξ) �

1 + βω2
P∆t2 [(φ/12 − G0)

+ εG1(ξ) + ε2G2(ξ) +O
�
ε3��
+O

�
ω4

P∆t4�	
.

(70)

It is difficult to analyze Eq. (70) for general systems. Consider
a harmonic oscillator

V (x) = 1
2
(x − xeq)TA(x − xeq), (71)

where A is a symmetric positive-definite matrix. Eq. (17) then
becomes

φ =
1
2
(ξ − ξeq)TK(ξ − ξeq). (72)

Here ξ = S *.
,

x1
.
.
.

xP

+/
-
,

ξeq = S
*....
,

xeq
...

xeq

+////
-

=

*......
,

xeq

0
...

0

+//////
-

, (73)

and the symmetric positive-definite matrix

K =
1
P
(S−1)T

*....
,

A
. . .

A

+////
-

(S−1), (74)

with the staging transformation matrix

S =

*............
,

1 0 0 · · · 0

−1
2

1 −1
2

. . .
...

... 0
. . .

. . . 0

− 1
P − 1

... 0 1 −P − 2
P − 1

−1 0 · · · 0 1

+////////////
-

(75)

and its inverse

S−1 =

*................
,

1 0 0 0 · · · 0

1 1
1
2

1
3
· · · 1

P − 1
1 0 1

2
3
· · · 2

P − 1
...

...
. . .

. . .
...

1 0 · · · 0 1
P − 2
P − 1

1 0 · · · 0 1

+////////////////
-

. (76)

Each nonzero number in Eq. (75) or (76) represents a diagonal
N × N matrix. Because Eq. (16) and Eq. (73) lead to

M̄ξeq =

*......
,

0
M̄2

. . .

M̄P

+//////
-

*......
,

xeq

0
...

0

+//////
-

= 0, (77)

Eq. (21) then becomes

Ueff (ξ)=1
2
(ξ − ξeq)TΩ(ξ − ξeq), (78)

where

Ω = ω2
PM̄ +K (79)

is a symmetric positive-definite matrix.
It is straightforward to verify that Eq. (70) becomes

ρ
config
BAOAB (ξ) = ρ

config
eq (ξ)


1 + βω2

P∆t2


1
24

(ξ − ξeq)T

K(ξ − ξeq) − 1
24β

Tr
�
KΩ−1�

+O (ε)


+O
�
ω4

P∆t4�	
, (80)

while truncating at the 0-th order of ε for the term associated
with ω2

P∆t2. Eq. (80) is a normalized density distribution.
Similarly, the normalized configurational distribution

given by OBABO is
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ρ
config
OBABO (ξ) = ρ

config
eq (ξ)


1 + βω2

P∆t2
(

1
8
ξTM̄M̃−1∂φ

∂ξ
− 1

6
φ + G̃0

)

+εG̃1(ξ) + ε2 *
,

1
8

(
∂φ

∂ξ

)T
M̃−1∂φ

∂ξ
− 1

8
1
β

∂

∂ξ
·
(
M̃−1∂φ

∂ξ

)
+ G̃2(ξ)+

-
+O

�
ε3�
+ O

�
ω4

P∆t4� 
. (81)

It is easy to show that Eq. (81) for the harmonic system [Eq. (71) or Eq. (72)] becomes

ρ
config
OBABO (ξ) = ρ

config
eq (ξ)


1 + βω2

P∆t2
�
ξ − ξeq

�T
(

1
4

M̄M̃−1 − 1
12

1
)

K
�
ξ − ξeq

�

− 1
β

Tr
((

1
4

M̄M̃−1 − 1
12

1
)

KΩ−1
)
+O (ε)


+O

�
ω4

P∆t4�
, (82)

while truncating at the 0-th order of ε for the term associated
with ω2

P∆t2.
Comparing Eq. (82) to Eq. (80), the error (of the

configurational distribution) produced by OBABO is increased
by approximately a factor of 4 of that by BAOAB for the
harmonic system. It is trivial to extend the BAOAB algorithm
and the error analysis to normal mode PIMD, which leads
to the similar conclusion (as shown in the supplementary
material18).

III. RESULTS AND DISCUSSIONS

We apply the two PIMD integrators to three benchmark
realistic molecular systems—the water molecule (H2O) with
an accurate PES,30 liquid para-hydrogen with the Silvera-
Goldman (SG) potential,31 and liquid water with an ab initio
based flexible, polarizable force field.32 Both the primitive
and the virial estimators [Eqs. (7) and (8)] are employed to
calculate the average kinetic energy. The average potential
energy is also computed. These thermodynamic properties
are collected as a function of the time interval of the PIMD
simulation. In practice, when the number of beads P is large
enough and the time interval ∆t is small enough, both BAOAB
and OBABO lead to the same converged results, so does the
primitive and virial estimators.

