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This article focuses on most recent advances in the linearized

semiclassical initial value representation (LSC-IVR)/classical

Wigner model that includes quantum effects with classical tra-

jectories and recovers exact thermal correlation functions (of

even nonlinear operators, that is, nonlinear functions of posi-

tion or momentum operators) in the classical, high tempera-

ture, and harmonic limits. Two methods for implementing the

LSC-IVR/classical Wigner which are in principle feasible to be

combined with general force fields or even ab initio electronic

structure methods have been reviewed. One is the local

Gaussian approximation with the imaginary time path integral

approach, the other is the quantum thermal bath method.

The article emphasizes on the theory and the algorithms for

implementation, while it also covers recent applications and

limitations of the LSC-IVR/classical Wigner. VC 2015 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24872

Introduction

There is currently a great deal of theoretical effort focused on

developing ways for including quantum mechanical effects in

molecular dynamics (MD) simulations,[1–5] most of which are

based on the time correlation function approach as most

dynamical quantities of interest can be expressed in terms of

thermal correlation functions.[6–8] For example, velocity correla-

tion functions can be used to calculate diffusion constants,

dipole moment correlation functions are related to infrared

absorption spectra, flux correlation functions yield reaction

rates, energy current correlation functions produce thermal

conductivities, and vibrational energy relaxation (VER) rate

constants can be expressed in terms of force correlation func-

tions. Thermal correlation functions are of the form

CAB tð Þ � hA 0ð ÞB tð Þi5 1

Z
Tr Â

b
eiĤ t=�hB̂e2iĤ t=�h

� �
; (1)

where Â
b
std5e2bĤ Â for the standard version of the correlation

function, or Â
b
sym 5e2bĤ=2Âe2bĤ=2 for the symmetrized version,[9]

or Â
b
Kubo5 1

b

Ð b
0 dke2 b2kð ÞĤ Âe2kĤ for the Kubo-transformed ver-

sion.[10] These three versions are related to one another by the

following identities between their Fourier transforms,

b�hx
12e2b�hx

IKubo
AB xð Þ5Istd

AB xð Þ5eb�hx=2I
sym
AB xð Þ; (2)

where IAB xð Þ5
Ð1
21 dte2ixt CAB tð Þ and so forth. Here, Z5Tr

e2bĤ
h i

b51=kBTð Þ is the partition function, Ĥ the (time-inde-

pendent) Hamiltonian of the system with the total number of

degrees of freedom N, which we assume to be of standard

Cartesian form

Ĥ5
1

2
p̂T M21p̂1V x̂ð Þ; (3)

where M is the diagonal ‘mass matrix’ with elements mj

� �
,

and p̂ and x̂ are the momentum and coordinate operators,

respectively; and Â and B̂ are operators relevant to the specific

property of interest. Note that Â and B̂ are often nonlinear

operators (i.e., nonlinear functions of position or momentum

operators) for many physical properties. A few latest

reviews[1–5] on trajectory-based methods for describing quan-

tum dynamical effects are available for the semiclassical initial

value representations(SC-IVRs),[11–24] derivative forward–back-

ward semiclassical dynamics (FBSD),[25,26] centroid MD

(CMD),[27–29] ring polymer MD (RPMD),[30–32] and so forth.

An important property that a practical and versatile method

for studying most thermal correlation functions of complex

(large) molecular systems should have is to treat both linear

and nonlinear operators equally well and recover exact correla-

tion functions in the classical �h! 0ð Þ, high temperature

b! 0ð Þ, and harmonic limits.[33–41] The linearized semiclassical

initial value representation (LSC-IVR) of Miller et al.[42–47] (or

the classical Wigner model for the correlation function) is a

trajectory-based method that gives exact results in the three

limits even for nonlinear operators. Because the linearization

approximation originally proposed in the SC-IVR[42,43,47] can be

used in the path integral representation of the correlation

function to rederive the LSC-IVR/classical Wigner,[45,48] it is

sometimes termed the linearized path integral (LPI)

method.[48–51]
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We note that the Feynman–Kleinert approximation[52–54] (FKA),

the thermal Gaussian approximations (TGA) in the position state

(also termed variational Gaussian wavepacket),[55–57] and the TGA

in the coherent state representation[58] for treating the Boltzmann

operator e2bĤ in the quantum correlation function Eq. (1) have

been combined with the LSC-IVR/classical Wigner to study model

systems and simple liquids.[37,38,48,49],[59–64] For example, Ref. [49]

presents a review on using the FKA with the LSC-IVR/LPI/classical

Wigner model. However, these methods request Gaussian averages

of potential surfaces and forces, which become computational

demanding for complex molecular systems where angle and dihe-

dral interactions or/and induced dipole–dipole interactions are

important and accurate polynomial, exponential, or Gaussian fit-

ting of potential surfaces is often intractable.

Imaginary time path integral (via either Monte Carlo or MD)

can in principle produce exact thermodynamic properties and

accurate distributions of configurations. The LSC-IVR/classical

Wigner combined with imaginary time path integral[44,65] offers

a more promising tool for studying general real systems,

because such an approach does not require any specific form of

the potential energy surface and are then in principle feasible

to be combined with general force fields or ab initio calcula-

tions on the fly. Another practical way that has this property is

to combine the LSC-IVR/classical Wigner with the quantum ther-

mal bath (QTB) method[66] as suggested in Refs. [67,68]. So the

article focuses more on most recent advances under these

directions. We review the underlying theory and the algorithms

for implementation, while we cover most recent applications

and limitations of the LSC-IVR/classical Wigner.

Theory

Below, we review derivations for the LSC-IVR/classical Wigner

model for the correlation function.

Derivation of the LSC-IVR/classical Wigner model in the

semiclassical framework

The Lagrangian of the system defined by Eq. (3) in classical

mechanics is

L x; _x; tð Þ5 1

2
_xT M _x2V xð Þ (4)

and the momentum vector is

p5
@L

@ _x
: (5)

The Euler-Lagrange equation states

d

dt

@L x; _x; tð Þ
@ _x

2
@L x; _x; tð Þ

@x
50 (6)

and the action along a classical trajectory is

Scl5

ðt
0

L x; _x; sð Þds: (7)

The quantity dScl is then

dScl5

ðt
0

@L

@ _x
d _x1

@L

@x
dx

� �
ds: (8)

Integration by parts for the first term of the right-hand side

(RHS) of Eq. (8) leads to

dScl5
@L

@ _x
dx jt01

ðt
0

2
d

dt

@L

@ _x

� 	
dx1

@L

@x
dx

� �
ds5ptdxt2p0dx0: (9)

Then one obtains

@Scl

@x0
52p0: (10)

A stationary phase approximation to the real time path inte-

gral representation of hxtje2iĤ t=�hjx0i gives[12,69]

hxtje2iĤ t=�hjx0i �
X

all classical trajectories

det
i

2p�h

@2Scl

@x0@xt

� 	� �1=2

eiScl=�h;

