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We show two more approaches for generating trajectory-based dynamics in the phase space formu-
lation of quantum mechanics: “equilibrium continuity dynamics” (ECD) in the spirit of the phase
space continuity equation in classical mechanics, and “equilibrium Hamiltonian dynamics” (EHD)
in the spirit of the Hamilton equations of motion in classical mechanics. Both ECD and EHD can
recover exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions
of position or momentum operators) in the classical, high temperature, and harmonic limits. Both
ECD and EHD conserve the quasi-probability within the infinitesimal volume dxt dpt around the
phase point (xt , pt ) along the trajectory. Numerical tests of both approaches in the Wigner phase
space have been made for two strongly anharmonic model problems and a double well system, for
each potential auto-correlation functions of both linear and nonlinear operators have been calculated.
The results suggest EHD and ECD are two additional potential useful approaches for describing
quantum effects for complex systems in condense phase. © 2011 American Institute of Physics.
[doi:10.1063/1.3589406]

I. INTRODUCTION

Phase space formulations of quantum mechanics1–4 pro-
vide a natural framework for making the quantum-classical
correspondence or analogy. By making an analogy to Liou-
ville’s theorem in classical mechanics, we proposed [in Pa-
per I (Ref. 5)] an approach for generating trajectory-based
dynamics which conserves the canonical distribution in the
quantum phase space for the thermal equilibrium system. We
referred to the approach as “equilibrium Liouville dynamics”
(ELD). For thermal equilibrium systems, ELD satisfies sta-
tionarity of the quantum canonical distribution function Peq ,
i.e.,

∂ Peq (x, p; t)

∂t
= 0. (1)

It is shown [in Paper II (Ref. 6)] how the quantum time
correlation function can be exactly expressed in the uni-
fied classification scheme of Cohen1 in the phase space for-
mulation of quantum mechanics, as a generalization of our
earlier work.7 We implemented the “equilibrium distribution
approximation” (EDA) to allow use of any trajectory-based
dynamics satisfying Eq. (1) for evaluation of thermal corre-
lation functions in the framework. ELD is such a family of
trajectory-based dynamics that can give the exact quantum
correlation function (of even nonlinear operators, i.e., non-
linear functions of position or momentum operators) in the
classical (¯→ 0), high-temperature (β → 0), and harmonic
limits.

a)Electronic mail: jianliu@berkeley.edu.

Besides Liouville’s theorem, the phase space continuity
equation and the Hamilton equations of motion are two other
approaches to describe the evolution of the system in classical
mechanics. (Quantum dynamics recovers these approaches in
the classical limit.) By making analogies to both approaches
in the phase space formulation of quantum mechanics, one
can propose two more ways for generating trajectory-based
dynamics which conserves the canonical distribution in the
quantum phase space [i.e., Eq. (1)]. We refer to the one in
the spirit of the phase space continuity equation as “equi-
librium continuity dynamics” (ECD), and the other in the
spirit of the Hamilton equations of motion as “equilibrium
Hamiltonian dynamics” (EHD). As we will discuss in follow-
ing sections, both ECD and EHD can give the exact quan-
tum correlation function in the three important limits as ELD
does.

The purpose of the paper is to present the ECD and EHD
approaches and their applications to thermal correlation func-
tions. The paper is organized as follows: Sec. II first reviews
the phase space continuity equation in classical mechanics,
then proposes the ECD approach in the quantum phase space,
and finally applies ECD to thermal correlation functions.
Section III presents EHD—another type of trajectory-based
approach in the phase space formulation of quantum me-
chanics, by making the analogy to the Hamilton equations
of motion in classical mechanics. Some numerical applica-
tions for standard, Kubo-transformed, and symmetrized auto-
correlation functions are demonstrated in Sec. IV, including
two anharmonic models and a double well potential. Conclu-
sions are given in Sec. V.
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II. TRAJECTORY-BASED DYNAMICS GENERATED
IN THE SPIRIT OF THE PHASE SPACE CONTINUITY
EQUATION IN CLASSICAL MECHANICS

A. Phase space continuity equation in
classical mechanics

For the system with the Hamiltonian

H (x, p) = p2

2m
+ V (x) (2)

in classical mechanics, the equations of motion of the classi-
cal trajectory are

ẋ = p

m
,

ṗ = −V ′ (x) .
(3)

Here m is the mass. For the density distribution function
P, Liouville’s theorem of the first kind [Eq. (27) in Paper I]
can be written as

∂

∂t
P (x, p; t) = −∂P

∂x
ẋ − ∂P

∂p
ṗ. (4)

We define the vector υ = (x, p)T and ∇υ = (∂/∂x,

∂/∂p)T for the phase space variables. According to Eq. (3),
the phase space velocity field υ̇ = (ẋ, ṗ)T of the classical tra-
jectory is sourceless, i.e.,

∇υ · υ̇ ≡ ∂

∂υ
· υ̇ ≡ ∂ ẋ

∂x
+ ∂ ṗ

∂p
= 0. (5)

So Eq. (4) leads to

∂

∂t
P (x, p; t) = − ∂

∂x
(Pẋ) − ∂

∂p
(P ṗ) . (6)

With the mass flux density j defined as

j = Pυ̇, (7)

Eq. (6) can be written as

∂P
∂t

= −∇υ · j. (8)

We refer to Eq. (6) or Eq. (8) as the phase space con-
tinuity equation of the first kind. By virtue of the classical
equations of motion [i.e., Eq. (3)], an equivalent expression of
Eq. (6) is

∂

∂t
P (x, p; t) = − ∂

∂x

(
P

p

m

)
+ ∂

∂p

(
P

∂V (x)

∂x

)
, (9)

which we refer to as the phase space continuity equation of
the second kind.

Vice versa, one can derive the classical equations of mo-
tion [Eq. (3)] from the phase space continuity equation of the
two kinds [Eq. (8) and Eq. (9)], by defining ẋ = p/m to be
the relation between the position and momentum in the phase
space. Note that the phase space continuity equation of both
kinds [Eq. (8) and Eq. (9)] are in the Eulerian picture (i.e., the
coordinate system is fixed) since only partial time derivatives
of the density distribution function are involved.

The physical meaning of P(x, p)dxdp in classical
mechanics8 represents the number of systems d Ns in the in-
finitesimal region dxdp around the phase space point (x, p).

If we “flow with the fluid” (i.e., follow trajectories, in the
Lagrangian picture), the phase space continuity equation
[Eq. (8)] leads to the equality for the mass transport,

P (x0, p0; 0) dx0dp0 = P (xt , pt ; t) dxt dpt . (10)

Equation (10) means that the number of systems is con-
served locally along the trajectory in classical mechanics.
Appendix A shows that Eq. (10) is in general an alternative
statement of the phase space continuity equation of the first
kind [Eq. (8)].

