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We show a new imaginary time path integral based method—path integral Liouville dynamics
(PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J.
Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the sim-
ple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems.
Since implementation of PILD does not request any specific form of the potential energy surface, the
results suggest that PILD offers a potentially useful approach for general condensed phase molecu-
lar systems to have the two important properties: conserves the quantum canonical distribution and
recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions
of position or momentum operators) in the classical, high temperature, and harmonic limits. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4881518]

I. INTRODUCTION

There is currently considerable effort focused on devel-
oping ways for including quantum mechanical effects in con-
densed phase molecular dynamics simulations.1–5, 19 Several
classes of trajectory-based dynamics methods have been pro-
posed for simulating quantum correlation functions for large
molecular systems in thermal equilibrium, since most dynam-
ical quantities of interest can be expressed in terms of time
correlation functions6–8 that are of the form

CAB(t) ≡ 〈Â(0)B̂(t)〉 = 1

Z
Tr(ÂβeiĤ t/hB̂e−iĤ t/¯), (1)

where Âβ = e−βĤ Â for the standard version of the correlation
function, or Â

β

Kubo= 1
β

∫ β

0 dλ e−(β−λ)Ĥ Âe
−λĤ

for the Kubo-

transformed version. Here, Z = Tr[e−βĤ ] (β = 1/kBT) is the
partition function, Ĥ the (time-independent) Hamiltonian of
the system with the total number of degrees of freedom N,
which we assume to be of standard Cartesian form

Ĥ = 1

2
p̂TM−1p̂ + V (x̂), (2)

where M is the diagonal “mass matrix,” and p̂ and x̂ are
the momentum and coordinate operators, respectively; and
Â and B̂ are operators relevant to the specific property
of interest. These trajectory-based methods include the lin-
earized semiclassical initial value representation (LSC-IVR)/
classical Wigner,9–15 derivative forward-backward semiclas-
sical dynamics (FBSD),16–20 centroid molecular dynam-
ics (CMD),3, 21–24 and ring polymer molecular dynamics
(RPMD),4, 25–28 etc.

More recently, we have proposed three families
of approaches in phase space formulations of quantum
mechanics29–32 [equilibrium Liouville dynamics (ELD), equi-
librium continuity dynamics, and equilibrium Hamiltonian
dynamics (EHD)] that are able to combine the important prop-
erties of LSC-IVR/FBSD and of CMD/RPMD. That is,

a)Electronic mail: jianliupku@pku.edu.cn

1. conserve the quantum canonical density distribution
function for the thermal equilibrium system; and

2. treat both linear and nonlinear operators (i.e., linear
and nonlinear functions of position or momentum op-
erators) equally well and recover exact thermal correla-
tion functions in the classical (¯→ 0), high temperature
(β → 0), and harmonic limits.

Several methodologies (such as the Feynman-Kleinert
approximation and thermal Gaussian approximations in the
position state or coherent state representation, etc.) have
been presented for the applications of these three families of
trajectory-based dynamics29, 31, 32 for describing quantum dy-
namic effects for thermal equilibrium systems. These method-
ologies are efficient when the potential of the system can be
represented by polynomials, exponential, or Gaussian func-
tions. However, Gaussian averages in these methodologies
become computational demanding for complex molecular
systems where angle and dihedral interactions (or induced
dipole-dipole interactions) are important and accurate poly-
nomial, exponential, or Gaussian fitting of potential surfaces
is often intractable. It would thus be appealing to develop a
methodology that does not require any specific form of the
potential energy surface and is then in principle feasible to be
combined with ab initio calculations on the fly.

The purpose of this paper is to present a path integral rep-
resentation of the ELD in the Wigner phase space and to test
them with standard model problems. Section II first briefly
summarizes the ELD approach and discusses the expression
of the effective force in the Wigner phase space. Section III
proposes a path integral representation based on the staging
transformation for evaluating the effective force, then shows
how a molecular dynamics scheme can be constructed by in-
troducing an adiabatic parameter. Section IV presents another
point of view to derive this methodology from EHD in the
spirit of the Hamilton equations of motion. Some numerical
tests are demonstrated in Sec. V, including a strongly anhar-
monic oscillator, and a more challenging quartic well. Con-
cluding remarks are given in Sec. VI.
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II. EQUILIBRIUM LIOUVILLE DYNAMICS

A. Theory

Following Refs. 29–31, one can express Liouville’s the-
orem in quantum mechanics in the Wigner or Husimi phase
space as

∂ρeq(x, p; t)

∂t
= −pTM−1 ∂ρeq

∂x
+
(

∂ρeq

∂p

)T

· ∂Veff(x, p)

∂x
.