(11)

where the sum is over all the classical trajectories that start

from x0 and end at xt . The semiclassical approximation for the

evolution operator is

e2iĤ t=�h �
ð

dx0dxt

X
all classical trajectories

det
i

2p�h

@2Scl

@x0@xt

� 	� �1=2

eiScl=�hjxtihx0j:

(12)

Note the equality

X
all classical trajectories

ð
dxt5

ð
dp0j

@xt

@p0

j (13)

holds. Applying Eqs. (10) and (13) to Eq. (12), one obtains the

Van-Vleck semiclassical initial value representation (SC-IVR) for

the evolution operator[1,2,12,13]
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e2iĤ t=�h �
ð

dx0dp0 det
1

2ip�h

@xt

@p0

� 	� �1=2

eiScl=�hjxtihx0j: (14)

Then the evolution operator backward in time is

eiĤ t=�h �
ð

dx
0
0dp

0
0 det

1

22ip�h

@x
0
t

@p0 0

� 	� �1=2

e2iS
0

cl=�hjx0 0ihx
0
tj: (15)

The semiclassical approximation for the thermal correlation

function Eq. (1) becomes

CAB tð Þ � 1

Z

1

2p�hð ÞN
ð

dx0dp0

ð
dx

0
0dp

0
0 det

@xt

@p0

@x
0
t

@p0 0

� 	� �1=2

ei Scl2S
0

clð Þ=�hhx0 tjB̂jxtihx0jÂjx
0
0i:

(16)

Change to sum and difference variables,

�x05
x01x

0
0

2
;D�x05x02x

0
0

�p05
p01p

0
0

2
;D�p05p02p

0
0

(17)

and expand all quantities in the integrand of Eq. (16) to first

order in D�x0 and D�p0. Here, one makes the (rather drastic)

approximation of assuming that the dominant contribution to

the double phase space average comes from phase points

x0;p0ð Þ and x
0
0;p

0
0


 �
that are close to one another.[42,43] The

position at time t starting from �x0; �p0ð Þ is

�xt �x0; �p0ð Þ5 xt1x
0
t

2
: (18)

The difference at time t is

D�xt � xt2x
0

t �
@�xt

@�x0
D�x01

@�xt

@�p0

D�p0: (19)

and then

@D�xt

@D�p0

5
@�xt

@�p0

: (20)

So one has

dD�x0 j
@�xt

@�p0

jdD�p0

� �
5dD�x0dD�xt: (21)

Further, it is trivial to show

@xt

@p0

5
@�xt

@�p0

1
@2�xt

@�p0@�x0

D�x0

4
1
@2�xt

@�p2
0

D�p0

4
1 � � � (22)

and

@x
0
t

@p0 0
5
@�xt

@�p0

2
@2�xt

@�p0@�x0

D�x0

4
2
@2�xt

@�p2
0

D�p0

4
1 � � � ; (23)

then one obtains

@xt

@p0

@x
0
t

@p0 0
� @�xt

@�p0

� 	2

: (24)

Equation (9) leads to

Scl x0;p0ð Þ2S
0
cl x

0
0;p

0
0

� �
� �ptD�xt2�p0D�x0: (25)

Substituting Eqs. (17), (21), (24), and (25) into Eq. (16), one

obtains

CAB tð Þ � 1

Z

1

2p�hð ÞN
ð

d�x0d�p0

ð
dD�x0dD�xt

3exp i D�xT
t
�pt2D�xT

0
�p0


 �
=�h

� 
3h�xt2

D�xt

2
jB̂j�xt1

D�xt

2
ih�x01

D�x0

2
jÂbj�x02

D�x0

2
i:

(26)

Change the variables �x0; �p0ð Þ to x0;p0ð Þ. Eq. (26) then

becomes

CAB tð Þ � 1

Z

ð
dx0dp0Ab

W x0;p0ð ÞBW xt;ptð Þ; (27)

which is the LSC-IVR formulation originally obtained by Miller

et al. [42,43,47] Here, Ab
W x;pð Þ is

Ab
W x;pð Þ5 1

2p�hð ÞN
ð

dyhx2
y

2
jÂbjx1

y

2
ieiyT p=�h; (28)

and BW x;pð Þ is

BW x;pð Þ5
ð

dyhx2
y

2
jB̂jx1

y

2
ieiyT p=�h: (29)

For convenience, one can define the function fW
Ab x;pð Þ as

fW
Ab x;pð Þ5 Ab

W x;pð Þ
qeq

W x;pð Þ5

ð
dyhx2

y
2
jÂbjx1

y
2
ieiyT p=�hð

dyhx2
y
2
je2bĤ jx1

y
2
ieiyT p=�h

: (30)

Then the thermal correlation function Eq. (27) becomes

CAB tð Þ5 1

Z

ð
dx0

ð
dp0q

eq
W x0;p0ð ÞfW

Ab x0;p0ð ÞBW xt;ptð Þ: (31)

Eq. (27) or Eq. (31) is also termed the “classical Wigner”

model for the correlation function, which has been obtained

by a variety of formulations.[46,48,65,70] The approximation

postulated in Ref. [71]

CAB tð Þ � 1

Z

ð
dx0dp0q

eq
W x0;p0ð ÞAcl x0ð ÞBcl xtð Þ (32)

[for only position dependent operators Â and B̂] is not the

same as the LSC-IVR/classical Wigner because f W
Ab x0;p0ð Þ is

often not equivalent to Acl x0ð Þ. Equation (32) does not recover

the correct result when Â is a nonlinear operator, even in the

harmonic limit. Although the classical Wigner model is an old

idea,[72–75] it is not entirely trivial to derive Eq. (27) or Eq. (31)

for the quantum correlation function.
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As extensively discussed in Refs. [1,2,44], it is informative to

realize that the classical Wigner model is contained within the

general SC-IVR formulation, namely, as a specific approximation

to it; [42,43] more accurate implementations of the SC-IVR

approach[2,23,76] would be expected to lead to a more accurate

description. The LSC-IVR/classical Wigner is a short-time approxi-

mation to quantum dynamics for general systems because the

approximation that the dominant contribution comes from for-

ward and backward trajectories that are close to one another

becomes more faithful as t ! 01.

It should also be noted that there are other approximate

routes which lead to the classical Wigner model for correlation

functions (other than simply postulating it). Shi and Geva

rederived the LSC-IVR by linearizing forward and backward

paths in a Feynman path integral representation of the for-

ward and backward propagators,[45] as did Poulsen et al. some-

what later[48] using the FKA for the LSC-IVR/Classical Wigner

model (they called it the FK-LPI[48,49,59–61]). As the linearization

approximation is also invoked, we do not repeat the derivation

but direct readers to Section III of Ref. [45] or Section II-A of

Ref. [48].