A. The H2O molecule

We first apply the two integrators to simulate H2O with
the accurate PES developed by Partridge and Schwenke from
extensive ab initio calculations and experimental data.30 As
the explicit form of the PES is available, that of the force
can be expressed. P = 640 path integral beads are used in
PIMD for T = 100 K, while P = 256 for T = 300 K. After
equilibrating the molecular system, 32 PIMD trajectories with
each propagated up to ∼4.84 ns are used for estimating
thermodynamic properties. While the time interval for PIMD
for 300 K ranges from ∼0.024 fs to ∼0.39 fs (1–16 a.u.), that
for 100 K is from ∼0.012 fs to ∼0.32 fs (0.5–13 a.u.).

Fig. 1 demonstrates the results for the thermodynamic
properties using different time intervals of PIMD for H2O
at T = 300 K, while Fig. 2 does so for T = 100 K. The
performance of BAOAB and that of OBABO are examined.

Figs. 1 and 2 show that BAOAB and OBABO approach the
same results as the time interval is decreased. This agrees with
the fact that both integrators are in principle equivalent as the
time interval approaches zero. Figs. 1(a) and 2(a) also show
that the primitive estimator for the kinetic energy agrees well
with the virial estimator when the time interval is small. When
the number of path integral beads P is reasonably large, the
primitive estimator in principle approaches the virial one as
the time interval ∆t of PIMD approaches zero. The difference
between the results of the primitive and virial estimators ∆Ekin

is then a reasonable quantity for measuring the behavior of
the integrator for PIMD. The fully converged result for either

p̂TM−1p̂

�
/ (2NatomkB) or ⟨V (x̂)⟩ / (NatomkB) is obtained at

∆t = 1 a.u.
More importantly, Figs. 1 and 2 demonstrate that BAOAB

is more accurate and robust than OBABO as the time
interval ∆t increases. While the absolute deviation of the
average potential energy per atom ⟨V (x̂)⟩ / (NatomkB) from
the converged result for OBABO at T = 300 K is ∼1 K for
∆t = 2 a.u. and ∼37 K for ∆t = 10 a.u. (Fig. 1(c)), that at
T = 100 K is ∼0.8 K and ∼32 K, respectively (Fig. 2(c)).
For comparison, the same property for BAOAB at T = 300 K
is only ∼0.1 K for ∆t = 2 a.u. and ∼1 K for ∆t = 10 a.u.
(Fig. 1(c)), that at T = 100 K is only ∼0.2 K and ∼0.3 K,
respectively (Fig. 2(c)). As the time interval increases, the
error of deviation from the converged result of OBABO
is about an order of magnitude (or more) larger than that of
BAOAB. The trend is similar for the average kinetic energy per
atom



p̂TM−1p̂

�
/ (2NatomkB) (by either the primitive or virial

estimator) or for the difference between the two estimators
∆Ekin as suggested by Figs. 1(a) and 1(b) and 2(a) and 2(b).

B. Liquid para-hydrogen

Liquid para-hydrogen is usually described by the Silvera-
Goldman (SG) model,31 an isotropic pair potential in
which the para-hydrogen molecule is treated as a sphere
particle because the temperature of liquid para-hydrogen
is too low for any rotational state other than J = 0 to be
populated. Liquid para-hydrogen has served as a benchmark
system to test quantum methods. We apply the two PIMD
integrators to two state points T = 25 K, υ = 31.7 cm3mol−1

and T = 14 K, υ = 25.6 cm3mol−1 under nearly zero external
pressure. PIMD simulations are carried out for a system of
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FIG. 1. PIMD results using different time intervals for H2O at T= 300 K. (a)
The average kinetic energy per atom



p̂TM−1p̂

�
/(2NatomkB) (unit: Kelvin).

Both primitive and virial estimators are used. (b) Difference between the
primitive and virial estimators. (unit: Kelvin). (c) The average potential en-
ergy per atom ⟨V (x̂)⟩/(NatomkB) (unit: Kelvin). Solid line: BAOAB results.
Dotted line: OBABO results. The unit of the time interval is atomic unit (a.u.).
Statistical error bars are included.

125 para-hydrogen molecules in a box with periodic boundary
conditions applied using the minimum image convention.
P = 48 path integral beads are employed in PIMD for
T = 25 K, while P = 96 for T = 14 K. After equilibrating
the system, 16 PIMD trajectories with each propagated up to
∼24.2 ns are used for estimating thermodynamic properties.

FIG. 2. As in Fig. 1, but for H2O at T= 100 K.

While the time interval for PIMD is from ∼1.2 fs to ∼12.1
fs (50–500 a.u.) for T = 25 K, that for T = 14 K ranges from
∼1.2 fs to ∼10.2 fs (50–420 a.u.).