B. A heuristic viewpoint for deriving the force from
the canonical distribution function for the thermal
equilibrium system

For thermal equilibrium systems, the classical Boltz-
mann/canonical distribution Peq (x, p) is

Peq (x, p)=
(

β

2πm

)1/2

e−β

(
p2

2m+V (x)
)
=

(
β

2πm

)1/2

e−β H (x,p),

(11)
with the classical partition function as the normalization fac-
tor

Z =
∫

dx e−βV (x) =
∫

dx
∫

dp Peq (x, p). (12)

The canonical distribution function Peq (x, p) is station-
ary [i.e., Eq. (1)]. Substituting Eq. (1) into the phase space
continuity equation of the second kind Eq. (9), one obtains

∂

∂p

(
Peq (x, p)

∂V (x)

∂x

)
= ∂

∂x

(
Peq (x, p)

p

m

)
. (13)

The integration over the momentum in the above equa-
tion leads to

Peq (x, p)
∂

∂x
V (x) =

∫ p

−∞
dp′ ∂Peq (x, p′)

∂x

p′

m
. (14)

(Note the boundary condition lim
p→−∞ Peq (x, p) = 0.) One

can verify that Eq. (14) gives an equivalent form to calcu-
late the classical force −V ′(x) by using the canonical distri-
bution function Peq (x, p) of the thermal equilibrium system.
Since the classical canonical distribution function Peq (x, p)
[Eq. (11)] is uniquely defined and continuous in the phase
space, the classical force −V ′ (x) given in Eq. (14) is thus
well-defined.

For thermal equilibrium systems in classical mechanics,
one can always define the classical equations of motion [i.e.,
Eq. (3)] based on the phase space continuity equation with
the classical force given by Eq. (14). This insight provides
a heuristic procedure for making the quantum-classical corre-
spondence or analogy in the phase space formulation of quan-
tum mechanics.

C. Equilibrium continuity dynamics

Similar to the phase space continuity equation of the sec-
ond kind in classical mechanics [Eq. (9)], one can express the
form of the quantum Liouville theorem [Eq. (35) of Paper I]
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in the phase space formulation of quantum mechanics as

∂

∂t
P (x, p; t) = − ∂

∂x

(
P

p

m

)
+ ∂

∂p

(
P

∂

∂x
Veff (x, p)

)
.

(15)

For example, the effective force −∂/∂xVeff (x, p) in
Eq. (15) can be expressed as

PW (x, p; t)
∂Veff (x, p)

∂x
= PW V ′ (x)

−¯
2

24

∂2PW

∂p2
V (3) (x) + · · · (16)

in the Wigner phase space representation according to
Eq. (36) of Paper I (e.g., as Donoso and Martens suggested9),
and

PH (x, p; t)
∂Veff (x, p)

∂x
= PH V ′ (x) − ¯

2�

2m

∂PH

∂x

+¯V (2) (x)

2!
〈x, p|

(
−i

←−
∂

∂p

)
ρ̂

2π¯

+ ρ̂

2π¯

(
−i

−→
∂

∂p

)
|x, p〉

+¯2V (3)(x)

3!
〈x,p|

(
−i

←−
∂

∂p

)2
ρ̂

2π¯

+
(

−i
←−
∂

∂p

)
ρ̂

2π¯

(
−i

−→
∂

∂p

)

+ ρ̂

2π¯

(
−i

−→
∂

∂p

)2

|x, p〉 + · · ·

(17)

in the Husimi phase space representation by virtue of Eq. (37)
of Paper I (e.g., similar to what Skodje et al. proposed10). [See
Appendix B for more discussion.]

One sees the quantum-classical correspondence between
Eq. (15) and its classical counterpart Eq. (9). Similar to
the viewpoint that stationarity of the classical canonical dis-
tribution function enables one to obtain the classical force
[Eq. (13)] according to the phase space continuity equation of
the second kind [Eq. (9)], stationarity of the quantum canoni-
cal distribution function [i.e., Eq. (1)] provides a way to obtain
the effective force −∂Veff (x, p)/∂x,

∂

∂p

(
Peq (x, p)

∂

∂x
Veff (x, p)

)
= ∂Peq (x, p)

∂x

p

m
, (18)

by virtue of Eq. (15). The integration over the momentum in
the above equation leads to

Peq (x, p)
∂

∂x
Veff (x, p) =

∫ p

−∞
dp

∂Peq (x, p)

∂x

p

m
. (19)

Due to the one-to-one correspondence mapping, once a
phase space is constructed based on a (real) distribution func-
tion in Sec. II of Paper I, the quantum canonical distribution
function Peq (x, p) is then uniquely defined and continuous in

the phase space. So Eq. (19) always gives a uniquely defined
and continuous effective force −∂/∂xVeff (x, p) for any phase
point (x, p) (for one-dimensional systems). [See further dis-
cussion on multi-dimensional systems in Appendix D.]

If the trajectory-based dynamics is chosen to satisfy

∂

∂t
Peq (x, p; t) = − ∂

∂x
(Peq ẋ) − ∂

∂p
(Peq ṗ) (20)

as an analogy to the phase space continuity equation of the
first kind [Eq. (6) or Eq. (8)], one can use Eq. (20) and Eq.
(15)—an alternative expression of the quantum Liouville the-
orem in the phase space formulation of quantum mechanics—
to obtain

∂

∂x

[
Peq (x, p; t)

(
ẋ − p

m

)]

+ ∂

∂p

[
Peq (x, p; t)

(
ṗ + ∂

∂x
Veff (x, p)

)]
= 0. (21)

[Note that Eq. (21) can be derived from Eq. (15) and
Eq. (20) even for non-equilibrium density distribution func-
tions P (x, p; t).] As before, we define ẋ = p/m to be the
relation between the position and momentum, which is inde-
pendent of the density distribution function and independent
of the system. According to Eq. (15) and Eq. (20), Eq. (21)
holds for any phase point (x, p) along the trajectory at any
time for any density distribution function, then the solution
to Eq. (21) consistent with all these conditions leads to the
equations of motion for the trajectory,

ẋ = p

m
,

ṗ = − ∂

∂x
Veff (x, p) .

(22)

Due to Eq. (15), the equations of motion in Eq. (22) with
the effective force given by the canonical distribution func-
tion P eq (x, p) [Eq. (19)] can generate a trajectory-based dy-
namics which conserves the canonical distribution function
[Eq. (1)] in the quantum phase space based on any distribu-
tion function discussed in Sec. II of Paper I. We have already
proposed the trajectory-based dynamics [i.e., Eq. (22) with
Eq. (19)] in the Wigner phase space formulation in our ear-
lier paper7 (i.e., so called “full Donoso-Martens dynamics”).
Here, we show the approach can be generalized for other dis-
tribution functions. We refer to the family of dynamics as
“equilibrium continuity dynamics” (ECD).