Derivation of the LSC-IVR/classical Wigner model in the

phase space formulation of quantum mechanics

Interestingly, although the classical Wigner model for computing

dynamical properties (e.g.,hB̂ tð Þi) was proposed many years

ago,[72–75] to our best knowledge, it was first in Ref. [70] that the

LSC-IVR/classical Wigner model for calculating general time corre-

lation functions hÂ 0ð ÞB̂ tð Þi [for any form of Â
b

and for any opera-

tor Â (or B̂) in Eq. (1)] was derived in the phase space formulation

of quantum mechanics.[77] Previously, derivations of the LSC-IVR/

classical Wigner used approximations for the forward (backward)

evolution operator e2iĤ t=�h (eiĤ t=�h). The key step of Ref. [70] is to

define a “general density operator” Â
b

tð Þ5e2iĤ t=�hÂ
b

eiĤ t=�h, then

the correlation function Eq. (1) becomes

CAB tð Þ5 1

Z
Tr Â

b
tð ÞB̂

� �
: (33)

When Â51 the “general density operator” is the Boltzmann

density operator Â
b

tð Þ5q̂eq tð Þ5e2iĤ t=�he2bĤ eiĤ t=�h.

The general expression of Eq. (33) in the phase space formu-

lation of quantum mechanics[78] is

CAB tð Þ5 1

Z

ð
dx

ð
dpAb x;p; tð Þ~B x;pð Þ: (34)

Here, the “general” phase space distribution Ab x;p; tð Þ and

the function ~B x;pð Þ can be expressed in the unified classifica-

tion scheme of Cohen[79] given by the following equations[78]

Ab x;p; tð Þ5 1

2pð Þ2N

ð
df
ð

dgTr Â
b

tð ÞeifT x̂1igT p̂ f f; gð Þ
h i

e2ifT x2igT p

(35)

and

~B x;pð Þ5 �h

2p

� 	Nð
df
ð

dgTr f 2f;2gð Þ21eifT x̂1igT p̂ B̂
h i

e2ifT x2igT p:

(36)

(See Appendix A for proof.) When the function f f;gð Þ51,

the Wigner phase space representation is obtained,[70] that is,

Eq. (34) becomes

CAB tð Þ5 1

Z

ð
dx

ð
dpAb

W x;p; tð ÞBW x;pð Þ (37)

with the Wigner functions defined as

Ab
W x;p; tð Þ5 1

2p�hð ÞN
ð

dyhx2
y

2
jÂb

tð Þjx1
y

2
ieiyT p=�h; (38)

and

BW x;pð Þ5
ð

dyhx2
y

2
jB̂jx1

y

2
ieiyT p=�h: (39)

(Also see Appendix A for proof.)

Note that the quantum Liouville equation still holds for evo-

lution of the “general density operator”,

@Â
b

tð Þ
@t

52
1

i�h
Â

b
tð Þ; Ĥ

h i
: (40)

Eq. (40) in the Wigner phase space representation

becomes[70,78]

@AW x;p; tð Þ
@t

52
@AW

@x

� 	T

M21p1
@AW

@p

� 	T

V
0

xð Þ2 �h2

24

@3AW

@p3
Vð3Þ xð Þ1 � � � ;

(41)

which is a generalization of the Wigner-Moyal equation.[72,80]

[See Appendix B for proof.] It is trivial to verify that the third

term and higher order terms of the RHS of Eq. (41) become

zero in the classical �h! 0ð Þ, high temperature b! 0ð Þ, and

harmonic limits. That is

@AW x;p; tð Þ
@t

52
@AW

@x

� 	T

M21p1
@AW

@p

� 	T

V
0

xð Þ; (42)

which shares exactly the same form as the classical Liouville

equation. So Eq. (42) leads to evaluating Eq. (37) along classical

trajectories, which gives the LSC-IVR or classical Wigner model

for the correlation function [Eq. (27) or Eq. (31)]. Eq. (41) sug-

gests that the LSC-IVR produces exact thermal correlation func-

tions in the classical, high temperature, and harmonic limits,

irrespective of whether Â (or B̂) is a linear or nonlinear opera-

tor.[37,38,70,78] Nevertheless, Eq. (42) is a short time approximation

to the exact dynamics Eq. (41) for general systems, because the

term 2 �h2

24
@3AW

@p3 Vð3Þ xð Þ and higher order ones in Eq. (41) can

make important contributions to long time dynamics.

It is straightforward to verify that the mapping Hamiltonian

in the Wigner phase space [i.e., Eq. (39) when B̂5Ĥ] is simply

the classical Hamiltonian Hcl. So the LSC-IVR is a kind of
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trajectory-based dynamics in the phase space formulation of

quantum mechanics, which conserves the mapping

Hamiltonian, that is,

dHW x;pð Þ
dt

50: (43)

Eq. (43) is a counterpart to the quantum commutation

Ĥ; e2iĤt=h
h i

50: (44)

Given Â51 and B̂5Ĥ in the thermal correlation function Eq.

(1), it becomes the average total energy at time t

hE tð Þi � hĤ tð Þi5 1

Z
Tr e2bĤ eiĤ t=�hĤe2iĤ t=�h
� �

: (45)

The average total energy can be decomposed into a sum of

energy partitioned on each eigenstate.

hE tð Þi5
X

n

hE tð Þin; (46)

with

hE tð Þin5Tr
1

Z
e2bEn jnihnjeiĤ t=�hĤe2iĤ t=�h

� 	
: (47)

In quantum mechanics, both the total energy [Eq. (45)] and

the energy partitioned on each eigenstate [Eq. (47)] are invari-

ant with time. While the LSC-IVR/classical Wigner expression of

Eq. (45) is

hE tð Þi � 1

Z

ð
dx0dp0 e2bĤ

h i
W

x0;p0ð ÞHW xt;ptð Þ; (48)

that of Eq. (47) is

hE tð Þin �
1

Z

ð
dx0dp0 e2bEn jnihnj

� 
W

x0;p0ð ÞHW xt;ptð Þ: (49)

Conservation of the mapping energy [Eq. (43)] suggests that

both hE tð Þi and hE tð Þin are time-invariant in the framework.

That is, the LSC-IVR/classical Wigner conserves not only the

total energy but also its ‘microscopic’ term partitioned on the

eigenstate. As comparison, such as CMD/RPMD are also able

to preserve hE tð Þi but can not satisfy detailed conservation of

hE tð Þin during dynamics. The latter, however, is important

when energy transfer or transport is considered in dynamical

processes.

Implementation

Calculation of BW x;pð Þ for operator B̂ in Eq. (39) is usually

straightforward; in fact, B̂ is often a function only of coordinates

or only of momenta, in which case its Wigner function is simply

the classical function itself. Calculating Ab
W x;pð Þ for operator Â

b

in Eq. (38), however, involves the Boltzmann operator with the

total Hamiltonian of the complete system, so that carrying out

the multidimensional Fourier transform to obtain it is nontrivial.

Furthermore, it is necessary to do this to obtain the distribution

of initial conditions of momenta p0 for the real time trajectories.

To accomplish this task, several practical approxima-

tions[42,48,62,65] have been introduced for the LSC-IVR/classical

Wigner model. More recently, a local Gaussian approximation

(LGA) has been proposed to improve on all these approxima-

tions for treating imaginary frequencies.[44] The LGA is often

combined with path integral methods, though it can also be

used with other approaches for sampling the Boltzmann matrix

element.[44] When imaginary frequencies are not important, a

much rougher approximation[68] for Ab
W x;pð Þ can sometimes be

introduced with the QTB method.[66]

Local Gaussian approximation

We first briefly summarize the version of LGA[44] developed

based on the local harmonic approximation (LHA) of Shi and

Geva.[65] The LGA has been implemented for a few LSC-IVR

applications[44,81,82] for molecular systems where imaginary fre-

quencies are not negligible.