Figs. 3 and 4 depict comparison of the performance
of OBABO to that of BAOAB for simulating liquid para-
hydrogen at T = 25 K and T = 14 K, respectively. As shown
in Figs. 3(a) and 3(b) for T = 25 K, while the difference
between the primitive and virial estimators ∆Ekin of OBABO
is ∼0.25 K for∆t = 200 a.u. and ∼1.6 K for∆t = 450 a.u., that
of BAOAB is only ∼0.012 K and ∼0.13 K, respectively. Even
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when OBABO fails at ∆t = 500 a.u., BAOAB still leads to
only ∼0.18 K for the difference ∆Ekin. Similarly, as presented
from Figs. 4(a) and 4(b) for T = 14 K, while the difference
∆Ekin for OBABO is ∼0.11 K for ∆t = 100 a.u. and ∼1.7 K
for ∆t = 370 a.u., that for BAOAB is less than 0.01 K and
∼0.09 K, respectively. OBABO fails when the time interval is

FIG. 3. PIMD results using different time intervals for liquid para-
hydrogen at T = 25 K. (a) The average kinetic energy per molecule

p̂TM−1p̂

�
/(2NmolkB) (unit: Kelvin). Both primitive and virial estimators

are used. (b) Difference between the primitive and virial estimators. (unit:
Kelvin). (c) The average potential energy per molecule ⟨V (x̂)⟩/(NmolkB)
(unit: Kelvin). Solid line: BAOAB results. Dotted line: OBABO results. The
unit of the time interval is atomic unit (a.u.). Statistical error bars are included.

larger than 390 a.u., however, BAOAB still produces ∼0.11 K
for the difference ∆Ekin for ∆t = 420 a.u. Even when the time
interval of BAOAB is 4–6 times of that of OBABO, the two
PIMD integrators lead to comparable accuracy. This is also
suggested by Figs. 3(c) and 4(c) where the average potential
energy per molecule ⟨V (x̂)⟩ / (NmolkB) is examined.

C. Liquid water

For the simulation of liquid water, we employ the
TTM3-F—the ab initio based flexible, polarizable Thole-type
model for water clusters and liquid water of Fanourgakis

FIG. 4. As in Fig. 3, but for liquid para-hydrogen at T= 14 K.
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and Xantheas.32 It approximates the Born-Oppenheimer
potential energy surface based on the parameterization which
reproduces the binding energies and harmonic vibrational
spectra of small water clusters up to (H2O)20 given by
the second order Møller-Plesset (MP2) electronic structure
theory. The TTM3-F model is able to produce good results
for static equilibrium structural properties of liquid water with
PIMD simulations.32 PIMD simulations are carried out at
T = 300 K with the liquid density ρl = 0.997 g cm−3 for a
system of 125 water molecules in a box with periodic boundary
conditions applied using the minimum image convention.
P = 72 path integral beads are employed in the simulation.
After equilibrating the system, 16 PIMD trajectories with
each propagated up to ∼50 ps are used for estimating
thermodynamic properties. The time interval for PIMD is
from 0.05 fs to 0.8 fs.

As presented in Fig. 5(a), when the time interval is
∆t = 0.05 fs, both BAOAB and OBABO lead to the converged
result for either the primitive or the virial estimators for
the property



p̂TM−1p̂

�
/ (2NatomkB). The difference ∆Ekin

between the results of the primitive and virial estimators is
nearly zero for ∆t = 0.05 fs. While the difference ∆Ekin for the
BAOAB integrator is only ∼1.7 K for ∆t = 0.6 fs, that for the
OBABO is ∼2.5 K for ∆t = 0.15 fs and ∼34 K for ∆t = 0.6 fs.
As the time interval increases, OBABO produces∼50 K for the
difference ∆Ekin for ∆t = 0.7 fs and fails for ∆t = 0.8 fs. For
comparison, the BAOAB result is only ∼5 K for ∆t = 0.8 fs.
Fig. 5(b) demonstrates that the average potential energy per
atom ⟨V (x̂)⟩ / (NatomkB) obtained by BAOAB agrees well
with that by OBABO within the statistical error bar for the
time interval ∆t = 0.05 fs, which can be considered as the
converged result. While the deviation from the converged
result is ∼6.5 K for ∆t = 0.15 fs and ∼53 K for ∆t = 0.6 fs
for the OBABO integrator, the BAOAB result for ∆t = 0.6 fs
is still close to the converged result (within the statistical
error bar). Even when OBABO leads to ∼90 K for the
deviation (from the converged result) for ∆t = 0.7 fs and fails
for∆t = 0.8 fs, BAOAB produces only∼11 K for the deviation
(from the converged result) for ∆t = 0.8 fs. In summary, the
time interval can be increased by a factor of 4–6 in BAOAB
for achieving the same accuracy as OBABO does.