We note that Eq. (20) can not be derived from the quan-
tum Liouville theorem even though the phase space continu-
ity equation of the first kind Eq. (6) is obtained from classi-
cal Liouville’s theorem. The Heisenberg uncertainty principle
prevents a unique definition for the equations of motion for
trajectories in the phase space formulation of quantum me-
chanics. One sees the quantum-classical correspondence [be-
tween Eq. (9) and Eq. (15)] and non-correspondence [between
Eq. (6) and Eq. (20)] in the phase space formulation of quan-
tum mechanics. Equation (20) is a way to generate a family
of trajectory-based dynamics (i.e., ECD) in the spirit of the
phase space continuity equation of the first kind [Eq. (6)].
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D. ECD trajectories and canonical ensemble averages

The ECD dynamics [i.e., Eq. (22) with Eq. (19)] has four
important properties. First, the quasi-probability within the
initial infinitesimal volume dx0dp0 around the initial phase
point (x0, p0) is conserved as the ECD trajectory propagates,
i.e.,

P eq (x0, p0; 0) dx0dp0 = P eq (xt , pt ; t) dxt dpt (23)

Equation (23) follows from the proof in Appendix A
because the ECD trajectory satisfies Eq. (20). Substituting
Eq. (C11) in Appendix C of Paper I into Eq. (A2) in Appendix
A, one obtains

P eq (xt , pt ; t) = P eq (x0, p0; 0)

× exp

[∫ t

0

∂2

∂pt ′∂xt ′
Veff (xt ′ , pt ′ ) dt ′

]
.

(24)

One sees that P eq (xt , pt ; t) is not constant as long
as the ECD effective force −∂/∂xt Veff (xt , pt ) in Eq.
(19) is a momentum dependent function. ECD preserves
P eq (xt , pt ) dxt dpt , while ELD conserves P eq (xt , pt ).

Similarly, one can show ECD shares with ELD all the
other three properties listed in Sec. IV of Paper I. By virtue of
these properties of ECD, it can provide a robust algorithm for
describing quantum effects in complex systems in condensed
phase. One can use Eq. (C1) or Eq. (C2) in Appendix C to
evaluate a dynamic physical property for thermal equilibrium
systems, i.e.,

〈B(t)〉 = 1

Z

∫
dxt

∫
dpt P eq (xt (x0, p0), pt (x0, p0); t)

× B̃(xt (x0, p0), pt (x0, p0)) = 1

Z

∫
dx0

∫
dp0

× P eq (x0, p0; 0)B̃(xt (x0, p0), pt (x0, p0)). (25)

Because ECD conserves the quantum canonical distribu-
tion function by construction [i.e., Eq. (18)], one can show
that thermodynamic properties 〈B(t)〉 and their fluctuations
are invariant with time, i.e.,

〈B(t)〉 = 〈B (0)〉 . (26)

Implementing a time average in Eq. (25) for ECD, one
can obtain Eqs. (52) and (53) of Paper I as well for ensemble
averages for thermal equilibrium systems.

E. Choice of the phase space distribution function

Following the same arguments in Sec. IV C of Paper I,
one can show that the ECD dynamics approaches classical
dynamics in either the classical (¯→ 0) or high temperature
(β → 0) limit, regardless of which distribution function (dis-
cussed in Sec. II of Paper I) is employed to construct the phase
space. So the harmonic limit is the criterion to choose the
phase space distribution function for ECD.

When the Wigner distribution function is used, the
canonical distribution function for the 1-dimensional

harmonic potential V (x) = 1
2 mω2x2 is

Peq
W (x, p) = 1

2π¯ cosh[u/2]

× exp

[
− β

Q (u)

(
p2

2m
+ 1

2
mω2x2

)]
, (27)

with the dimensionless parameter

u = β¯ω, (28)

and the quantum correction factor Q (u) as

Q (u) = u/2

tanh[u/2]
. (29)

It is trivial to show that the ECD effective force by
Eq. (19) leads to the classical force in this case, i.e.,

− ∂V ECD
eff (x, p)

∂x
= −mω2x . (30)

The canonical distribution function in the Husimi phase
space for the harmonic system is

Peq
H (x, p) = 1

2π¯ sinh[u/2]

×
(

�mu2

(β¯2� + 2m Q(u))(2�Q(u) + βmω2)

)1/2

× exp

[
− p2

(¯2�+2m Q(u)/β)

− �βmω2

2�Q (u) + βmω2
x2

]
. (31)

Similarly, one can show that the ECD effective force by
Eq. (19) reduces to the classical force, when the Husimi dis-
tribution function is used with the width parameter as

� = mω

¯
, (32)

i.e., when the Husimi distribution function goes to the Glauber
Q function.11 For the general anharmonic potential, one will
have to find the optimal value (regime) for the width parame-
ter �.

As one can verify, the Wigner function, the Husimi func-
tion, and the Glauber Q function are among those distribution
functions that are able to make ECD approach classical dy-
namics in the harmonic limit. (Note that the Glauber Q func-
tion can be viewed as a special case of the Husimi function.)
We refer to the ECD dynamics in the Wigner phase space as
Wigner ECD (W-ECD). Similarly, we refer to ECD in the
Husimi phase space as Husimi ECD (H-ECD). H-ECD has
an adjustable parameter � while W-ECD has none.

With the same procedure in Sec. V of Paper I, one can
show the centroid molecular dynamics (CMD) of Voth and co-
workers12, 13 can be closely related to and even reformulated
in the ECD approach.

F. Application to the thermal correlation function

In Paper II, we showed the exact expression of the quan-
tum time correlation function in the phase space formulation
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of quantum mechanics [i.e., Eq. (4) of Paper II]. The “equi-
librium distribution approximation” (EDA) in Paper II allows
use of any trajectory-based dynamics which conserves the
canonical distribution in the quantum phase space for eval-
uation of the exact expression. That is,

〈A (0) B(t)〉 = 1

Z

∫
dx0

∫
dp0 P eq (x0, p0; 0)

× f Aβ (x0, p0; 0) B̃ (xt , pt ) , (33)

where Z = Tr[e−β Ĥ ] is the partition function, and B̃ and f Aβ

are defined by Eqs. (6) and (21) of Paper II, respectively.
By virtue of EDA, ECD applies to Eq. (33) as well. One

has

〈A(t ′)B(t ′ + t)〉 = 1

Z

∫
dxt ′

∫
dpt ′ P eq (xt ′ , pt ′ ; t ′)

× f Aβ

(
xt ′ , pt ′ ; t ′) B̃ (xt ′+t , pt ′+t )

= 1

Z

∫
dx0

∫
dp0 P eq (x0, p0; 0)

× f Aβ (xt ′ , pt ′ ; t ′)B̃ (xt ′+t , pt ′+t ) (34)

for ECD. It is straightforward to verify ECD gives the
same results for Eq. (33) and for Eq. (34), according to
Appendix C.

A time average of Eq. (34) leads to

CAB(t) = 1

T

∫ T

0
dt ′〈A(t ′)B(t ′ + t)〉

= 1

Z

∫
dx0

∫
dp0 P eq (x0, p0; 0)

[
1

T

∫ T

0
dt ′

× f Aβ (xt ′ , pt ′ ; t ′)B̃(xt ′+t , pt ′+t )

]
. (35)

For ergodic systems, the above equation reduces to

CAB(t) = lim
T →∞

1

T

∫ T

0
dt ′ f Aβ (xt ′ , pt ′ ; t ′)B̃ (xt ′+t , pt ′+t ) .

(36)
Note the difference between the first line of the RHS of

Eq. (34) for ECD and that of Eq. (23) of Paper II for ELD.
Except this point, ECD shares with ELD almost all the ex-
pressions for calculating thermal correlation functions. All
the methods that we introduced for ELD in Paper II can be
applied to ECD as well.