As in the standard normal-mode analysis, mass-weighted

Hessian matrix elements are given by

Hkl5
1ffiffiffiffiffiffiffiffiffiffiffi

mk ml
p @2V

@xk@xl
(50)

where mk represents the mass of the kth degree of freedom

with 3N, the total number of degrees of freedom. The

Hamiltonian around x can be expanded to second-order as

H x1Dxð Þ � 1

2
pT M21p1V xð Þ1 @V

@x

� 	T

Dx1
1

2
DxT HDx: (51)

The eigenvalues of the mass-weighted Hessian matrix pro-

duce normal-mode frequencies xkf g, that is,

TT HT5k (52)

with k a diagonal matrix with the elements xkð Þ2
n o

and T an

orthogonal matrix. If M is the diagonal ‘mass matrix’ with ele-

ments mkf g, then the mass-weighted normal mode coordi-

nates and momenta X;Pð Þ are given in terms of the Cartesian

variables x;pð Þ by

X5TT M1=2x; (53)

P5TT M21=2p; (54)

and

DX5TT M1=2Dx: (55)

Eq. (51) can be expressed as

H x1Dxð Þ � H X1DXð Þ � 1

2
PT P1V Xð Þ1DXT F1

1

2
DXTkDX (56)

with F as the force in the mass-weighted normal mode

coordinates
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F5TT M21=2 @V

@x

� 	
: (57)

By virtue of the fact that

hx2 Dx
2 je2bĤ jx1 Dx

2 i
hxje2bĤ jxi

5exp 2
mQ uð Þ
2�h2b

Dxð Þ2
� �

(58)

for the 1-dim harmonic case which was implemented in LHA

by Shi and Geva,[65] it is straightforward to show that the den-

sity distribution in the Wigner phase space (i.e., the Wigner

function of the Boltzmann operator e2bĤ ) is given by

qeq
W x;Pð Þ5hxje2bĤ jxi

Y3N

k51

b
2pQ ukð Þ

� 	1=2

exp 2b
Pkð Þ2

2Q ukð Þ

" #" #
;

(59)

where uk5b�hxk , Pk is the kth component of the mass-

weighted normal-mode momentum P [in Eq. (54)] and the

quantum correction factor with the LGA ansatz proposed by

Liu and Miller[44] for both real and imaginary frequencies is

given by

Q uð Þ5

u=2

tanh u=2ð Þ for real u

5
1

Q uið Þ
5

tanh ui=2ð Þ
ui=2

for imaginary u u5iuið Þ
:

8>>><
>>>:

(60)

In terms of the phase space variables x;pð Þ, Eq. (59) thus

becomes

qeq;LGA
W x;pð Þ5hxje2bĤ jxi b

2p

� 	3N=2

jdet M21
therm xð Þ


 �
j1=2

exp 2
b
2

pT M21
thermp

� � (61)

with the thermal mass matrix Mtherm given by

M21
therm xð Þ5M21=2TQ uð Þ21TT M21=2 (62)

and the diagonal matrix Q uð Þ5 Q ukð Þf g.
The explicit form of the LSC-IVR correlation function [Eq.

(27) or Eq. (31)] with the LGA is thus given by

CLSC-IVR
AB tð Þ5 1

Z

ð
dx0hx0je2bĤ jx0i

ð
dP0

YN

k51

b
2pQ ukð Þ

� 	1=2

exp 2b
P0;k


 �2

2Q ukð Þ

" #" #
:

3f W
Ab x0;p0ð ÞBW xt;ptð Þ

(63)

One may summarize the specific procedure for carrying out

the LSC-IVR calculation with the LGA as follows:[44]

1. Use path integral Monte Carlo (PIMC)[83] or path inte-

gral MD (PIMD)[84–89] to simulate the system at

equilibrium.

2. At specific intervals in the PIMC (or time steps in the PIMD),

randomly select one path integral bead as the initial config-

uration x0 for the real time dynamics. Diagonalize the

mass-weighted Hessian matrix of the potential surface to

obtain the local normal mode frequencies.

3. The LGA gives the Gaussian distribution for mass-

weighted normal mode momenta
YN

k51
b=2pQ ukð Þð Þ1=2

exp 2b P0;k


 �2
= 2Q ukð Þð Þ

h i
which is used to sample initial

Cartesian momenta p05M1=2TP0 for real time trajectories.

4. Run real time classical trajectories from phase space

points x0;p0ð Þ and estimate the property f W
Ab x0;p0ð ÞBW

xt x0;p0ð Þ;pt x0;p0ð Þð Þ for the corresponding time correla-

tion function. f W
Ab x0;p0ð Þ is obtained from Eq. (30) with

Eqs. (58) and (60).

5. Repeat steps (2)–(4) and sum up the property f W
Ab x0;p0ð Þ

BW xt x0;p0ð Þ;pt x0;p0ð Þð Þ for all real time classical trajecto-

ries until a converged result is obtained.

It is worth emphasizing that no approximation for the

potential energy surface (PES) is made in Step 1) (the evalua-

tion of hxje2bĤ jxi ) and Step 4) (the real time dynamics of

trajectories).

During implementation of the algorithm described above,

one can accelerate the application using the following two

techniques:

a. The number of path integral beads can be decreased by

a factor of 4 or more using a non-Markovian generalized

Langevin equation with the colored noise proposed by

Ceriotti et al.[88–90]

b. Dominant elements of the mass-weighted Hessian matrix

of the potential surface are often block-diagonal ones.

The size of each block is often the degrees of freedom of

a molecule. For example, consider Nmol molecules and

the number of degrees of freedom of each molecule is

Nf (the total number of degrees of freedom is then

N5Nf � Nmol), the number of the mass-weighted Hessian

matrix elements is decreased from N2 to NmolN
2
f , and

work required for diagonalization is significantly reduced

from O N3

 �

to O NmolN
3
f


 �
. So numerical efforts for the

LSC-IVR with the LGA can often have a linear scaling with

the number of molecules of the system. (Further simplifi-

cation can be introduced though.)

If one makes a further approximation on the LGA that the

momentum distribution is independent of the position, that is,

one replaces the local momentum distribution in Eq. (61) by a

global one,[91] then Eq. (61) becomes

1

Z
qW x;pð Þ � hxje

2bĤ jxi
Z

qPI
p pð Þ; (64)

where the averaged momentum distribution qPI
p pð Þ can be

obtained from PIMC or PIMD.[90–92] Eq. (64) has the compu-

tational advantage that it is not always necessary to calcu-

late the Hessian matrix of the potential energy surface.

While Eq. (64) is exact for harmonic systems, it is less
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effective than the LGA for the LSC-IVR/classical Wigner for

general molecular systems. Figure 1 compares the LSC-IVR

Kubo-transformed momentum auto-correlation function for

liquid para-hydrogen at 14 K computed from the LGA [Eq.