Interestingly, in terms of accuracy as a function of the time
interval, the primitive estimator Eq. (7) behaves consistently
better than the virial one Eq. (8) when P is fixed for almost
all the cases (Figs. 1-5(a)) studied in the present paper. As
shown in Fig. 4(a) for liquid para-hydrogen at T = 14 K, the
absolute value of the deviation from the converged result for
the primitive estimator at ∆t = 380 a.u. is only ∼0.08 K for
OBABO and ∼0.03 K for BAOAB. For comparison, that for
the virial estimator is as large as ∼1.3 K for OBABO and
∼0.14 K for BAOAB. Fig. 5(a) for liquid water at T = 300 K
demonstrates that the absolute deviation for the primitive
estimator at ∆t = 0.6 fs is ∼13 K for OBABO and ∼0.3 K
for BAOAB, while that for the virial estimator is as large
as ∼20 K for OBABO and ∼1.3 K for BAOAB. Although
the statistical error bar of the primitive estimator is about an
order of magnitude larger than that of the virial estimator, the
primitive estimator leads to more accurate results as the time
interval ∆t of PIMD increases.

FIG. 5. PIMD results using different time intervals for liquid water at
T= 300 K. (a) The average kinetic energy per atom



p̂TM−1p̂

�
/(2NatomkB)

(unit: Kelvin). Both primitive and virial estimators are used. (b) Difference
between the primitive and virial estimators. (unit: Kelvin). (c) The aver-
age potential energy per atom ⟨V (x̂)⟩/(NatomkB) (unit: Kelvin). Solid line:
BAOAB results. Dotted line: OBABO results. The unit of the time interval is
femtosecond (fs). Statistical error bars are included.

IV. CONCLUDING REMARKS

In this paper, we present a novel, simple, and accurate
algorithm for implementing PIMD with the (white noise)
Langevin thermostat. Its applications to the H2O molecule,
liquid para-hydrogen, and liquid water demonstrate that the
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BAOAB integrator for PIMD performs uniformly better
than the OBABO integrator (or equivalently PILE) for
configurational sampling and for calculating thermodynamic
properties. Comparing to OBABO, the BAOAB integrator
reduces the error by about an order of magnitude for
the same time interval of PIMD or increases the time
interval by a factor of 4–6 or more for achieving the same
convergence. Interestingly, an alternative approach to BAOAB
(i.e., the BAOAB-num algorithm) can further improve the
accuracy (see Appendices B and C). Although the staging
transformation of path integral beads is used in PIMD for the
numerical tests, the performance of BAOAB should be similar
when the normal-mode transformation is employed (see the
supplementary material18).

It is straightforward to extend BAOAB/BAOAB-num
to imaginary time path integral based quantum dynamics
methods. In comparison to OBABO, BAOAB increases
the time interval for propagating the real time trajectory
by a factor of 4–6 or more for the same convergence
for path integral Liouville dynamics.21,29,33 We expect that
BAOAB/BAOAB-num also performs better than OBABO (or
PILE) in thermostatted ring polymer molecular dynamics,34

centroid molecular dynamics,35 etc.
We note that two approaches have been proposed for

combining PIMD with generalized (colored noise) Langevin
thermostats.36–38 In either approaches, it is demonstrated that
the number of path integral beads P can be decreased by a
factor of 4–6 to obtain converged results for thermodynamic
properties such as some structural properties and the
centroid-virial version of the kinetic energy.36–38 However,
caution needs to be taken for designing estimators for
other general thermodynamic properties (e.g., estimators for
isotope fractionation as studied by Ceriotti and Markland39)
in such approaches, because there is no guarantee that
original estimators with color noise thermostats lead to correct
results.36,38–40 For comparison, such as PILE or the BAOAB
algorithm with the white noise Langevin dynamics for PIMD
faithfully and consistently approaches exact results for any
thermodynamic properties of any molecular systems as the
number of beads P increases. It will certainly be interesting in
future work to exploit the BAOAB or BAOAB-num algorithm
for PIMD with colored noise Langevin thermostats36,38 to
achieve more efficiency, when reasonable estimators for the
specific properties of interest are available.
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APPENDIX A: DERIVATION OF THE OPTIMAL
FRICTION COEFFICIENT

The Langevin equation for a harmonic oscillator V (x)
= 1

2 mω2x2 can be expressed as

ẍ = −ω2x − γLangẋ + η (t) /m, (A1)

with
⟨η (t)⟩ = 0,

⟨η (t) η (t ′)⟩ = 2γLangm
β

δ (t − t ′) , (A2)

as time averages over an infinitesimal time interval.
Implementing the Laplace transform f̂ (z) = L [ f (t)]