(3)
The following equality always holds:

dρeq(xt, pt; t)

dt
= ∂ρeq(xt, pt; t)

∂t
+ ∂ρeq(xt, pt; t)

∂xt
· ẋt

+ ∂ρeq(xt, pt; t)

∂pt
· ṗt. (4)

If the trajectory in the phase space is chosen to satisfy

dρeq(xt, pt; t)

dt
= 0, (5)

then one reaches the equations of motion of ELD

ẋ = M−1p,

(6)

ṗ = −∂VELD
eff (x, p)

∂x
,

with the effective force − ∂VELD
eff (x,p)
∂x given by

∂ρeq(x, p)

∂p
· ∂VELD

eff (x, p)

∂x
= pTM−1 ∂ρeq(x, p)

∂x
. (7)

Here, (x, p) is the phase point and ρeq(x, p) is the canon-
ical distribution in the phase space. It is straightforward to
show that the trajectory-based dynamics given by Eqs. (6) and
(7) satisfies stationarity of the quantum canonical distribution
function, i.e.,

∂ρeq(x, p; t)

∂t
= 0. (8)

Evaluation of the quantum correlation function Eq. (2) in
the Wigner phase space with ELD29, 31 takes the expression

CAB(t) = 1

Z

∫
dx0

∫
dp0 A

β

W (x0, p0)BW (xt, pt)

= 1

Z

∫
dx0

∫
dp0 ρ

eq

W (x0, p0)f W
Aβ (x0, p0)BW (xt, pt),

(9)

where A
β

W , BW , and ρ
eq

W are the Wigner functions of the oper-
ators Âβ , B̂, and e−βĤ , respectively. One sees that it takes the
same procedure to express the functions f W

Aβ and BW as is of-
ten done in the Wigner phase space for the LSC-IVR/classical
Wigner model.11 The only difference between ELD and the
LSC-IVR/classical Wigner model is that the trajectory (xt,
pt) of the latter always follows classical dynamics rather than
Eq. (6). Since Eqs. (5) and (8) hold in ELD, time-averaging

Eq. (9) leads to

CAB(t) = 1

T0

∫ T0

0
dt ′〈A(t ′)B(t ′ + t)〉

= 1

Z

∫
dx0

∫
dp0 ρeq(x0, p0)

× 1

T0

∫ T0

0
dt ′ f W

Aβ (xt ′ , pt ′ )BW (xt+t ′ , pt+t ′ ). (10)

If the dynamics of system is ergodic, the correlation function
can be evaluated by a long time trajectory, i.e., Eq. (10) is
simplified as

CAB(t) = 1

T0

∫ T0

0
dt ′ f W

Aβ (xt ′ , pt ′ )BW (xt+t ′ , pt+t ′ ). (11)

B. Evaluation of the effective force

One can express ρeq(x, p) in the Wigner phase space with
the local Gaussian approximation11, 30, 32 as

1

Z
ρ

eq
W (x, p) = 1

Z
〈x|e−βĤ|x〉

(
β

2π

)N/2

|det(Mtherm)|−1/2

× exp

[
−β

2
pTM−1

thermp
]

, (12)

where the thermal mass matrix Mtherm is given by

M−1
therm(x) = M−1/2TQ(u)TTM−1/2. (13)

Here, Q(u) is the (diagonal) quantum correction factor matrix
with the LGA ansatz11 (also see the definition of u in Ref.
11), and T is an orthogonal matrix that transforms the mass-
weighted Hessian matrix of the potential energy surface into
a diagonal one. Using the relation (13) or〈

x − �x
2

∣∣ e−βĤ
∣∣x + �x

2

〉
〈x|e−βĤ |x〉 = exp

[
−�xTMtherm(x)�x

2¯2β

]
,

(14)
it is straightforward to follow the same procedure for the
LSC-IVR/classical Wigner model as shown in Ref. 11 to ex-
press the correlation function in the Wigner phase space [i.e.,
obtain the function f W

Aβ (x, p) in Eq. (9)].
The ELD effective force defined by Eq. (7) with the den-

sity distribution Eq. (12) is

− ∂

∂x
VELD

eff (x, p)

= 1

β
MthermM−1 ∂

∂x
ln ρ

eq
W (x, p)

= MthermM−1

(
1

β

∂

∂x
ln〈x|e−βĤ |x〉 − 1

2
pT ∂M−1

therm(x)

∂x
p

− 1

2β

∂

∂x
ln |det(Mtherm)|

)
. (15)

While several methodologies29, 31, 32 have been proposed
for evaluating Eq. (15), imaginary time path integral
techniques33–40 can also be implemented for ELD. Below we
show how such an efficient path integral presentation of ELD
can be constructed.

If a system is harmonic, it is trivial to show

Mtherm(x) ≡ Mtherm = β〈ppT〉, (16)
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where 〈ppT〉 is the canonical ensemble average of the covari-
ance matrix of the momentum vector, which is independent of
the position x. If the thermal mass matrix Mtherm of Eq. (12)
is defined by Eq. (16) for general systems [i.e., replacing the
local Gaussian momentum approximation by a global one],
the ELD effective force [Eq. (15)] can be simplified as

− ∂

∂x
VELD

eff (x, p) = 1

β
MthermM−1 ∂

∂x
ln〈x|e−βĤ|x〉. (17)

Equation (17) provides a numerically more favorable form for
evaluating the effective force of the equations of motion of
Eq. (6). Note that the covariance matrix 〈ppT〉 of Eq.
(16) can be always efficiently evaluated by path integral
techniques33–41 before Eqs. (12) and (17) are employed in
ELD. Evaluation of the thermal mass matrix Mtherm as defined
by Eq. (16) does not request any specific form of the potential
energy surface and takes the similar procedure as we estimate
thermodynamic properties such as the kinetic energy.