(61)] to that obtained from the average momentum distribu-

tion [Eq. (64)]. We also use the maximum entropy analytic

continuation (MEAC) to correct these LSC-IVR results (as pro-

posed in Ref. [93]) and include them in Figure 1. The corre-

lation function obtained from the average momentum

distribution [Eq. (64)] agrees very well with that from the

LGA [Eq. (61)] until 0.2 ps and then shows a shallower mini-

mum. The MEAC-corrected correlation functions are nearly

the same and are closer to the LGA result. While the infor-

mation entropy in the MEAC procedure for the correlation

function based on Eq. (64) is 21:6Å
2
=ps2, that for the LGA

result is only 20:7Å
2
=ps2. (Note that the closer to zero the

information entropy, the more accurate is the method. One

can compare these results to those of Table I of Ref. [44]).

All these suggest that the LGA [Eq. (61)] is a better approxi-

mation while the global approximation with an average

momentum distribution can sometimes be useful.

Quantum thermal bath

The QTB method of Dammak et al.[66] presents a practical

approach to approximately account for quantum statistics

without requesting such as Gaussian averages of potential

surfaces and forces. It uses the Langevin-like equation

mi €x ia52
@V xð Þ
@xia

1Ria2mic _x ia (65)

to describe the equation of motion of the i-th atom of mass

mi . Here, xia is the a-th a51; 2;or 3ð Þ component of the posi-

tion, c an effective frictional coefficient, and Ria a Gaussian ran-

dom force. The power spectral density IRia Rjb
xð Þ of the

Gaussian random force is related to its correlation function by

the Wiener-Khinchin theorem, that is,

hRia tð ÞRjb t1sð Þi5 1

2p

ð1
21

dxIRia Rjb
xð Þe2ixs: (66)

IRia Rjb
xð Þ corresponds to a colored noise instead of a white

one, which is related to c by the quantum fluctuation–dissipa-

tion theorem[94]

IRia Rjb
xð Þ52micdijdabh x; Tð Þ; (67)

where

h x; Tð Þ5 �hx
2tanh b�hx=2ð Þ5

Q uð Þ
b

; (68)

dij and dab are the Kronecker symbol. The random force Ria

tð Þ is generated from the prescribed correlation function in Eq.

(66)[66] using the numerical technique proposed by Maradudin

et al. [95] One essentially uses MD coupled to the colored noise

to solve Eq. (65) to obtain the Boltzmann distribution. So the

QTB method often requests less work than path integral meth-

ods and is straightforward to implement for large systems.

One can verify that the correct Boltzmann distribution for a

harmonic oscillator can readily be enforced in the QTB

method. More importantly, the QTB method has been demon-

strated as a useful approximate tool to capture quantum sta-

tistical effects for a few anharmonic systems.[66,68]

Both the position distribution qx xð Þ and the momentum dis-

tribution qp pð Þ for thermal equilibrium systems can approxi-

mately be obtained by the QTB method. Basire et al. suggested

that the Wigner function for the Boltzmann operator e2bĤ , that

is, qW x;pð Þ in Eq. (31), could be approximated as

1

Z
qW x;pð Þ � qQTB

x xð ÞqQTB
p pð Þ (69)

in the LSC-IVR/classical Wigner model of the thermal correla-

tion function.[68] That is, use the position and momentum gen-

erated by the QTB method as the initial condition of the real-

time classical trajectory in the LSC-IVR/classical Wigner. The

work of Calvo et al. on using the QTB method for vibrational

spectra[67] can be related to the LSC-IVR/classical Wigner in a

similar way. Equation (69) can be viewed as a further approxi-

mation to Eq. (64) using the QTB method rather than the path

integral approach. Equation (69) with the QTB method offers a

computationally efficient way to implement the LSC-IVR/classi-

cal Wigner—while the thermal statistics part uses MD with the

colored noise, the real time dynamics part employs MD for the

NVE ensemble.

Though not explicitly mentioned in the original literature,[66–68]

there are still two more points that we should emphasize:

Figure 1. Kubo-transformed momentum autocorrelation functions (divided

by 2mkBNmol) based on the LSC-IVR/classical Wigner model for liquid

para-hydrogen at the state point T514K and t525:6cm3=mol.

Simulations are performed with 108 molecules in a box with the periodic

boundary condition. Comparisons between the correlation functions com-

puted from the average momentum distribution (Avg) Eq. (64) [and its

MEAC-corrected version] and those obtained from the LGA Eq. (61) [and

its MEAC-corrected version]. The information entropy in the MEAC proce-

dure for the Avg result is 21:6Å
2
=ps2 while that for the LGA result is

only 20:7Å
2
=ps2.
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1. When using the QTB method in the LSC-IVR/classical

Wigner, one ought to use Eq. (31) to compute the thermal

correlation function. Equation (32) is not correct for ther-

mal correlation functions involving nonlinear operators.

2. Note that the frequency x is real by definition in Eq. (66)

and Eq. (67) for the QTB method. The QTB method is

then expected to do little when imaginary frequencies

are important for such as reaction rate problems studied

in Ref. [44].

Applications

Below we briefly review illustrative applications of the LSC-IVR/

classical Wigner with the two kinds of methods covered in

Section ‘Implementation’ to a range of dynamical properties of

molecular systems.

Vibrational energy relaxation in molecular liquids

The VER rate constant can be obtained by the Landau–Teller

formula in terms of the Fourier transform, at the vibrational

frequency, of a certain short-lived force–force correlation func-

tion. Geva and coworkers have applied the LSC-IVR to com-

pute force–force correlation functions and then VER rates in

various molecular liquids.[65],[96–99] The LHA of Shi and Geva[65]

is adequate for their applications of the LSC-IVR because imag-

inary frequencies are not important in the systems. The LSC-

IVR results have been shown to be of the same order of mag-

nitude as the experimental results. This demonstrates a dra-

matic improvement in comparison to the classical simulations

of which the results are smaller than the experiment data by

many orders of magnitude. For example, the LSC-IVR VER rate

is 783662s21 for neat liquid O2 at 77 K, close to the experi-

mental result 395618s21, while the classical simulation pro-

duces 285631ð Þ31024s21.[97,99] The LSC-IVR method is able to

reproduce the experimental dependence of the VER rate on

temperature and that on the mole fraction.[97] Ka and Geva

have further extended the LSC-IVR applications on VER rates in

real systems from diatomic molecules to polyatomic ones.[96]

Shi and Geva have also demonstrated that it is important to

use a method that gives correct results for autocorrelation

functions involving nonlinear operators even in the harmonic

limit to study the VER rate because the force operator is non-

linear,[33] for which the LSC-IVR/classical Wigner offers a theo-

retical tool while CMD does not work well.[33]

Geva and coworkers have also shown the quantum correc-

tor factor (QCF) approach—multiplying the classical result by a

frequency-dependent quantum correction factor, such as the

Egelstaff or mixed harmonic-Schofield QCF,[65],[100–103] can

often yield predictions of similar quality to the LSC-IVR results,

but the LSC-IVR offers a more rigorous framework for studying

the VER[97] for general molecular systems.