It is straightforward to show that ECD recovers exact
thermal correlation functions in the classical (¯→ 0) and
high temperature (β → 0) limits. One can also prove that
the W-ECD approach for the thermal correlation function re-
duces to the linearized semiclassical initial value representa-
tion (LSC-IVR)/classical Wigner model7, 14–24 and therefore
gives correct quantum correlation functions (of even nonlin-
ear operators) in the limit of a harmonic potential. Similarly,
one can verify that this is also true for H-ECD with the width
parameter given by Eq. (32).

III. TRAJECTORY-BASED DYNAMICS GENERATED
IN THE SPIRIT OF THE HAMILTON EQUATIONS
OF MOTION

A. Hamilton equations of motion
in classical mechanics

For the system with the Hamiltonian as Eq. (2) in clas-
sical mechanics, another way to describe the dynamics is the
Hamilton equations of motion, i.e.,

ẋt = ∂ H (xt , pt )

∂pt
,

ṗt = −∂ H (xt , pt )

∂xt
, (37)

which give identical equations to Eq. (3).
For thermal equilibrium systems in classical mechan-

ics, one can always use the canonical distribution function
P eq (x, p) to define the Hamiltonian H (x, p) from Eq. (11),
and thus derive the classical equations of motion [i.e., Eq. (3)]
based on the Hamilton equations of motion [i.e., Eq. (37)].
The insight provides another heuristic procedure for making
the quantum-classical correspondence or analogy in the phase
space formulation of quantum mechanics.

B. Equilibrium Hamiltonian dynamics

In principle, only the Husimi distribution function,25 the
Glauber Q function11 and several others26–28 for the Boltz-
mann operator are nonnegative, while other distribution func-
tions lead to both positive and negative values. For many cases
for which the local Gaussian approximations (LGAs) or the
thermal Gaussian approximations (TGAs) are good enough
(see more discussion in Paper II and Appendix E), such as
the Wigner function for the Boltzmann operator with any of
these approximations is also nonnegative. As discussed in
our earlier work,20 all the LGAs and TGAs lead to a (lo-
cal) Gaussian approximation for the momentum distribution
in the Wigner function for the Boltzmann operator. That is,
the Wigner canonical distribution with any of these LGA ap-
proximations can be written in a general form as

P eq (x, p) =
(

β

2π

)1/2

|mtherm (x)|−1/2

× exp

[
−β

p2

2mtherm (x)

]
〈x | e−β Ĥ |x〉 ,

(38)

where the (position-dependent) thermal mass mtherm (x) is
given by the approximation. (See further discussion in
Appendix E.)

By making the analogy to Eq. (11), one can define the
effective Hamiltonian Heff (x, p) from non-negative canoni-
cal distribution functions P eq (x, p). We first focus on the
Wigner canonical distribution function. Consider first a 1-dim
harmonic potential V (x) = 1/2mω2x2. The Wigner canoni-
cal distribution function for this system [i.e., Eq. (27)] can be
written in the form as Eq. (38) with the “thermal mass” as

mtherm = m Q (u) . (39)
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One can verify that the effective Hamiltonian given by
Eq. (11) does not generate the correct dynamics even for the
harmonic case. This indicates that it is not useful to define the
effective Hamiltonian in the original phase space (x, p). I.e.,
some transformation of the phase space variables is necessary.

We define the effective position xeff and momentum peff

as

xeff = x, (40)

and

peff = meff m−1 p, (41)

respectively. Here the effective mass meff is given in such a
way that the exponential term of the momentum distribution
of the Wigner density [i.e., Eq. (38)] always satisfies

β
(peff)2

2meff
= β

p2

2mtherm
. (42)

The effective mass then becomes

meff = m2

mtherm
. (43)

The module of the determinant of the Jacobian matrix for
the transformation (Eqs. (40) and (41)) is∣∣∣∣∂(xeff, peff)

∂ (x, p)

∣∣∣∣ =
∣∣∣meff

m

∣∣∣. (44)

For any transformation between (x, p) and (x ′, p′) at
any time t, the following equation for the density distribution
function always holds,

P(x ′, p′; t)

∣∣∣∣∂(x ′, p′)
∂ (x, p)

∣∣∣∣ = P (x, p; t). (45)

From the transformation given by Eqs. (40) and (41) [i.e.,
(x, p) → (xeff, peff)], one therefore obtains

Peq
eff (x

eff, peff) =
∣∣∣meff

m

∣∣∣−1
P eq (x, p). (46)

[One sees from Eqs. (38)–(43) that the effective mass meff rep-
resents the associated scaled “mass” (in the local harmonic or
Gaussian limit), while the position x of the phase space (x, p)
corresponds to that of one path integral bead. Interestingly,
one can show that the effective mass meff reduces to the phys-
ical mass m, while the position x is that of the centroid of the
path integral beads [by virtue of Eqs. (62)–(70) in Sec. V of
Paper I], which has been stated in the CMD model of Voth
and co-workers12, 13.]

As an analogy to Eq. (11),

Peq
eff (x

eff, peff) =
(

β

2πm

)1/2

e
−β Heff

(
xeff,peff

)
. (47)

defines the new effective Hamiltonian Heff(xeff, peff) from the
“effective” canonical distribution function with the new vari-
ables (xeff, peff). One can verify that Eq. (46) satisfies

Z =
∫

dx 〈x | e−β Ĥ |x〉 =
∫

dx
∫

dpP eq (x, p)

=
∫

dxeff
∫

dpeffPeq
eff (x

eff, peff). (48)

By virtue of Eq. (38) and Eqs. (46) and (47), the new
effective Hamiltonian becomes

Heff(x
eff, peff) = (peff)2

2meff (x)
− 1

β
ln[〈x | e−β Ĥ |x〉]

− 1

2β
ln

[
m

meff (x)

]
. (49)

It is trivial to show the Hamilton equations of motion,

ẋ eff
t = ∂ Heff

(
xeff

t , peff
t

)
∂peff

t

,

ṗeff
t = −∂ Heff

(
xeff

t , peff
t

)
∂xeff

t

,

(50)

recover the exact equation of motion for x for the harmonic
potential. From Eq. (41) and Eq. (50), one sees that the veloc-
ity keeps the same

ẋt ≡ ẋ eff
t = m−1

eff peff
t = m−1 pt . (51)

That is, ẋt = m−1 pt is still the relation between the posi-
tion and momentum in the quantum phase space for the EHD
approach. In the classical (¯→ 0) or the high temperature
(β → 0) limit, one has u → 0, Q (u) → 1, meff → m, and
peff → p, so the trajectory-based dynamics also leads to clas-
sical dynamics.