It is straightforward to see that ELD with the quan-
tum canonical distribution ρeq(x, p) given by Eqs. (12) and
(16) still rigorously satisfies the two important properties dis-
cussed in Sec. I. Note that the thermal mass matrix Mtherm de-
fined by the quantum canonical distribution ρeq(x, p) is often
different from the (diagonal) physical mass matrix M except
in the high temperature or classical limit.

III. PATH INTEGRAL REPRESENTATION
OF EQUILIBRIUM LIOUVILLE DYNAMICS

For simplicity, we choose the 1-dim case for demonstra-
tion below. Inserting path integral beads in Eq. (12) leads to

1

Z
ρ

eq
W (x, p)

x1≡x, p1≡p= lim
P→∞

1

Z

(
MP

2πβ¯2

)P/2∫
dx2 . . .

∫
dxP

× exp

{
− PM

2β¯2
[(x1 − x2)2 + · · · + (xP − x1)2]

}

× exp

{
−β

P
[V(x1) + · · · + V(xP)]

}

×
(

β

2π

)1/2

|Mtherm|−1/2 exp

[
−β

2
pT

1 M−1
thermp1

]
, (18)

where P is the number of path integral beads. Here, one sees
that the samplings of the path integral beads (x2, . . . , xP) have
to be completed in order to implement ELD in Eq. (6) with
the effective force given by Eq. (17).

Consider the staging transformation42, 43

ξ1 = x1,

ξi = xi − (i − 1)xi+1 + x1

i
(i = 2, P).

(19)

Its inverse transformation takes the following convenient re-
cursive form:

x1 = ξ1,
(20)

xi = ξi + i − 1

i
xi+1 + 1

i
ξ1 (i = 2, P).

Here, xP + 1 ≡ x1. If one defines

ωP =
√

P

β¯
, (21)

Eq. (18) becomes

1

Z
ρ

eq

W (x, p)

ξ1≡x1≡x, p1≡p= lim
P→∞

1

Z

(
MP

2πβ¯2

)P/2∫
dξ2 · · ·

∫
dξP

× exp

⎧⎨
⎩−β

P∑
j=1

[
1

2
m̄jω

2
P ξ 2

j + 1

P
V (xj(ξ1, . . . , ξP))

]⎫⎬
⎭

×
(

β

2π

)1/2

|Mtherm|−1/2 exp

[
−β

2
pT

1 M−1
therm p1

]
, (22)

with the masses given by

m̄1 = 0,
(23)

m̄i = i

i − 1
M (i = 2, P ).

One sees that all the staging variables (ξ 2, . . . , ξP) have the
same frequency and all the fictitious masses (m̄2, . . . , m̄P ) are
in the same scale. If one defines

φ(ξ1, . . . , ξP ) = 1

P

P∑
j=1

V (xj (ξ1, . . . , ξP )), (24)

then one obtains the chain rule

∂φ

∂ξ1
=

P∑
i=1

∂φ

∂xi

= 1

P

P∑
i=1

V ′(xi),

∂φ

∂ξj

= ∂φ

∂xj

+ j − 2

j − 1

∂φ

∂ξj−1
, (j = 2, P ),

(25)

from Eqs. (19) and (20). Therefore, one can employ such as
the staging Monte Carlo approach33, 34, 42 to efficiently eval-
uate the ELD effective force [Eq. (17)] from the following
formula:

− 1

β

∂

∂x
ln ρ

eq

W (x, p) = − 1

β

∂

∂x
ln〈x|e−βĤ |x〉

ξ1≡x1≡x, p1≡p=
lim

P→∞

(
MP

2πβ¯2

)P/2 ∫
dξ2 · · · ∫ dξP exp

{
−β

P∑
j=2

[
1
2 m̄jω

2
Pξ

2
j + φ(ξ1, . . . , ξP )

]}
1
P

P∑
j=1

V ′(xj )

lim
P→∞

(
MP

2πβ¯2

)P/2 ∫
dξ2 · · · ∫ dξP exp

{
−β

P∑
j=2

[
1
2 m̄jω

2
Pξ

2
j + φ(ξ1, . . . , ξP )

]} . (26)
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The real time propagation of the phase variables
(x, p) ≡ (ξ 1, p1) [defined by the ELD equations of mo-
tions Eq. (6)] then involves an integral over (ξ 2, . . . , ξP) to
evaluate at every time step. Below we introduce an efficient
sampling of all variables in a molecular dynamics scheme.