Chemical reaction rates

Imaginary frequencies obviously play an important role in the

dynamics of chemical reactions—especially tunneling effects

for light atoms and low temperature—because the transition

state region, the essential character of which is an imaginary

frequency, is so central to the process. The LSC-IVR describes

the tunneling correction for a standard 1-d Eckart model of an

H atom transfer reaction quite well for temperatures down to

200K if the Wigner function is evaluated exactly, but it fails for

temperatures below �700K if the Wigner function is evaluated

by various LHAs (including the LHA of Shi and Geva[65])—

because the problem is dominated by local imaginary frequen-

cies associated with the potential barrier. It presents a more

challenging problem than the VER because the QCF approach

simply fails in the imaginary frequency region.

Figure 2. a) An Arrhenius plot of the thermal rate constant for the 1-d

Eckart barrier. Solid line: Exact quantum results. Dotted line with solid

circles: LSC-IVR results using the LGA. Dashed line: Classical results. Hollow

squares: LSC-IVR results using the LHA. b) Tunneling correction factors for

the 1-d Eckart barrier. Solid line: Exact quantum results. Solid circles: LSC-

IVR results with the LGA. Hollow squares: LSC-IVR results with the LHA.

Solid triangles: LSC-IVR results with the exact Wigner function.

(Reproduced with permission from Ref. [44].)
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The LGA[44] described in Section ‘Local Gaussian approxima-

tion’ is able to deal with imaginary frequencies reasonably

well. Figure 2 shows that the LGA gives much better results

for the tunneling correction than the LHA as soon as the tem-

perature is below the critical temperature Tc � 733K (where

the LHA results deviate from exact results by several orders of

magnitude). The LGA is thus a significant improvement, giving

useful results even when the tunneling correction factor is as

large as 106. [e.g., at T 5 150K, the exact tunneling factor is

�106, the classical result is off by 6 orders of magnitude, and

the LSC-IVR (LGA) is correct to within a factor of 2.] The LSC-

IVR (LGA) results for an analogous asymmetric Eckart barrier

also demonstrate that it gives good agreement with the exact

quantum results even in the deep tunneling regime.

Transport properties of liquid hydrogen and normal

liquid helium

Liquid para-hydrogen and liquid helium are benchmark sys-

tems that have been investigated by a few approximate quan-

tum dynamical methods. As the transport property is the zero-

frequency value of the spectrum, such as the QCF

approach[100–103] (i.e., multiplying the classical result by a

frequency-dependent quantum correction factor) does not

work. It has been shown imaginary local frequencies are not

negligible in these low-temperature liquids.[44] The information

entropy test produced in the MEAC procedure suggests that

the LSC-IVR (LGA) leads to accurate velocity correlation func-

tions for liquid para-hydrogen at 25 K and 14 K.[44] More inter-

estingly, it has been shown the LSC-IVR works reasonably well

for correlation functions even with nonlinear operators for

these systems. The direct calculation of intermediate scattering

functions for the dynamic structure factor using the LSC-IVR

demonstrates a good agreement with the inelastic neutron

scattering experiment for liquid para-hydrogen at 14 K.[64] The

energy current correlation function for the thermal conductiv-

ity is another example.[104] While the classical simulations can

deviate by as much as a factor of 2, less than 20% discrepancy

exists between the LSC-IVR results and the experimental data

for liquid para-hydrogen from 14 K to 32 K. Even in the normal

liquid He4 or He3 systems where classical MD totally misses

the correct physical picture, LSC-IVR is still qualitatively correct

and only overestimates the thermal conductivity by a factor of

�2 (as shown in Ref. [104]).

IR spectrum of liquid water with the ab initio-based

force field

Paesani et al. have first pointed out that it is not reasonable to

use traditional force fields for liquid water for quantum simula-

tions due to the double-counting problem.[105] Although one

can tune the parameters of these force fields for quantum simu-

lations to reproduce some experimental data, a more consistent

approach is to study water dynamics with ab initio calculations

on the fly or with an ab initio-based flexible, polarizable force

field.[81],[106–109] The TTM3-F is such an ab initio-based model[110]

that has been used with the PIMD and several trajectory-based

quantum dynamical methods for studying liquid

water.[81,107,109,111] The IR spectrum can be obtained from the

collective dipole or dipole-derivative autocorrelation function, of

which the dipole or dipole-derivative operator is a nonlinear

one in the flexible, polarizable water model (Fig. 3a). As the

time scale of the collective dipole-derivative autocorrelation

function is relatively short, the LSC-IVR (LGA) then provides a

theoretical tool to shed insights in understanding quantum

dynamical effects in the IR spectroscopy of liquid water and to

test the accuracy of the ab initio-based force field.[81]

Comparison of the simulated IR spectra for the TTM3-F water

model in Figure 4 shows that the intensity of the OAH stretch-

ing band given by classical MD is much higher than that by the

LSC-IVR (and that of the experimental spectrum). The good

agreement between the peak position of the classical OAH

stretching band and experiment actually implies without ambi-

guity that the TTM3-F model needs to be improved for accu-

rately describing the frequency shifts of hydrogen bonded OAH

stretching vibrations, because classical MD fails to account for

the significant anharmonicity of the OAH stretching vibration

and yields evitable blueshifted frequencies compared to

Figure 3. a) A snapshot of the collective dipole moment of liquid water

(216 water molecules in a box with the periodic boundary condition). b)

The normalized local normal frequency distribution of liquid water at

T 5 300 K using the TTM3-F model. (Note �hb � 208:5cm21.) This is

obtained from thousands of typical configurations generated from PIMD.

(Fig. 3b is reproduced with permission from Ref. [81].)
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quantum results. The LSC-IVR librational band implies that rela-

tively high-frequency hindered rotations (800–1000 cm21) still

exist in liquid water for the TTM3-F model that agrees well with

experiment. In agreement with experiment and similar to the

discussion on the static density distribution of local frequencies

(Fig. 3b), the LSC-IVR IR spectrum suggests significant quantum

effects in the intermediate region (1000–1500 cm21) between

the bending and librational bands and that (2000–2200 cm21)

between the stretching and bending bands.[81] The intermediate

regions are believed to be sensitive to energy exchange

between different modes in water.

Proton transfer spectroscopy

Basire et al. have used the LSC-IVR/classical Wigner combined

with the QTB method to study a three-variable model pertinent

to proton-transfer complexes in solution (a fluctuating polar envi-

ronment).[68] The dipole correlation function and then the IR

spectrum have been simulated for the weak H-bond case with

the OAH frequency strongly modulated by both proton-donor-

acceptor distance and the solvent and also for the solvent-

induced proton transfer with the strong H-bond case where the

proton is delocalized. The LSC-IVR/classical Wigner correlation

functions accurately reproduce the short-time behavior of the

quantum results, although disagreements appear at longer times.