=
 ∞

0 e−zt f (t) dt to Eq. (A1) leads to

x̂ (z) = zx (0)
z2 + γLangz + ω2 +

γLangx (0) + ẋ (0)
z2 + γLangz + ω2

+
η̂ (z) /m

z2 + γLangz + ω2 . (A3)

The inverse Laplace transform of Eq. (A3) then produces

x (t) = x (0) z1ez1t − z2ez2t

z1 − z2
+


γLangx (0) + p (0)

m


ez1t − ez2t

z1 − z2

+
1
m

 t

0
η (s) ez1(t−s) − ez2(t−s)

z1 − z2
ds, (A4)

with

z1 = −
γLang

2
+

1
2


γ2

Lang − 4ω2,

z2 = −
γLang

2
− 1

2


γ2

Lang − 4ω2.

(A5)

Because the normalized phase space probability distribu-
tion ρ (x,p) generated from the Langevin equation Eq. (A1)
is

βω

2π
exp


−β

(
p2

2m
+

1
2

mω2x2
)

, (A6)

it is straightforward to verify

m2β2ω4 

x2 (0) x2 (t)� = 1 − ω2

λ2 e−γLangt

+
ω2 + 2λ2 + λγLang

2λ2 e(2λ−γLang)t

+
ω2 + 2λ2 − λγLang

2λ2 e(−2λ−γLang)t,
(A7)

with λ = (z1 − z2) /2. The characteristic correlation time of
the potential energy autocorrelation function

Cpot (t) = ⟨[V (x (t)) − ⟨V (x)⟩] [V (x (0)) − ⟨V (x)⟩]⟩[V (x) − ⟨V (x)⟩]2 (A8)

can then be shown as

τpot =

 ∞

0
Cpot (t) dt =

1
2

(
1

γLang
+
γLang

ω2

)
. (A9)

The smaller the τpot is, the more efficiently the Langevin
equation explores the potential energy surface and samples
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the configuration space. When γLang = ω, the characteristic
correlation time τpot reaches the minimum value,

τmin
pot =

1
ω
. (A10)

Since φ = 0 in Eq. (25) in the free particle limit, the
equations of motion for the staging modes

(
j = 2,P

)
are

decoupled. The Langevin equation of each degree of freedom(
i = 1,N

)
of each staging mode

(
j = 2,P

)
in Eq. (25) then

shares the same form as Eq. (A1). This leads to Eq. (26)
for the optimal Langevin friction coefficients for PIMD with
the staging transformation, because only the configurational
distribution of PIMD is useful.

Ceriotti et al. were the first to exploit an analytical knowl-
edge of the path integral normal mode frequencies in the free
particle limit for choosing the optimal friction coefficients.17

Here the similar strategy is employed for staging PIMD.

APPENDIX B: A SIMILAR APPROACH TO BAOAB
OR OBABO

Langevin dynamics Eq. (25) can also be divided into
three parts in an alternative way,

*
,

ξ̇

ṗ
+
-
= *

,

M̃−1 p
0

+
-          

A

+
*..
,

0

−ω2
PM̄ξ − ∂φ

∂ξ

+//
-                                

B

+ *
,

0
−γLangp + σ M̃1/2η (t)

+
-                                                      

O

. (B1)

That is, the force term −ω2
PM̄ξ is moved from part A to

part B in Eq. (45). The analytic propagator of the harmonic
part of Eq. (45) is no longer employed.

When the splitting Eq. (38) is used for Eq. (B1), we note
the new integrator BAOAB-num. Similar to Section II C, such
an algorithm for propagating the PIMD trajectory through a
time interval ∆t for Eq. (B1) is

p j ← p j −
∂φ

∂ξ j

∆t
2
− ω2

PM̄ jξ j
∆t
2

(
j = 1,P

)
, (B2)

ξ j ← ξ j + M̃−1
j p j
∆t
2

(
j = 1,P

)
, (B3)

p j ← c̃( j)1 p j + c̃( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
, (B4)

ξ j ← ξ j + M̃−1
j p j
∆t
2

(
j = 1,P

)
, (B5)

p j ← p j −
∂φ

∂ξ j

∆t
2
− ω2

PM̄ jξ j
∆t
2

(
j = 1,P

)
. (B6)

Here η j, c̃( j)1 , and c̃( j)2 are defined in the same way as in
BAOAB [Eqs. (39)–(43)]. Following the same procedure as
shown in Eqs. (53)–(70) of Section II D, it is straightforward
to verify that the configurational distribution produced by
BAOAB-num is

ρ
config
BAOAB−num (ξ) = ρ

config
eq (ξ) �

1 + βω2
P∆t2 [O(ε)]

+O(ω4
P∆t4)	 , (B7)

while truncating at the 0-th order of ε for the term associated
with ω2

P∆t2. It is further shown in Appendix C that BAOAB-
num leads to the exact configurational distribution of the beads
in the harmonic limit, regardless of the time interval ∆t and
the friction coefficients γLang.