Taking advantage of the isomorphism strategy proposed
by Chandler and Wolynes,44 one can insert fictitious momenta
(p2, . . . , pP) into Eq. (22) or Eq. (26). For instance, Eq. (22)
becomes

1

Z
ρ

eq
W (x, p)

ξ1≡x, p1≡p= lim
P→∞

1

Z

(
MP

2πβ¯2

)P/2

×
∫

dξ2 · · ·
∫

dξP

∫
dp2 · · ·

∫
dpP

× exp

⎧⎨
⎩−β

⎡
⎣ P∑

j=2

1

2
m̄jω

2
P ξ 2

j + φ(ξ1, . . . , ξP )

⎤
⎦
⎫⎬
⎭

×
⎛
⎝ P∏

j=2

β

2πm̃j

⎞
⎠

1/2

exp

⎧⎨
⎩−β

P∑
j=2

p2
j

2m̃j

⎫⎬
⎭

×
(

β

2π

)1/2

|Mtherm|−1/2 exp

[
−β

2
pT

1 M−1
thermp1

]
. (27)

If one chooses the corresponding fictitious masses
(m̃2, . . . , m̃P ) as

m̃i = γadm̄i (i = 2, P ) (28)

with γ ad ∈ (0, 1] as an adiabatic parameter, and also defines
the adiabatic frequencies ωad as

ωad = ωP /
√

γad, (29)

Eq. (27) then becomes

1

Z
ρ

eq
W (x, p)

ξ1≡x, p1≡p= lim
P→∞

1

Z

(
MP

2πβ¯2

)P/2

×
∫

dξ2 · · ·
∫

dξP

∫
dp2 · · ·

∫
dpP

× exp

⎧⎨
⎩−β

⎡
⎣ P∑

j=2

1

2
m̃jω

2
adξ

2
j + φ(ξ1, . . . , ξP )

⎤
⎦
⎫⎬
⎭

×
⎛
⎝ P∏

j=2

β

2πm̃j

⎞
⎠

1/2

exp

⎧⎨
⎩−β

P∑
j=2

p2
j

2m̃j

⎫⎬
⎭

×
(

β

2π

)1/2

|Mtherm|−1/2 exp

[
−β

2
pT

1 M−1
thermp1

]
. (30)

One sees that all the staging variables (ξ 2, . . . , ξP) share the
same time scale that can be well separated from the time scale
of ξ 1 ≡ x with the choice of the adiabatic parameter γ ad.
When the separation of time scales holds, one can define the

following density distribution function:

1

Z
ρ

eq

W (ξ1, . . . , ξP , p1, . . . , pP )

ξ1≡x, p1≡p= 1

Z

(
MP

2πβ¯2

)P/2

×
⎛
⎝ P∏

j=2

β

2πm̃j

⎞
⎠

1/2

exp

⎧⎨
⎩−β

P∑
j=2

p2
j

2m̃j

⎫⎬
⎭

×
(

β

2π

)1/2

|Mtherm|−1/2 exp

[
−β

2
pT

1 M−1
thermp1

]

× exp

⎧⎨
⎩−β

⎡
⎣ P∑

j=2

1

2
m̃jω

2
adξ

2
j + φ(ξ1, . . . , ξP )

⎤
⎦
⎫⎬
⎭ (31)

with the physical mass M for the physical phase space vari-
ables (ξ 1, p1) ≡ (x, p) and the fictional masses m̃j given in
Eq. (28) for the other variables (ξ j, pj), then the ELD equa-
tions of motion [Eqs. (6) and (7)] lead to

ξ̇1 ≡ ẋ1 ≡ ẋ = M−1p,

ṗ1 ≡ ṗ = −MthermM−1 ∂φ

∂ξ1

= −MthermM−1

⎛
⎝ 1

P

P∑
j=1

∂V (xj )

∂xj

⎞
⎠ , (32)

ξ̇j = m̃−1
j pj ,

ṗj = −m̃jω
2
adξj − ∂φ

∂ξj

(j = 2, P ).

In order to ensure a proper canonical distribution for (ξ 2,
. . . , ξP, p2, . . . , pP), the equations of motion for (ξ 2, . . . , ξP,
p2, . . . , pP) in Eq. (32) must be coupled to a thermostatting
method, such as Anderson themostat,45 Nosé-Hoover chain,46

generalized Gaussian moment,47 or Langevin dynamics,39, 48

etc. Note that the quantum phase space variables (ξ 1, p1) ≡ (x,
p) should not be coupled to a thermostatting method. When
the adiabatic parameter γ ad → 0, Eq. (32) approaches the full
adiabatic version of the path integral representation of ELD
in the Wigner phase space, otherwise the partially adiabatic
version of ELD is actually obtained, which could be more ef-
ficient. We note the path integral representation as path inte-
gral Liouville dynamics (PILD) in the paper. Fig. 1 provides
a scheme representation of PILD.

One sees that PILD is reminiscent of the staging path in-
tegral molecular dynamics (PIMD) of Tuckerman et al.38, 43

when the following three conditions are satisfied:

(1) The variables (ξ 1, p1) ≡ (x, p) are also coupled to a ther-
mostatting method.

(2) The thermal mass Mtherm is reduced to the mass of the
system.

(3) The adiabatic parameter γ ad is chosen as 1.