It thus provides a way for generating a family of
trajectory-based dynamics in the spirit of the Hamilton equa-
tions of motion, by defining the effective Hamiltonian from
the quantum canonical distribution function. We refer to this
family of dynamics as ‘equilibrium Hamiltonian dynamics’
(EHD). When the Wigner distribution function is employed,
we refer to it as Wigner EHD (W-EHD). One can further
generalize the procedure to other types of density distribution
functions. For example, Eq. (38) can also be the general form
for Husimi canonical distribution function 〈x, p| e−β Ĥ |x, p〉
for some types of approximations, as mentioned in Appendix
E. Along similar lines, it is straightforward to derive the
approach in the Husimi phase space. For instance, the
effective mass is

meff = 2m2

β¯2� + 2m Q (u)
(52)

by virtue of Eq. (31) and Eqs. (42) and (43) in the
Husimi phase space for the 1-dim harmonic potential V (x)
= 1/2mω2x2. One can show that the approach recovers the
exact equation of motion for x for the harmonic potential,
when the Husimi distribution function is used with the width
parameter as Eq. (32), i.e., when the Husimi distribution
function goes to the Glauber Q function.11 As before, one
will have to find the optimal value (regime) for the width
parameter � for the general anharmonic potential. We refer
to this approach in the Husimi phase space as Husimi-EHD
(H-EHD). H-EHD has an adjustable parameter � while
W-EHD has none.

Following the same arguments in Section V of Paper I,
one can show that CMD falls into the category of EHD
trajectory-based dynamics in the phase space formulation of
quantum mechanics.
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As before, it is important to point out that the EHD
trajectory-based dynamics [i.e., Eq. (50) with the effective
Hamiltonian defined in Eqs. (46) and (47)] can not be derived
from either the quantum Liouville theorem or Heisenberg’s
equation of motion in the phase space formulation of quan-
tum mechanics. The phase space formulation of quantum me-
chanics provides us the framework for making the quantum-
classical analogy from Eq. (11) and Eq. (37) of classical me-
chanics to Eqs. (46), (47) and Eq. (50) of EHD. EHD is a fam-
ily of trajectory-based dynamics in the quantum phase space
in the spirit of the Hamilton equations of motion in classical
mechanics. In addition to ELD and ECD, EHD is another way
for generating trajectory-based dynamics which conserves the
quantum canonical distribution in the phase space formulation
of quantum mechanics, and which reduces to classical dynam-
ics in the classical, high temperature, and harmonic limits.

C. EHD trajectories

Once the effectively non-negative distribution function
for the Boltzmann operator is chosen, the quantum canonical
distribution function P eq (x, p) is uniquely defined and con-
tinuous in the phase space. The effective mass meff(x) [such
as Eq. (43)] and the effective Hamiltonian (Eqs. (46) and
(47)) can therefore be uniquely well-defined from the quan-
tum canonical distribution function P eq (x, p) for the thermal
equilibrium system. [Note that (xeff, peff) is a one-to-one cor-
respondence mapping to the phase space point (x, p).]

One sees from Eq. (50) that EHD is a type of Hamili-
tonian dynamics. EHD trajectories behave much like classi-
cal trajectories. It is straightforward to show the EHD dy-
namics [i.e., Eq. (50) with the effective Hamiltonian de-
fined in Eqs. (46) and (47)] conserves the effective Hamilto-
nian Heff(xeff, peff), the effective density distribution function
Peq

eff (x
eff, peff) [Eq. (47)], the value of the volume element, i.e.,

dxeff
t dpeff

t = dxeff
0 dpeff

0 , (53)

(see Appendix D for further discussion), and the quasi-
probability within the initial infinitesimal volume dxeff

0 dpeff
0

around the initial variables (xeff
0 , peff

0 ), i.e.,

Peq
eff

(
xeff

t , peff
t ; t

)
dxeff

t dpeff
t = Peq

eff

(
xeff

0 , peff
0 ; 0

)
× dxeff

0 dpeff
0 . (54)

These properties suggest EHD can provide a robust al-
gorithm for including quantum effects in (large) molecular
systems.

Note that the phase space variables are rescaled in EHD.
I.e., the effective momentum peff is rescaled in Eqs. (40) and
(41). One sees that the effective momentum peff is not the con-
jugate variable to the position xeff ≡ x and thus not the true
momentum of the one-to-one mapping in the phase space. In-
stead of the effective variables (xeff, peff), one can use the true
phase space variables (x, p) to express the EHD equations of
motion as shown in the following subsection.

The central task for generating EHD is to obtain the ef-
fective mass meff(x) (or the effective mass matrix Meff(x) in

the multi-dimensional system). When the partial distribution
function for the momentum p at any fixed position x based
on the canonical distribution function is not a single Gaussian
function as in Eq. (38) (but a sum of Gaussian functions), the
definition of the effective mass meff(x) (or the effective mass
matrix Meff(x) in the multi-dimensional system) requires ad-
ditional approximations. [E.g., when the Feynman-Kleinert
approximation or the full thermal Gaussian approximation
(full TGA) discussed in Paper II is employed.] Among the
three approaches which conserve the canonical distribution
in the phase space formulation of quantum mechanics, ELD
and ECD can generally be well-defined with any approxima-
tions for the density distribution function for the Boltzmann
operator, while EHD is more limited. [This was actually the
reason why we did not publish W-EHD in our earlier paper,7

although we thought of W-EHD (Ref. 29) before W-ELD and
W-ECD.]

D. Relation between ECD and EHD

Note that Eq. (45) for the transformation between (x, p)
and (xeff, peff) at any time t leads to

P eq (x, p; t)dxdp = Peq
eff (x

eff, peff; t)dxeffdpeff. (55)

By virtue of the property Eq. (54) of EHD, one can show
EHD also satisfies Eq. (23). As discussed in Appendix A,
Eq. (23) is an alternative statement of the phase space conti-
nuity equation of the first kind. So EHD satisfies Eq. (20). Ei-
ther ECD or EHD conserves the quasi-probability within the
infinitesimal volume dxt dpt around the phase point (xt , pt )
along the trajectory. As a contrast, ELD preserves the value
of the density distribution function along the ELD trajectory,
i.e.,

P eq (x0, p0; 0) = P eq (xt , pt ; t). (56)

According to Eq. (51), one obtains

ṗeff
t = meffm

−1 ṗt + pt m
−1 ∂meff (xt )

∂xt
m−1 pt . (57)

The equations of motion of EHD can be expressed in the
phase space (x, p) as

ẋt = pt

m
,

ṗt = − ∂

∂xt
V EHD

eff (xt , pt ), (58)

with the EHD effective force given by

− ∂

∂xt
V EHD

eff (xt , pt ) = −m m−1
eff (xt )

[
∂ Heff

(
xt , peff

t

)
∂xt

+ pt m
−1 ∂meff (xt )

∂xt
m−1 pt

]
= m

× m−1
eff (xt )

{
1

β

∂ ln[P eq (xt , pt )/|meff(xt )|]
∂xt

− pt m
−1 ∂meff (xt )

∂xt
m−1 pt

}
. (59)
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We note that the EHD equations of motion Eqs. (58)
and (59) are more convenient to use for calculating ensem-
ble averages and thermal correlation functions because they
are directly expressed in the phase space (x, p). For one-
dimensional systems, it is straightforward to verify that the
EHD effective force [Eq. (59)] satisfies Eq. (18) which de-
fines the ECD effective force. That is, ECD is equivalent to
EHD for the one-dimensional system for which the canonical
distribution function in the phase space can be expressed as
Eq. (38). For general multi-dimensional systems, however, the
ECD effective force needs additional criteria to be uniquely
defined, and EHD and ECD are often different approaches.
[See further discussion in Appendixes F and G.] Nevertheless,
it is easy to show that EHD shares with ECD all the properties
(listed in Sec. II D).