The spectral frequencies obtained from the LSC-IVR/classical

Wigner are in good agreement with the exact results. The purely

classical simulation for these model systems gives nearly identical

regions for high-frequency bands but with a much too low inten-

sity,[68] which we expect can be greatly alleviated by using the

classical dipole autocorrelation function as the Kubo-transformed

one to compute the IR spectrum[81,82,109,112] or multiplying the

classical spectrum by a frequency-dependent quantum correction

factor (the QCF approach).[100–103] It will be more interesting to

test the LSC-IVR/classical Wigner with the QTB method for some

more challenging benchmark problems as demonstrated in the

LGA applications in the previous sections.

Although the QTB method is less accurate and more limited

than the imaginary time path integral approach, the LSC-IVR/

classical Wigner combined with the QTB deserves attention in

future as it offers an efficient approximate way for including

quantum mechanical effects in MD simulations when the QTB is

valid.

Limitations of the LSC-IVR/Classical Wigner

As with any approximate quantum dynamical method, the

LSC-IVR/classical Wigner model of the correlation function has

its limitations, which we briefly discuss below.

1. It fails to describe true quantum recurrence/rephrasing

effects.[1,2,70] Although long-time quantum recurrence/

rephrasing effects (often shown in one-dimensional

bounded systems) are often anticipated to be quenched

by coupling among the various degrees of freedom in

condensed phase systems, the LSC-IVR itself is incapable

of suggesting when and where these effects do become

important. The SC-IVRs[11–24,76] offer an intrinsically con-

sistent framework to improve over the LSC-IVR for longer

time dynamics using classical trajectories.

2. It fails to conserve the mapping canonical (Boltzmann)

density distribution which leads to

hB̂ tð Þi 6¼ hB̂ 0ð Þi (70)

for most thermal equilibrium properties [i.e., Â51 in Eq. (1)]

except for harmonic systems.[78,81,82,112–114] Because of the

quantum commutation

e2bĤ ; e2iĤ t=�h
h i

50; (71)

it is well known that the thermal equilibrium properties are

time invariant, that is,

Figure 4. Comparison of simulated IR spectra using the TTM3-F model to

the experimental results. (Reproduced with permission from Ref. [81].)
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hB̂ tð Þi � hB̂ 0ð Þi: (72)

As discussed in Ref. [82] and later in Ref. [112], the LSC-IVR/

classical Wigner sometimes leads to the artificial energy flow

from the intromolecular modes to the intermolecular ones.

Habershon et al. termed it “the zero point energy leakage,”

but this is an inaccurate formulation of the concept. As dis-

cussed for Eqs. (45–49) in the 2nd part of Section ‘Theory’, the

LSC-IVR/classical Wigner conserves not only the total energy

but also each ‘microscopic’ term, the energy partitioned on

each eigenstate. Apparently, the zero point energy—the

energy of the lowest eigenstate of the Hamiltonian (Ĥ) of the

system is in principle conserved in the framework of the LSC-

IVR/classical Wigner as suggested by Eqs. (43) and (49). The

true problem of the LSC-IVR/classical Wigner is the mapping

phase distribution of the density operator is not con-

served,[78,81,82,114] that is,

@q x;p; tð Þ
@t

6¼ 0; (73)

even though the density operator q̂ commutes with the evolu-

tion operator e2iĤ t=�h. For instance, the energy partitioned on

each eigenstate [Eq. (47)] can be divided into the kinetic

energy term

hT̂ tð Þin5Tr
1

Z
e2bEn jnihnjeiĤ t=�h 1

2
p̂ M21p̂e2iĤ t=�h

� 	
(74)

and the potential energy term

hV̂ tð Þin5Tr
1

Z
e2bEn jnihnjeiĤ t=�hV̂ xð Þe2iĤ t=�h

� 	
: (75)

While either of Eqs. (74) and (75) is constant in quantum

mechanics, the LSC-IVR/classical Wigner formulation of the

kinetic energy term Eq. (74) or the potential energy term Eq.

(75) is not invariant with time except for harmonic systems.

One can further decompose such as the potential energy

term hV̂ tð Þin into the intermolecular and intramolecular ones,

that is, hV̂ tð Þin5hV̂ inter tð Þin1hV̂ intra tð Þin, each of which should

be constant in quantum mechanics but is variant with time

in the LSC-IVR/classical Wigner for general systems. That is, in

the framework of the LSC-IVR/classical Wigner, the kinetic

energy term and the potential energy term of the same

eigenstate can exchange with each other, so do the intermo-

lecular and intramolecular potential energy terms of the

same eigenstate. In summary, while the zero point energy

(and even more generally, the energy partitioned on each

eigenstate) is actually preserved in the LSC-IVR/classical

Wigner (therefore no leakage of the whole zero point

energy), each component of the zero point energy is usually

not time-invariant during the dynamics in this approach for

equilibrium systems because of Eq. (73).[109,112] The drawback

leads to the intrinsic unphysical decay of the LSC-IVR correla-

tion function, competition of which with the physical decay

of the molecular system determines the accuracy of the LSC-

IVR/classical Wigner approach.[81]

Aiming at fixing the problem in Eq. (70) while keeping the

property of the LSC-IVR/classical Wigner—giving exact correlation

functions in the classical, high-temperature, harmonic limits even

for nonlinear operators, one can use the theoretical framework

demonstrated in the 2nd part of Section ‘Theory’ to generate the

three families of trajectory-based approaches in phase space for-

mulations of quantum mechanics[78] that conserve the mapping

canonical density distribution as discussed in Refs. [37,38,70,78].

More recently, a novel imaginary time path integral based

approach—path integral Liouville dynamics (PILD)[91] has been

proposed from the framework.

Concluding Remarks

In many regards, the LSC-IVR/classical Wigner has become a

versatile and mature tool that enables the inclusion of

quantum mechanics effects with MD trajectories in complex

molecular systems containing many interacting par-

ticles.[42–44,48,49],[59–61,63–65],[68,81,82,93],[96–99,104] Its potential has

been demonstrated in a great deal of applications, including

reaction rates, VER rates, transport properties, spectra, and so

forth, regardless of whether linear or nonlinear operators are

involved. While the LSC-IVR (LGA) has already been imple-

mented and can be accessed in several widely used molecular

simulation packages such as AMBER,[82,115] the QTB can also

be readily used with the LSC-IVR.

The two kinds of methods for the LSC-IVR/classical Wigner do

not require specific forms of the potential energy surface and

can be straight-forward to combine with general force fields or

ab initio electronic structure methods, which makes the LSC-

IVR/classical Wigner model a useful and powerful first-principles

tool for quantitatively studying various dynamical properties in

complex (large) molecular systems. We hope that this article

offers an effective introduction to an expanded community to

use the LSC-IVR/classical Wigner in future applications in chemi-

cal, biological, or material systems.