It is trivial to further show that all thermodynamic proper-
ties can be exactly obtained in PILD in the same spirit as
done in the staging PIMD, as long as the first condition
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FIG. 1. Schematic representation of the PILD model. Imaginary time path
integral beads and their interactions are depicted by a ring polymer as of-
ten done in PIMD. PILD chooses one of the path integral beads (in black)
to construct the quantum phase space (x,p) where all dynamical properties
and correlation functions are expressed. The fictional dynamics of the other
path integral beads (in green) are treated in a similar way to the conventional
PIMD, the purpose of which is only to generate the configurational average
of Eq. (26) for evaluating the effective force on the fly.

is satisfied. More importantly, PILD offers an approach for
calculating dynamical properties and real time correlation
functions.

As the relation between ELD and CMD has been dis-
cussed in Ref. 30, it is also interesting to compare PILD to the
path integral version of CMD.23, 49 While the former employs
the staging transformation of the imaginary time path integral
beads, the latter often uses the normal-mode transformation
instead. CMD expresses the thermal correlation function with
the position and momentum of the centroid of the path inte-
gral beads, and fails to give the correct result if both operators
[Â and B̂ in Eq. (1)] are nonlinear operators, even for a har-
monic potential.31, 32, 50–54 As comparison, PILD expresses the
thermal correlation function with Eq. (9) in the Wigner phase
space that consists of the position of a path integral bead and
its corresponding momentum, and treats both linear and non-
linear operators equally well.

IV. ANOTHER DERIVATION FROM EQUILIBRIUM
HAMILTONIAN DYNAMICS

One can follow Ref. 32 to make a change of variables in
Eq. (31)

peff = MeffM
−1p (33)

with the effective mass defined as

Meff = M M−1
thermM. (34)

When the thermal mass Mtherm is given by Eq. (16), the
effective mass Meff is independent of the position. In such a
case, it is clear from Ref. 32 that ELD can be closely related
to EHD in phase space formulations of quantum mechanics,
as we also show below.

The transformation of Eq. (33) gives the determinant of
the Jacobian matrix as

∂(ξ1, ξ2, . . . , ξP , peff, p2, . . . , pP )

∂(ξ1, ξ2, . . . , ξP , p1, p2, . . . , pP )
= |Meff M−1|

= |M M−1
therm|. (35)

Here, ξ 1 ≡ x. The phase space distribution function with the
new variables (ξ 1, ξ 2, . . . , ξP, peff, p2, . . . , pP) thus takes the
form

ρ
eq
eff, W (ξ1, . . . , ξP , peff, p2, . . . , pP )

= |MthermM−1|ρeq

W (ξ1, . . . , ξP , p1, p2, . . . , pP ). (36)

Equations (31) and (36) lead to

1

Z
ρ

eq

eff, W (ξ1, . . . , ξP , peff, p2, . . . , pP )

= 1

Z

(
MP

2πβ¯2

)P/2
⎛
⎝ P∏

j=2

β

2πm̃j

⎞
⎠

1/2 (
β

2π

)1/2

|Meff|−1/2

×e−βH
staging

eff (ξ1,ξ2,...,ξP ,peff,p2,...,pP ) (37)

with the effective staging Hamiltonian H
staging

eff defined as

H
staging

eff (ξ1, ξ2, . . . , ξP , peff, p2, . . . , pP )

= 1

2
pT

effM
−1
eff peff

+
P∑

j=2

p2
j

2m̃j

+
P∑

j=2

1

2
m̃jω

2
adξ

2
j + φ(ξ1, . . . , ξP ). (38)

The Hamilton equations of motion generated from the effec-
tive staging Hamiltonian H

staging

eff become

ξ̇1 ≡ ẋ1 ≡ ẋ = M−1
eff peff,

ṗeff = − ∂φ

∂ξ1
≡ − 1

P

P∑
j=1

∂V (xj )

∂xj

,

(39)
ξ̇j = m̃−1

j pj ,

ṗj = −m̃jω
2
adξj − ∂φ

∂ξj

(j = 2, P ).

Equation (39) is identical to Eq. (32) by virtue of the transfor-
mation of Eqs. (33) and (34). Thus, one sees that PILD can
also be viewed as a path integral representation of EHD32 in
the Wigner phase space.

Interestingly, the effective Hamiltonian Eq. (38) and the
equations of motion (39) can be related to the adiabatic
Wigner PIMD (AWPIMD) proposed by Martyna and Cao55, 56

nearly 20 years ago. (We were not aware of their work55, 56

when we were preparing the paper.) Nevertheless, the major
differences between PILD and AWPIMD are

(1) PILD employs Eq. (9)—an exact mapping of the ther-
mal correlation function in the Wigner phase space,29, 31

which leads to exact results in the harmonic limit for
any time correlation functions even when nonlinear op-
erators are involved. This is derived from Liouville’s
theorem in quantum mechanics (i.e., the Von Neumann
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equation) for the generalized density operator Âβ(t)
= 1

Z
e−iĤ t/¯ÂβeiĤ t/¯ as shown in Refs. 29 and 31. As

comparison, the approach to evaluate the thermal corre-
lation function in AWPIMD as explicitly discussed in
Sec. II C of Ref. 56 does not guarantee exact results
in the harmonic limit for correlation functions with any
nonlinear operators.