E. Application to the canonical ensemble average
and the thermal correlation function

By virtue of the properties of EHD [such as Eq. (23) and
Eq. (55)], one can obtain Eq. (25) of this paper and Eqs. (52)
and (53) of Paper I as well for ensemble averages for ther-
mal equilibrium systems. The EDA in Paper II allows use of
EHD for evaluation of thermal correlation functions as well.
EHD shares with ECD all the expressions [i.e., Eqs. (33)–
(36)] for calculating thermal correlation functions. Here one
employs the EHD equations of motion [Eq. (58) and Eq. (59)]
for propagating trajectories in the phase space.

It is trivial to show that EHD recovers exact thermal cor-
relation functions in the classical (¯→ 0) and high tempera-
ture (β → 0) limits. One can also verify that W-EHD reduces
to LSC-IVR and therefore gives correct quantum correlation
functions (of even nonlinear operators) in the harmonic limit.

IV. NUMERICAL IMPLEMENTATION AND EXAMPLES

We have presented in Paper II various methods (for ob-
taining the Wigner or Husimi functions for the Boltzmann op-
erator) for the implementation of ELD. We note that all these
methods can be applied to ECD as well. The only difference
between ECD and ELD is evaluation of the effective force.
[That is, Eq. (18) or Eq. (19) defines the ECD effective force,
while Eq. (46) of Paper I gives the ELD effective force.]

The implementation of EHD requires the definition of the
(position-dependent) effective mass meff (x) . As discussed in
Appendix E, one can always obtain Eq. (38) with the LGA
strategy for the Wigner canonical distribution function20 or
similar strategy for the Husimi canonical distribution function
(introduced in Paper II).

Here, we use the LGA-TGA method introduced Paper II
(Ref. 6) (and in our earlier work20) for demonstration for
implementing both W-ECD and W-EHD. As discussed in
Sec. III E, W-ECD with LGA-TGA can be shown to be
equivalent to W-EHD with LGA-TGA for one-dimensional
systems. We focus on how well W-ECD and W-EHD per-
forms within the framework of Eq. (35), comparing the
results to the exact quantum correlation functions, the LSC-
IVR values, and the W-ELD results. [As in Paper II, the
classical correlation functions are not shown because they

work poorly in low temperature region as demonstrated in the
literature7, 16.] We calculate the Kubo-transformed momen-
tum autocorrelation function, the standard x2 autocorrelation
function, and the symmetrized force autocorrelation function
(the latter two involving nonlinear local operators) for the two
one-dimensional anharmonic models in Paper II. In addition,
the first two autocorrelation functions are used for demonstra-
tion of the exactness in the harmonic limit and also tested for
a demanding double-well potential.

A. Methods for ECD and EHD

1. W-ECD with LGA-TGA

By virtue of Eq. (43) in Paper II and Eq. (19), the LGA-
TGA gives the W-ECD force as

− ∂

∂x
V W−ECD

eff (x, p) = G

(
β

2
; x

)−1

M−1

[
¯2 ∂γ

(
β

2 ; x
)

∂x

−1

2
pT ∂G

(
β

2 ; x
)

∂x
p−¯

2

2
G

(
β

2
; x

)−1

×∂G
(

β

2 ; x
)

∂x

]
. (60)

The ECD equations of motion [Eq. (22)] determine prop-
agation of trajectories. Thermal correlation functions can then
be evaluated along W-ECD trajectories as we show in Sec. II
F. Here we use Eq. (35) with the time-averaging technique.
Note that the functions f Aβ and B̃ for the correlation func-
tions are the same as those discussed in Sec. IV of Paper II.

2. W-EHD with LGA-TGA

It is trivial to show the relation between the quantum cor-
rection factor Q (u) [Eq. (29)] and the imaginary-time depen-
dent matrix G(β/2; x) [Eq. (41) of Paper II, which has also
been suggested in our earlier work20] is

mtherm = m Q (u) = β¯2

2
G

(
β

2
; x

)−1

. (61)

The effective mass given by Eq. (43) becomes

meff =
2m2G

(
β

2 ; x
)

β¯2
. (62)

For convenience, we can note (xeff, peff) as (x, peff) for
the transformation given by Eqs. (40) and (41). By virtue of
Eq. (43) of Paper II, one obtains the effective canonical distri-
bution function from Eq. (46) as

Peq, LGA−TGA
eff, W (x, peff) = β¯

4πm
∣∣G(

β

2 ; x
)∣∣ exp

[
2γ

(
β

2
; x

)]

× exp

[
− (peff)2

2meff (x)

]
. (63)
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This leads to the effective Hamiltonian given by Eq. (49)
as

Heff(x, peff) = (peff)2

2meff (x)
+ 1

β
ln

∣∣∣∣G
(

β

2
; x

)∣∣∣∣ − 2

β
γ

(
β

2
; x

)

+ 1

2β
ln (4π ) + 1

2β
ln

[
2m

β¯2

]
. (64)

The equations of motion for W-EHD with LGA-TGA
thus become

ẋt = peff
t

meff (xt )
,

ṗeff
t = − β¯2

4m2

(
peff

t

)T ∂

∂xt
G−1

(
β

2
; xt

)
peff

t

− 1

β
∣∣G(

β

2 ; xt
)∣∣ ∂

∂xt

∣∣∣∣G
(

β

2
; xt

)∣∣∣∣ + 2

β

∂

∂xt
γ

(
β

2
; xt

)
,

(65)

or equivalently

ẋt = pt

m
, ṗt =G

(
β

2
; xt

)−1

M−1

[
¯2 ∂γ

(
β

2 ; xt
)

∂xt

− 1

2
pT

t

∂G
(

β

2 ; xt
)

∂xt
pt −¯

2

2

1∣∣G(
β

2 ; xt
)∣∣ ∂

∣∣G(
β

2 ; xt
)∣∣

∂xt

]
,

(66)

in the phase space (x, p). (EHD with LGA-TGA was already
along the lines of our earlier work7, 20, 29.) Note that the ef-
fective force given by EHD [Eq. (66)] is equivalent to that
by ECD [Eq. (60)]. Here one verifies EHD and ECD are es-
sentially the same for one-dimensional systems as long as the
canonical distribution function can be expressed as Eq. (38).

3. Relation between W-EHD with LGA-TGA and
Gaussian molecular dynamics

We noted that Georgescu and Mandelshtam indepen-
dently proposed an effective Hamiltonian and an effec-
tive mass, which led to the Gaussian molecular dynamics
(GMD) model for calculating symmetrized thermal correla-
tion functions30. The GMD approach is constructed based
on TGA in the position representation [see the discussion
on TGAs in Paper II (Ref. 6)], which have also been im-
plemented for calculating quantum time correlation functions
in the LSC-IVR (Refs. 16–18, and 19) and in W-ELD/W-
ECD (Ref. 7) much earlier. More recently, by following the
CMD (Refs. 12 and 13) and ring polymer molecular dynam-
ics (RPMD) (Ref. 31) ideas, Georgescu et al. further extended
GMD for computing Kubo-transformed thermal correlation
functions,32 which gives correct results for such as linear op-
erators (e.g., linear functions of the momentum operator) in
the harmonic limit (not for nonlinear operators though).