APPENDIX A: EXPRESSION OF THE
CORRELATION FUNCTION IN THE PHASE SPACE
FORMULATION OF QUANTUM MECHANICS

Here, we show the proof of Eq. (34). Note that the Baker-

Campbell-Hausdorff formula

exp Â
� 

exp B̂
� 

5exp Â1B̂1
1

2
Â; B̂
� 

1
1

12
Â2B̂; Â; B̂

� � 
1 � � �

� 	
(A1)

leads to

eifT x̂1igT p̂ 5eifT x̂ eigT p̂ ei�hfT g=2: (A2)

It is straightforward to show

eigT p̂ jxi5jx2�hgi (A3)

by inserting the complete basis sets of the momentum opera-

tor. Implementing Eqs. (A2) and (A3) into Eq. (35) leads to
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Ab x;p; tð Þ5 1

2pð Þ2N

ð
df
ð

dg
ð

dyhyjÂb
tð Þjy2�hgif f; gð Þ

eifT y2xð Þe2igT pe2i�hfT g=2:

(A4)

Similarly, substituting Eqs. (A(2)) and (A(3)) into Eq. (36) and

switching the variables f; gð Þ to 2f;2gð Þ, one obtains

~B x;pð Þ5 �h

2p

� 	Nð
df
ð

dg
ð

dyf f;gð Þ21hy2�hgjB̂jyieifT x2yð ÞeigT pei�hfT g=2:

(A5)

Using Eqs. (A(4)) and (A(5)) in the RHS of Eq. (34) and inte-

grating it over x and p, the RHS of Eq. (34) becomes

1

Z

�h

2p

� 	Nð
df
ð

dg
ð

dy

ð
df
0
ð

dg
0
ð

dy
0 hyjÂb

tð Þjy2�hgif f;gð ÞeifT ye2i�hfT g=2

3f f
0
;g
0

� �21

hy02�hg
0 jB̂jy0 ie2if

0 T
y
0
ei�hf

0 T
g
0
=2d g2g

0
 �
d f2f

0
� � ;

(A6)

which is

1

Z

�h

2p

� 	Nð
df
ð

dg
ð

dy

ð
dy

0 hyjÂb
tð Þjy2�hgieifT y2y

0ð Þhy02�hgjB̂jy0 i:

(A7)

Note that f f; gð Þ is now cancelled out. By integrating Eq.

(A(7)) over the variable f and then y
0
, it follows that

1

Z
�hð ÞN
ð

dg
ð

dyhyjÂb
tð Þjy2�hgihy2�hgjB̂jyi: (A8)

Making a change of variable x5y2�hg in Eq. (A(8)) and inte-

grating over both x and y, one obtains the LHS of Eq. (34), which

proves that Eq. (34) holds for any operator Â
b

or B̂.

Specifically,

f f;gð Þ51 (A9)

leads to the expression of the correlation function with the

Wigner[72,116] distribution. Integrating over the variables f and

y in Eq. (A(4)) produces

Ab x;p; tð Þ5 1

2pð ÞN
ð

dghx1�hg=2jÂb
tð Þjx2�hg=2ie2igT p: (A10)

By making a change of variable Dx52�hg=2, it follows

Ab x;p; tð Þ5 1

2p�hð ÞN
ð

dDxhx2Dx=2jÂb
tð Þjx1Dx=2ieiDxT p=�h

� Ab
W x;p; tð Þ:

(A11)

Similarly, after integrating over the variables f and y in Eq.

(A(5)) and then making a change of variable Dx5�hg=2, Eq.

(A(5)) becomes

~B x;pð Þ5
ð

dDxhx2Dx=2jB̂jx1Dx=2ieiDxT p=�h � BW x;pð Þ: (A12)

Now Eq. (34) leads to Eq. (37).

APPENDIX B: QUANTUM LIOUVILLE EQUATION IN
THE WIGNER PHASE SPACE REPRESENTATION

Here, we follow Ref. [78] to express the quantum Liouville equation

(or the von Neumann equation) for the general density operator

Â
b

tð Þ5e2iĤ t=�hÂ
b

eiĤ t=�h [i.e., Eq. (40)] in the Wigner phase space.

For any operator Â, it is trivial to show that

hx2Dx=2jp̂Âjyi52i�h
@

@x
hx2Dx=2jÂjyi52i�h

@

@Dx
hx2Dx=2jÂjyi

(B1)

and

hyjÂp̂jx1Dx=2i5i�h
@

@x
hyjÂjx1Dx=2i52i�h

@

@Dx
hyjÂjx1Dx=2i:

(B2)

Based on Eqs. (B(1)) and (B(2)), one can show

hx2Dx=2jp̂Â1Âp̂jx1Dx=2i52i�h
@

@Dx
hx2Dx=2jÂjx1Dx=2i

(B3)

and

hx2Dx=2jÂp̂2p̂Âjx1Dx=2i5i�h
@

@x
hx2Dx=2jÂjx1Dx=2i: (B4)

Note

Â
b
;

1

2
p̂T M21p̂

� �
5

1

2
p̂T M21 Â

b
; p̂

h i
1 Â

b
; p̂

h iT 1

2
M21p̂: (B5)

One can derive the following equation from Eqs. (B3)–(B5),

x2
Dx

2
j2 1

i�h
Â

b
;

1

2
p̂T M21p̂

� �
jx1

Dx

2

� �
52i�h

@

@Dx

� 	T

M21 @

@x
x2

Dx

2
jÂbjx1

Dx

2

� �
:

(B6)

Integrating by parts over Dx for the above equation leads to

1

2p�h

� 	Nð1
21

dDx hx2
Dx

2
j2 1

i�h
Â

b
;

1

2
p̂T M21p̂

� �
jx1

Dx

2
ieipT Dx=�h

� �

52p̂T M21 @

@x
Ab

W x;pð Þ:

(B7)

Expanding the potential V xð Þ into a Tyler series, one can show

x2
Dx

2
j Â

b
; V̂ x̂ð Þ

h i
jx1

Dx

2

� �
5 x2

Dx

2
jÂbjx1

Dx

2

� �

V x1
Dx

2

� 	
2V x2

Dx

2

� 	� �

5 x2
Dx

2
jÂbjx1

Dx

2

� �
V
0

xð ÞDx1
2

3!
V 3ð Þ xð Þ Dx

2

� 	3

1 � � �
" #

:

(B8)

Here
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V 3ð Þ xð Þ Dx

2

� 	3

5
1

8

XN

i;j;k51

@3V

@xi@xj@xk
DxiDxjDxk: (B9)

Integrating by parts over Dx in the RHS of Eq. (B(8)), one

has

1

2p�h

� 	Nð1
21

dDx x2
Dx

2
j2 1

i�h
Â

b
; V̂ x̂ð Þ

h i
jx1

Dx

2

� �
eipT Dx=�h

� �

5
@Ab

W

@p
V
0

xð Þ2 �h2

24

@3Ab
W

@p3
Vð3Þ xð Þ1 � � � :

(B10)

Here

@3Ab
W

@p3
Vð3Þ xð Þ5

XN

i;j;k51

@3Ab
W

@pi@pj@pk

@3V

@xi@xj@xk
: (B11)

Finally, Eqs. (B(7)) and (B(8)) demonstrate that the Wigner phase

space representation of the Liouville equation [Eq. (40)] can be

expressed as Eq. (41). Note that Eq. (41) is a generalization of the

Wigner-Moyal equation[72,80] for the conventional density opera-

tor q̂ . Note that Â
b

in Eqs. (B(5))–(B(8)) can be replaced by any

general density operator such as q̂Â, for which Eq. (41) still holds.
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