(2) As pointed out by Martyna and Cao,55, 56 the effective
masses of AWPIMD “must be introduced in an appropri-
ate set of normal modes,” which is not convenient to use
for dynamics of molecular systems. The thermal mass
matrix [Eq. (16)] or the effective mass matrix [Eq. (34)]
introduced in PILD, however, is defined (and evaluated)
in the Cartesian coordinates. As a result, PILD is much
more convenient to use for general multi-dimensional
systems.

V. NUMERICAL EXAMPLES

A. Algorithm for PILD with Langevin thermostat

In the paper, we employ a simple (white noise) Langevin
dynamics39, 48 to thermostat the staging path integral variables
(ξ 2, . . . , ξP, p2, . . . , pP) in PILD. Equation (32) becomes

ξ̇1 ≡ ẋ1 ≡ ẋ = M−1p,

ṗ1 ≡ ṗ = −MthermM−1 ∂φ

∂ξ1

= −MthermM−1

⎛
⎝ 1

P

P∑
j=1

∂V (xj )

∂xj

⎞
⎠ , (40)

ξ̇j = m̃−1
j pj ,

ṗj = −m̃jω
2
adξj − ∂φ

∂ξj

− γLangpj

+
√

2m̃j γLang

β
ηj (t) (j = 2, P ),

where ηj(t) is an independent Gaussian-distributed random
number with zero mean and unit variance [〈ηj(t)〉 = 0 and
〈ηj(t)ηj(t′)〉 = δ(t − t′)], which is different for each physical
degree of freedom, each staging mode (j = 2, P ), and each
time step. The Langevin friction coefficient γ Lang is the same
for all staging modes (j = 2, P ) because they share the same
frequency ωad.

When the system is a free particle, the Langevin dynam-
ics of each staging mode (j = 2, P ) reduces to that of a har-
monic oscillator with the frequency ωad, i.e.,

ξ̇j = m̃−1
j pj ,

(41)
ṗj = −m̃jω

2
adξj − γLangpj

+
√

2m̃j γLang

β
ηj (t) (j = 2, P ).

Following Refs. 39 and 57, one can choose the Langevin fric-
tion coefficient γ Lang as

γ
opt

Lang = 2ωad (42)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14

gamma=7
gamma=6
gamma=5
gamma=4
gamma=3
gamma=2

<
p(

0)
p(

t)
>

K
ub

o

t 

=8

(a)

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10

gamma=7
gamma=6
gamma=5
gamma=4
gamma=3
gamma=2

<
x2 (0

)x
2 (t

)>
st

d

t 

=8

(b)

FIG. 2. (a) and (b) The PILD autocorrelation functions for the one-
dimensional anharmonic oscillator for β = 8 with the choice of the adiabatic
parameter γ ad = 10−gamma. Fully converged results are obtained with gamma
= 6 for the system.

that gives the smallest relevant autocorrelation time of the har-
monic oscillator Hamiltonian

H̃ = p2
j

2m̃j

+ 1

2
m̃jω

2
adξ

2
j . (43)

Note that the autocorrelation time

τH̃ = 1

〈H̃ 2〉 − 〈H̃ 〉2

∫ ∞

0
dt〈(H̃ (0) − 〈H̃ 〉)(H̃ (t) − 〈H̃ )〉

(44)
is57

τH̃ = 1

γLang

+ γLang

4ω2
ad

(45)

for the Langevin dynamics in Eq. (41). So Eq. (42) is sug-
gested as the optimum value of Langevin friction coefficient
γ Lang in Eq. (40) for PILD because it is expected to offer the
most efficient sampling for the staging path integral variables
(ξ 2, . . . , ξP) [in the free particle limit]. We will further demon-
strate that the PILD result is insensitive to the choice of the
friction coefficient γ Lang around the optimum regime.
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FIG. 3. (a) and (b) As in Fig. 2, but with comparison to the exact quantum
correlation functions and the LSC-IVR results.

The velocity Verlet algorithm can be constructed for in-
tegrating the equations of motion in Eq. (40) for PILD (as
done for molecular dynamics by Bussi and Parrinello48 and
for PIMD by Ceriotti et al.39). Such an algorithm for prop-
agating the PILD trajectory through a time interval �t is as
follows:

pj ← c1pj + c2

√
m̃j

β
ηj (j = 2, P ), (46)

p1 ← p1 − MthermM−1 ∂φ

∂ξ1

�t

2
,

(47)

pj ← pj − ∂φ

∂ξj

�t

2
(j = 2, P ),

ξ1 ← ξ1 + M−1p1�t

(
ξj

pj

)
←
(

cos(ωad�t) sin(ωad�t)/m̃jωad

−m̃jωad sin(ωad�t) cos(ωad�t)

)

×
(

ξj

pj

)
(j = 2, P ), (48)
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FIG. 4. (a) and (b) The converged PILD autocorrelation functions compared
the LSC-IVR and exact quantum results for the one-dimensional anharmonic
oscillator for β = 8.

p1 ← p1 − MthermM−1 ∂φ

∂ξ1

�t

2
,

(49)

pj ← pj − ∂φ

∂ξj

�t

2
(j = 2, P ),

pj ← c1pj + c2

√
m̃j

β
ηj (j = 2, P ). (50)

Here, ηj is the independent Gaussian-distributed random
number as discussed for Eq. (40), which is different for each
invocation of Eq. (46) or Eq. (50), and the coefficients c1 and
c2 are39, 48

c1 = exp[−γLang�t/2],
(51)

c2 =
√

1 − (c1)2.