Interestingly, though not specifically couched in the lan-
guage of phase space distribution functions, the GMD model
can be closely related to and even reformulated in a sub-
category of W-EHD with LGA-TGA. It is easy to show that
the equations of motion of GMD (Ref. 30) are equivalent to

those of W-EHD with LGA-TGA [Eqs. (62)–(65)]. However,
the way for calculating thermal correlation functions pro-
posed in GMD is fairly different from that in W-EHD with
LGA-TGA. We note that W-EHD with LGA-TGA can be
applied to all versions of thermal correlation functions (i.e.,
both symmetrized and standard versions of any correlation
functions, and Kubo-transformed version of such as momen-
tum and force correlation functions, etc.) and can give correct
results (even for nonlinear operators) in the harmonic limit,
very much like LSC-IVR (as we showed in our earlier related
work7, 20). For some thermal correlation functions, the sym-
metrized version is not numerically favorable. For instance,
the oscillation of 〈x̂2(0)x̂2(t)〉mid is located in a very narrow
range in low temperature so that calculation of 〈x̂2(0)x̂2(t)〉mid

is computationally demanding due to statistical errors. An-
other example is the kinetic energy flux (F̂k = p̂

m
p̂2

2m ) autocor-
relation function which the GMD model is not able to evalu-
ate, it is straightforward to use W-EHD with LGA-TGA to
calculate the standard version 〈F̂k(0)F̂k(t)〉std and the sym-
metrized one 〈F̂k(0)F̂k(t)〉mid (which recover correct results in
the harmonic limit). W-EHD with LGA-TGA therefore offers
a more widely useful approach.

B. Numerical examples

1. Harmonic potential

As discussed in Secs. I–IV A, all three approaches (ELD,
ECD, and EHD) for the correlation function in the Wigner
phase space representation reduces to LSC-IVR in the har-
monic limit. [One sees that Eq. (2.8) of Ref. 7 recovers its
classical form in the harmonic limit, irrespective of what the
operator Â is. Note that classical dynamics applies to this clas-
sical form. It is then straightforward to show that LSC-IVR
gives exact quantum results by virtue of Eqs. (2.4) and (2.8)
of Ref. 7. One can also prove this based on semiclassical the-
ory or path integral formulation of the propagator (e−i Ĥ t/¯)
(Refs. 14, 15, 24, 33, and 34, and 35).] Any of W-ELD, W-
ECD, and W-EHD therefore recovers exact quantum corre-
lation functions of even nonlinear operators. Similarly, one
can verify that this is also true for the three approaches in the
Husimi phase space representation when the width parameter
is � = mω/¯.

Consider a harmonic potential V (x) = 1/2mω2x2 with
m = 1, ω = 1, and ¯ = 1. Figures 1(a) and 1(b) show the
correlation functions 〈p(0)p(t)〉Kubo and 〈x2(0)x2(t)〉std for a
low temperature β = 8. All three approaches (ELD, ECD, and
EHD) are able to produce the exact results as LSC-IVR does.
That is,

〈p (0) p(t)〉QM
Kubo = m

β
cos [ωt] (67)

and

〈x2 (0) x2(t)〉QM
std = 1

2 (1−s)4

(
¯

mω

)2
[

(1+s)2

2
+(1+s2)

× cos [2ωt]+i(1−s2) sin [2ωt]

]
, (68)
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FIG. 1. The autocorrelation functions for the one-dimensional harmonic oscillator for β = 8. Panel (a) Kubo-transformed momentum autocorrelation function;
(b) Real part of standard x2 autocorrelation function. Solid line: Exact quantum result; dotted line: LSC-IVR; solid circles: ELD; solid triangles: ECD; solid
squares: EHD. Panel (c) Kubo-transformed momentum autocorrelation function. Solid line: Exact quantum result; solid circles: RPMD; solid triangles: CMD
with classical operator; solid squares: CMD with effective classical operator. (d) Kubo-transformed x2 autocorrelation function. Solid line: Exact quantum
result; dashed line: RPMD; dotted line: CMD with classical operator; dot-dashed line: CMD with effective classical operator.

with s = e−β¯ω. (It is straightforward to derive the exact re-
sults Eqs. (67)–(69) by using the basis of eigenstates of the
Hamiltonian.)

In contrast, CMD (Refs. 12 and 13) and RPMD (Refs. 31
and 36) do not work well for correlation functions involving
nonlinear operators even in the limit of a harmonic potential.
For example, while the quantum result is

〈x2 (0) x2(t)〉QM
Kubo =

(
¯

2mω

)2 [
2

u
coth[u/2] cos [2ωt]

+ 2(coth[u/2])2 − 1

]
, (69)

CMD with the classical operator12, 13 gives

〈x2 (0) x2(t)〉CMD1
Kubo =

(
1

βmω2

)2

(cos [2ωt] + 2), (70)

CMD with the effective classical operator13 leads to

〈x2 (0) x2(t)〉CMD2
Kubo =

(
1

βmω2

)2 (
cos [2ωt]

+ u

2
coth[u/2] + 1

)
, (71)

and RPMD31 produces

〈x2 (0) x2(t)〉RPMD
Kubo = lim

P→∞
1

β2m2

⎡
⎣ P∑

j=1

1

ω4
j

(cos[2ω j t] + 1)

+
P∑

j=1

P∑
k=1

1

ω2
jω

2
k

⎤
⎦, (72)

with ω j =
√

ω2 + (2P2/¯2β2)[1 − cos(2 jπ/P)]. (We note
that Eqs. (70)–(72) were shown earlier by Horikoshi and
Kinugawa37.) The results are demonstrated in Fig. 5(d).

For the same reasons discussed in Paper II, one sees
that all three approaches (ELD, ECD, and EHD) combine
the properties of LSC-IVR (Refs. 7, 14–23, and 24, and 38–
45, and 46) /forward-backward semiclassical dynamics47–50

(FBSD) and of CMD (Refs. 12 and 13)/RPMD (Ref. 31). That
is, treat both linear and nonlinear operators equally well and
recover exact results in the harmonic limit, while preserving
the quantum canonical distribution.
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2. Asymmetric anharmonic potential

Results for the asymmetric anharmonic oscillator

V (x) = 1

2
mω2x2 − 0.10x3 + 0.10x4, (73)

(with m = 1, ω = √
2, and ¯ = 1) at a high temperatures

β = 0.1 are shown in Fig. 2. W-ECD/W-EHD gives correct
results. This is not surprising since W-ECD/W-EHD correla-
tion functions approach the LSC-IVR results in the high tem-
perature regime where classical dynamics is a good approxi-
mation to the exact quantum correlation function. At a much
lower temperature β = 8 (in Fig. 3), the correlation functions
calculated by W-ECD/W-EHD with LGA-TGA match the ex-
act quantum results almost perfectly, except a slight frequency
shift and slight dephasing in the amplitude at long times.
W-ECD/W-EHD shows systematical improvement over LSC-
IVR at longer times.