Similarly, when the splitting Eq. (31) is employed for
Eq. (B1), we note the new integrator OBABO-num. Such an
algorithm for propagating the PIMD trajectory through a time
interval ∆t for Eq. (B1) is

p j ← c( j)1 p j + c( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
, (B8)

p j ← p j −
∂φ

∂ξ j

∆t
2
− ω2

PM̄ jξ j
∆t
2

(
j = 1,P

)
, (B9)

ξ j ← ξ j + M̃−1
j p j∆t

(
j = 1,P

)
, (B10)

p j ← p j −
∂φ

∂ξ j

∆t
2
− ω2

PM̄ jξ j
∆t
2

(
j = 1,P

)
, (B11)

p j ← c( j)1 p j + c( j)2


1
β

�
M̃ j

�1/2
η j

(
j = 1,P

)
. (B12)

Here η j, c( j)1 , and c( j)2 are defined in the same way
as in OBABO [Eqs. (32)–(36)]. Following the same
procedure as shown in Eqs. (53)–(70) of Section II D, one
finds

ρ
config
OBABO−num (ξ) = ρ

config
eq (ξ)


1 + βω2

P∆t2


1
ε2

(
1
8
ξTM̄M̃−1M̄ξ + ¯̄G−2

)
+

(
1
4
ξTM̄M̃−1∂φ

∂ξ
+ ¯̄G0

)
+O(ε)


+O(ω4

P∆t4)

, (B13)

while truncating at the 0-th order of ε for the term associated with ω2
P∆t2. Here ¯̄G−2 and ¯̄G0 are two constants required for

normalization. It is easy to show that Eq. (B13) for the harmonic system [Eq. (71) or Eq. (72)] becomes

ρ
config
OBABO−num (ξ) = ρ

config
eq (ξ)
×


1 + βω2

P∆t2


1
ε2

(
1
8
ξTM̄M̃−1M̄ξ − 1

β

1
8

Tr
(
M̄M̃−1M̄

�
ω2

PM̄ +K
�−1

))
+

(
1
4
ξTM̄M̃−1K(ξ − ξeq) − 1

β

1
4

Tr
(
M̄M̃−1K

�
ω2

PM̄ +K
�−1

))
+O (ε)


+ O(ω4

P∆t4)	 . (B14)
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Appendix C further demonstrates that the analytical form of
the steady state of OBABO-num in the harmonic limit can
actually be obtained. It also shows that OBABO-num does
not even produce the exact configurational distribution for the
beads in the free particle limit when the time interval ∆t is
finite, while the other three integrators (BAOAB, BAOAB-
num, and OBABO) are able to do so. Below we compare the
integrators using two examples.

Consider the 1-dimemsional model potential V (x)
= 0.25x4. Since the potential has no harmonic term, it presents
a good test to compare BAOAB-num to the other integrators.
Use P = 1024 beads for the inverse temperature β = 8. Fig. 6
depicts the results for the average potential energy using
different time intervals of PIMD, where the four integrators
(BAOAB, OBABO, BAOAB-num, and OBABO-num) are
compared. In agreement with the analysis in Section II D and
that in Appendix C, Fig. 6 shows that BAOAB-num is the
most accurate algorithm while OBABO-num is the least. Both
BAOAB and BAOAB-num demonstrate a significantly better
performance than OBABO and OBABO-num.

We further compare BAOAB and BAOAB-num using the
H2O molecule at T = 300 K. The parameters are the same as
those listed in Section III A. Fig. 7 compares the BAOAB
results and the BAOAB-num ones for the average potential
energy per atom using different time intervals of PIMD. When
∆t is smaller than 18 a.u., BAOAB-num is more accurate
than BAOAB. The two integrators produce almost the same
results, when ∆t is close to 18 a.u. BAOAB-num is less stable
than BAOAB as the time interval ∆t increases in the region
∆t > 18 a.u., while both BAOAB-num and BAOAB fail when
∆t is greater than 20 a.u. (as shown in Fig. 7(b) where the
horizontal axis represents log |⟨V (x̂)⟩ / (NatomkB)|). When P
or ωP is significantly large, it is expected that BAOAB-
num is less stable as the time interval ∆t is considerably
large. This is because the dominate harmonic force term is
analytically integrated in part A of Eq. (45), while the same

FIG. 6. PIMD results for the average potential energy ⟨V (x̂)⟩ using different
time intervals for V (x)= 0.25x4 at β = 8. Solid line: BAOAB and BAOAB-
num results. Dotted line: OBABO and OBABO-num results. The unit of
either the potential energy or the time interval is atomic unit (a.u.). Statistical
error bars are included.