While the forces in Eq. (47) are obtained from the previous
time step, those in Eq. (49) at the current time step can be
efficiently evaluated by the chain rule Eq. (25). One sees that
the inverse staging transformation Eq. (20) is invoked only
once [for Eq. (49)] in the integrator [Eqs. (46)–(50)] and the
staging transformation Eq. (19) is not involved at all.

We note that Leimkuhler and Matthews58, 59 have recently
investigated a few Langevin dynamics integrators, it will be
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FIG. 5. (a) and (b) The PILD autocorrelation functions for the one-
dimensional anharmonic oscillator for β = 8 with the choice of the fric-
tion coefficient γ Lang when the Langevin thermostat is employed. Black
solid line: γLang = 0.01 γ

opt
Lang. Red dotted line: γLang = 0.1 γ

opt
Lang. Blue

short-long-dashed line: γLang = γ
opt
Lang. Green dotted-dashed line: γLang

= 10 γ
opt
Lang. (Here, the adiabatic parameter is γ ad = 10−6.)

interesting to employ and test some of them (such as the
BAOAB method) for PILD in the future.

B. Model tests

We consider two correlation functions 〈p(0)p(t)〉Kubo

and 〈x2(0)x2(t)〉std, with Âβ = p̂
β

Kubo and Âβ = e−βĤ x̂2 in
Eq. (1), respectively. Expressing the correlation functions in
the Wigner phase space [i.e., Eq. (9)] as is often done for the
LSC-IVR/classical Wigner model11 leads to

fW
Aβ (x, p) = M M−1

thermp (52)

for Âβ = p̂
β

Kubo and

Re
[
f W

Aβ (x, p)
]=x2 + β¯2

4
M−1

therm − β2¯2

4
(M−1

thermp)TM−1
thermp

(53)
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FIG. 6. (a) and (b) The PILD autocorrelation functions for the one-
dimensional quartic oscillator for β = 8 with the choice of the adiabatic pa-
rameter γ ad = 10−gamma. Fully converged results are obtained with gamma
= 6 for the system.

for the real part for Âβ = e−βĤ x̂2. The Wigner function
BW (x, p) is the classical function (of B̂) itself in either corre-
lation function.

The two models are the asymmetric anharmonic potential

V(x) = 1

2
Mω2x2 − 0.10x3 + 0.10x4 (54)

(with M = 1, ω = √
2, and ¯ = 1) and a more severe model

– the pure quartic well

V(x) = x4/4 (55)

(with M = 1 and ¯ = 1). Since PILD approaches LSC-IVR
in the high temperature limit, we focus on a low temperature
β = 8. The exact quantum correlation functions and the LSC-
IVR results have been presented for comparison.

Figs. 2–5 show the PILD results for the first model
[Eq. (54)]. As seen in Fig. 2, converged correlation functions
are obtained with γ ad = 10−6 (with a time step dt =10−5

∼ 10−4). They match the exact quantum results almost per-
fectly, except a slight frequency shift and slight dephasing
in the amplitude at long times as shown in Fig. 3. Both
Figs. 2 and 3 demonstrate that the correlation function is
in progressively better agreement with the quantum result at
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FIG. 7. (a) and (b) As in Fig. 6, but with comparison to the exact quantum
correlation functions and the LSC-IVR results.

longer times as the adiabatic parameter γ ad decreases. Inter-
estingly, Fig. 4 shows that PILD with even a relatively larger
adiabatic parameter γ ad = 10−3 or 10−4 (with a time step
dt ∼ 10−3) is able to show systematical improvement over
LSC-IVR at longer times. Fig. 5 shows how the PILD results
change with the friction coefficient γ Lang when PILD is em-
ployed with the Langevin thermostat. When γ Lang is around
the optimum value [Eq. (42)] or smaller, the PILD results are
insensitive to the choice of the friction coefficient.

The PILD results for the pure quartic well [Eq. (55)] are
demonstrated in Figs. 6–9. Figs. 6 and 7 show that the corre-
lation function agrees increasingly better with the exact result
at longer times as γ ad decreases. Converged data are obtained
with γ ad = 10−6 (with a time step dt =10−5 ∼ 10−4). The
comparison with the exact results in Fig. 7 show that PILD
describes the amplitude of oscillation reasonably well with
a noticeable frequency shift after the first period, which sig-
nificantly improves over LSC-IVR that shows too quick de-
phasing after one vibrational period. Fig. 8 further shows that
systematical improvement over LSC-IVR at longer times can
be achieved by PILD with even a relatively larger adiabatic
parameter γ ad = 10−2 or 10−3 (with a time step dt ∼ 10−3).
Similar to Fig. 5, Fig. 9 also shows that the PILD correla-
tion function is insensitive to the choice of the friction coef-
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FIG. 8. (a) and (b) The converged PILD autocorrelation functions compared
the LSC-IVR and exact quantum results for the one-dimensional quartic os-
cillator for β = 8.

ficient γ Lang when it is around the suggested optimum value
[Eq. (42)] or even smaller.

As comparison, it is well known that either CMD
or RPMD works poorly for the correlation function of
which both operators [Â and B̂ in Eq. (1)] are nonlin-
ear operators.31, 32, 50–54, 60, 61 For instance, Fig. 1 of Ref. 50,
Fig. 1 of Ref. 31, and Fig. 1 of Ref. 32 demonstrate
that neither CMD nor RPMD leads to correct results for
〈x2(0)x2(t)〉Kubo even for a one-dimensional harmonic well. In
addition to Fig. 5 of Ref. 60, Fig. 3 or Fig. 10 of Ref. 53 shows
that CMD or RPMD produces poor results for 〈x2(0)x2(t)〉Kubo

for a one-dimensional anharmonic potential or the pure quar-
tic well [Eq. (55)]. Since these results have already been
demonstrated and discussed in the literature, we do not in-
clude them in the paper.

C. Discussion

It is shown that ELD17, 18 or EHD32 fails to describe
quantum recurrence/rephrasing effects, so does the PILD ap-
proach. However, long-time quantum recurrence/rephrasing
effects (often shown in one-dimensional bounded systems)
are anticipated to be quenched by coupling among the various
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FIG. 9. (a) and (b) The PILD autocorrelation functions for the one-
dimensional quartic oscillator for β = 8 with the choice of the friction
coefficient γ Lang when the Langevin thermostat is employed. Black solid
line: γLang = 0.01 γ

opt
Lang. Red dotted line: γLang = 0.1 γ

opt
Lang. Blue short-long-

dashed line: γLang = γ
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Lang. Green dotted-dashed line: γLang = 10 γ
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(Here, the adiabatic parameter is γ ad = 10−6.)

degrees of freedom in condensed phase systems. As seen from
the model tests (Figs. 2–9), PILD can accurately capture the
most important short time dephasing behavior and extend the
accuracy of correlation functions of both linear and nonlinear
operators to longer time (comparing with LSC-IVR and other
comparable methods). Because comparison of LSC-IVR to
experiment has demonstrated that the physical decay often
dominates in many condensed phase systems,9–13, 62–75 Figs.
4 and 8 imply that the PILD correlation function will con-
verge much faster for these systems as the adiabatic param-
eter γ ad decreases. Therefore, it can provide a practical and
useful tool for including quantum effects for large/complex
molecular systems in condensed phase.

When the simple (white noise) Langevin dynamics algo-
rithm [Eqs. (46)–(50)] is used in PILD, it is shown that con-
verged results can be efficiently obtained with the Langevin
friction coefficient γ Lang chosen as 2ωad or slightly less. One
can employ other thermostatting methods (such as Nosé-
Hoover chain,46 Anderson themostat,45 generalized Gaussian
moment,47 etc.) as well for the staging path integral variables
(ξ 2, . . . , ξP, p2, . . . , pP) in PILD. It will be particularly in-

teresting to see how the generalized Langevin equation with
colored noise39, 40 can be implemented for the staging modes
in PILD, as it has been shown that the generalized Langevin
dynamics can offer an efficient sampling algorithm for PIMD
when the normal mode transformation is employed.

VI. CONCLUSION REMARKS

In this paper, we present an imaginary time path integral
based method for describing quantum dynamics effects. The
method—PILD is derived from the path integral presentation
of the ELD approach30, 31 in the molecular dynamics scheme.
The staging transformation of the path integral beads is used
to develop the method. Since implementation of PILD does
not request any specific form of the potential energy surface,
it offers a potentially useful approach for general condensed
phase molecular systems to have the two important properties
listed in Sec. I.

Finally, we note that both LSC-IVR and PILD produce
exact correlation functions (of both linear and nonlinear op-
erators) in the harmonic limit (i.e., the second property listed
in Sec. I). While PILD conserves the mapping canonical den-
sity distribution (the first property listed in Sec. I), LSC-IVR
preserves the mapping Hamiltonian (in the Wigner phase
space) that is equivalent to the classical energy.66 The former
corresponds to the quantum commutation

[e−βĤ , e−iĤ t/¯] = 0, (56)

and the latter is the counterpart of the commutation

[Ĥ , e−iĤ t/h] = 0. (57)

It will be interesting in future work to test PILD for various
correlation functions in condensed phase molecular systems,
for which LSC-IVR/classical Wigner already works rather
well for short time dynamics.9–13, 62–75 It would also certainly
be of interest to compare PILD to other imaginary time path
integral based methods such as CMD and RPMD for realistic
molecular systems.

Note added in proof: In the reviewing process, we be-
came aware of the work by Martyna and Cao55, 56 on the adi-
abatic Wigner PIMD. We thank the 1st referee for pointing it
out.
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