FIG. 7. PIMD results using different time intervals for H2O at T= 300 K.
(a) The average potential energy per atom ⟨V (x̂)⟩/(NatomkB) (unit:
Kelvin). (b) Logarithm of the average potential energy per atom
log |⟨V (x̂)⟩/(NatomkB)|. Solid line: BAOAB results. Dashed line: BAOAB-
num results. The unit of the time interval is atomic unit (a.u.). Statistical error
bars are included.

term is numerically solved in part B of Eq. (B1). It is worth
emphasizing that results are not converged at all in the region
where BAOAB is more accurate than BAOAB-num. Fig. 6
does not even show such a region before both integrators fail.
Figs. 6 and 7 suggest that BAOAB-num always demonstrates
better performance in the region where BAOAB produces
reasonably converged results.

Comparison of the results for the average kinetic energy
also demonstrates the same trend, which is not shown here.

APPENDIX C: ACCURACY OF THE PIMD INTEGRATOR
IN THE HARMONIC LIMIT AND IN THE FREE
PARTICLE LIMIT

As discussed in Section II D, while both BAOAB and
OBABO are exact in the free particle limit, neither of them
produces the exact configurational distribution for the path
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integral beads [Eq. (69)] in the harmonic limit when the time
interval ∆t is finite.

Below we investigate the accuracy of BAOAB-num and
that of OBABO-num proposed in Appendix B for the (general)
harmonic system [Eq. (71)].

When the splitting Eq. (38) is used for Eq. (B1), the phase
space propagator for BAOAB-num in the time interval ∆t is

eL
BAOAB−num∆t = eL

num
B
∆t/2eL

num
A
∆t/2eL

num
O
∆teL

num
A
∆t/2eL

num
B
∆t/2,

(C1)

where

Lnum
A ρ = −pTM̃−1∂ρ

∂ξ
, (C2)

Lnum
B ρ = ω2

Pξ
TM̄

∂ρ

∂p
+

(
∂φ

∂ξ

)T
∂ρ

∂p
=

(
∂Ueff

∂ξ

)T
∂ρ

∂p
, (C3)

Lnum
O ρ =

∂

∂p
·
(
γLangpρ

)
+

1
β

∂

∂p
·
(
γLangM̃

∂ρ

∂p

)
. (C4)

Consider the harmonic system Eq. (71), which leads to
Eqs. (78) and (79). Eq. (C3) then becomes

Lnum
B ρ = (ξ − ξeq)TΩ∂ρ

∂p
. (C5)

It is straightforward to show that the Taylor expansion

eL
num
A
∆t/2 =

∞
n=0

1
n!

(
−pTM̃−1∆t

2
∂
∂ξ

)n
leads to

eL
num
A
∆t/2 f (ξ) = f (ξ − M̃−1p

∆t
2
). (C6)

Similarly, one obtains

eL
num
B
∆t/2g(p) = g

(
p +Ω(ξ − ξeq)∆t

2

)
. (C7)

The OU process keeps the Maxwell momentum distribution
unchanged, i.e.,

eL
num
O
∆t exp


−β


1
2

pTM̃−1p

= exp


−β


1
2

pTM̃−1p


.

(C8)

Consider the density distribution

ρBAOAB−num (ξ, p) = 1
ZN

exp


−β



1
2

pT

(
M̃ −Ω∆t2

4

)−1

p +
1
2
(ξ − ξeq)TΩ(ξ − ξeq)


, (C9)

where ZN is the normalization coefficient. Using Eqs. (C1)
and (C6)–(C8), it is easy to verify

eL
BAOAB−num∆t ρBAOAB−num = ρBAOAB−num. (C10)

That is, Eq. (C9) is a steady state of the BAOAB-num
integrator. Integration over p in Eq. (C9) leads to

ρ
config
BAOAB−num (ξ) = 1

Z ′N
exp


−β

(
1
2
(ξ − ξeq)TΩ(ξ − ξeq)

)
=

1
Z ′N

exp
�
−βUeff (ξ)�

= ρ
config
eq (ξ) , (C11)

where Z ′N is the new normalization coefficient. The BAOAB-
num integrator in principle leads to the exact configurational
distribution [Eq. (69)] (of the path integral beads) for the
harmonic system (which includes the free particle case), irre-
spective of the time interval ∆t (as long as the propagation Eq.
(C1) is numerically stable) and the friction coefficients γLang.

When the number of path integral beads P → 1, i.e.,
PIMD reduces to classical MD, BAOAB and BAOAB-num
are the same in the classical limit. Eq. (C11) then suggests
that the BAOAB/BAOAB-num thermostatting algorithm for
classical MD leads to the exact classical configurational
distribution for the harmonic system, regardless of the time
interval ∆t and the Langevin friction coefficient. Because
the proof [Eqs. (C1)–(C11)] involves no approximation, this
remarkable conclusion complements the analysis on BAOAB
for classical MD in the large friction limit by Leimkuhler and
Matthews.26–28

Similarly, the steady density distribution for the OBABO-
num integrator for the harmonic system is

ρOBABO−num =
1

Z̄N

exp

−β

(
1
2

pTM̃−1p +
1
2
(ξ − ξeq)T(1 −ΩM̃−1∆t2

4
)Ω(ξ − ξeq)

)
, (C12)

which produces the configurational distribution

ρ
config
OBABO−num =

1
Z̄ ′N

exp

−β


1
2
(ξ − ξeq)T

(
1 −ΩM̃−1∆t2

4

)
Ω(ξ − ξeq)


. (C13)

Here Z̄N and Z̄ ′N are the normalization coefficients. One expands the density into a power series of ∆t or ωP∆t and then finds

ρ
config
OBABO−num (ξ) = ρ

config
eq (ξ)
×


1 + βω2

P∆t2

ω2

P

(
1
8
ξTM̄M̃−1M̄ξ − 1

β

1
8

Tr
(
M̄M̃−1M̄

�
ω2

PM̄ +K
�−1

))
+

(
1
4
ξTM̄M̃−1K(ξ − ξeq) − 1

β

1
4

Tr
(
M̄M̃−1K

�
ω2

PM̄ +K
�−1

))
+ ε2

(
1
8
(ξ − ξeq)TKM̃−1K(ξ − ξeq) − 1

β

1
8

Tr
(
KM̃−1K

�
ω2

PM̄ +K
�−1

))
+ O(ω4

P∆t4)	 . (C14)
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While truncating at the 0-th order of ε for the term associated with ω2
P∆t2, Eq. (C14) becomes

ρ
config
OBABO−num (ξ) = ρ

config
eq (ξ)
×


1 + βω2

P∆t2


1
ε2

(
1
8
ξTM̄M̃−1M̄ξ − 1

β

1
8

Tr
(
M̄M̃−1M̄

�
ω2

PM̄ +K
�−1

))
+

(
1
4
ξTM̄M̃−1K(ξ − ξeq) − 1

β

1
4

Tr
(
M̄M̃−1K

�
ω2

PM̄ +K
�−1

))
+O(ε2)


+ O(ω4

P∆t4)	 . (C15)

It is consistent with Eq. (B14) except that Eq. (C15) states that the accuracy is now up to O(ε2) for the term associated with
ω2

P∆t2. The governing term of the error of the configurational distribution is then β
8 ξ

TM̄M̃−1M̄ξω4
P∆t2. Because ωP is often

large for converged PIMD results, comparing Eq. (C15) (or Eq. (B14)) to Eqs. (80), (82), and (C11), one finds the ascending
order for the error of the configurational distribution (in the harmonic limit),

BAOAB−num < BAOAB < OBABO < OBABO−num. (C16)

Finally, we consider the free particle system where φ = 0. It is trivial to obtain

Ω = ω2
PM̄ (C17)

from Eq. (79). Inserting Eqs. (C17) and (77) into Eq. (C13), one obtains

ρ
config
OBABO−num =

1
V olN

*
,

βω2
P

2π
+
-

N (P−1)/2�������

P
j=2

det
�
M̄ j

��������

1/2�����
det

(
1 − ω2

PM̄M̃−1∆t2

4

) �����

1/2

× exp


−β



ω2
P

2
ξT

(
1 − ω2

PM̄M̃−1∆t2

4

)
M̄ξ





. (C18)

Here VolN =


dξ1 =


dx1 represents the volume of the system. Expanding the density into a power series of ∆t or ωP∆t, one
finds

ρ
config
OBABO−num =

1
V olN

*
,

βω2
P

2π
+
-

N (P−1)/2�������

P
j=2

det
�
M̄ j

��������

1/2

exp


−β



ω2
P

2
ξTM̄ξ






×
(
1 + βω2

P∆t2


1
8
ω2

Pξ
TM̄M̃−1M̄ξ − 1

8β
Tr

�
M̄M̃−1�

+O
�
ω4

P∆t4�)
. (C19)

Eqs. (C13) and (C19) suggest that OBABO-num does not
lead to the exact configurational distribution of the path
integral beads even in the free particle limit, while all
other three integrators (BAOAB, BAOAB-num, and OBABO)
do so.

Conclusions are similar when the integrators are extended
to normal mode PIMD (see the supplementary material18).
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