3. Quartic potential

The third model is

V (x) = x4/4, (74)

with m = 1 and ¯ = 1. Note that the potential form contains
no harmonic term, which represents a more severe test. Figure
4 shows that at the temperature β = 0.1 W-ECD/W-EHD with
LGA-TGA can give correct results in the dephasing regime
(up to three vibrational periods) but fails to describe the quan-
tum rephasing at longer times. Figure 4 shows that the EDA
(introduced in Paper II) is incapable of describing long-time
quantum coherence effects. Results for the much lower tem-
perature (β = 8) are shown in Fig. 5. W-ECD/W-EHD with
LGA-TGA describes the amplitude of oscillation reasonably
well (the small residual error and the dephasing originating
in the LGA-TGA treatment) with a noticeable frequency shift
after one vibrational period. Either approach significantly im-
proves over LSC-IVR which shows too quick dephasing after
the first period.

4. Double-well potential

The fourth model is a double-well potential

V (x) = −1

2
x2 + 1

10
x4, (75)

with m = 1, and ¯ = 1. The difference between the mini-
mum and the top of the barrier is 	E = 0.625, and that be-
tween the ground state energy and the top of the barrier is
	E0 ≈ 0.154. The 1-dim double-well potential is a challeng-
ing model because of fast coherent interference (i.e., quan-
tum recurrence) and coherent tunneling—purely quantum dy-
namical effects. We test all three approaches (ELD, ECD, and
EHD) in the Wigner phase space with the LGA-TGA.

Figures 6(a) and 6(b) show that all three approaches (W-
ELD, W-ECD, and W-EHD) reduce to LSC-IVR at high tem-
perature (β = 0.1). All these methods can give correct results
in the dephasing regime (up to three vibrational periods) but
fails to describe the rephrasing at longer times. At low temper-
ature β = 8, the thermal activation energy kB T is less than the

FIG. 2. The autocorrelation functions for the one-dimensional anharmonic
oscillator for β = 0.1. Solid line: Exact quantum result. In the following re-
sults, the Boltzmann operator is treated by TGA. Dotted line: LSC-IVR with
full TGA. Solid circles: W-ELD with LGA-TGA. Solid triangles: W-ECD
with LGA-TGA. Solid squares: W-EHD with LGA-TGA. Panel (a) Kubo-
transformed momentum autocorrelation function; (b) symmetrized force au-
tocorrelation function; (c) real part of standard x2 autocorrelation function.
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FIG. 3. As in Fig. 1, but for a much lower temperature β = 8.

barrier height 	E or even less than 	E0. Purely quantum co-
herence effects become even more significant at shorter times.
Figures 6(c)–6(f) show that all three approaches with EDA
still often extend the accuracy to longer time than LSC-IVR
even for the difficult double-well model.

FIG. 4. The autocorrelation functions for the one-dimensional quartic oscil-
lator for β = 0.1. Solid line: Exact quantum result. In the following results,
the Boltzmann operator is treated by the TGA. Dotted line: LSC-IVR with
full TGA. Solid circles: W-ELD with LGA-TGA. Solid triangles: W-ECD
with LGA-TGA. Solid squares: W-EHD with LGA-TGA. Panel (a) Kubo-
transformed momentum autocorrelation function; (b) symmetrized force au-
tocorrelation function; (c) real part of standard x2 autocorrelation function.
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FIG. 5. As in Fig. 3, but for a much lower temperature β = 8.

It is straightforward to show that LGA-TGA (Refs. 6 and
20) can be viewed as a further approximation of full-TGA
(Refs. 6 and 7) (i.e., approximate the width matrix G(β/2; q0)
by G(β/2; x) in the third line of RHS of Eq. (36) of Paper
II6 and then integrate over q0). Because full-TGA is more ac-
curate that LGA-TGA to obtain the Wigner function of the

operator Âβ or e−β Ĥ , full-TGA6, 7 often leads to better dy-
namics for any of the approaches than LGA-TGA does (when
both work reasonably well). This has been demonstrated and
discussed for ELD in Paper II. Comparison of Figs. 6(f) to
6(d) shows that this is also true for any of the approaches
even for the 1-dim double-well model system for some cor-
relation functions (with higher frequencies). [One also sees
from Figs. 6(c) and 6(e) that full-TGA does nearly the same
as LGA-TGA (only good for relatively short time) for other
correlation functions for this challenging model and all three
approaches (ELD, ECD, and EHD) fail as LSC-IVR does un-
der this condition].

Based on Fig. 6 (and Fig. 4), it is fair to point out that
none of the three approaches (ELD, ECD, and EHD) with
the EDA are capable of accurately describing purely nondis-
sipative quantum coherence effects, particularly in the regime
of quantum recurrence (irrespective of high or low temper-
ature). (Further work along these lines would be necessary.)
However, such quantum recurrence effects are often quenched
by coupling among the various degrees of freedom in con-
densed phase systems33, 51 [e.g., when a double well is cou-
pled with a (dissipative) harmonic bath14, 51]. The three ap-
proaches will extend the accuracy of correlation functions (of
both linear and nonlinear operators) to longer time and pro-
vide the framework for the development of novel theoreti-
cal/computational tools for studying quantum dynamical ef-
fects in large/complex molecular systems.

Among all three approaches (ELD, ECD, and EHD) that
conserve the canonical distribution in the phase space formu-
lation of quantum mechanics, the equations of motion of ELD
are different by construction from the other two, although
one can show the effective forces share some terms. [For in-
stance, when LGA-TGA is used, the W-ECD effective force
[Eq. (60)] shares the first two terms with the ELD effective
force [Eq. (44) of Paper II].] We note that the discussion
and comparisons of other methodologies for ELD [either in
Wigner or Husimi phase space representation] in Paper II also
apply to ECD or EHD, although we do not show numerical
results.

Finally we note that the calculation of different types of
correlation functions for all three approaches (ELD, ECD and
EHD) is in the same procedure as that for LSC-IVR as shown
in Paper II (Ref. 6) [except that the trajectory-based dynamics
is different]. For instance, by virtue of the identity

i¯β ˆ̇A
β

Kubo = [e−β Ĥ , Â], (76)

and the strategy that we used in Appendix B of our earlier
work,16 one can often express (experiment-related) Kubo-
transformed correlation functions52, 53 in the phase space
based on their counterparts of the standard version.6, 16–18, 20, 21

The Kubo-transformed and standard versions are generally
more convenient and numerically favorable to compute.18, 19

(The symmetrized version is useful while it is difficult to ex-
press the other two versions in the phase space. E.g., the flux-
side correlation function.20)
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FIG. 6. The autocorrelation functions for the one-dimensional double well potential for β = 0.1 and for β = 8. Panels (a), (c), and (e): Kubo-transformed
momentum autocorrelation function. Panels (b), (d), and (f): Real part of standard x2 autocorrelation function. Panels (a)–(d)—Solid line: Exact quantum
result; dotted line: LSC-IVR with LGA-TGA; solid circles: W-ELD with LGA-TGA; solid triangles: W-ECD with LGA-TGA; solid squares: W-EHD with
LGA-TGA. Panels (e)–(f)—Solid line: Exact quantum result; Dotted line: LSC-IVR with LGA-TGA; Solid circles: W-ELD with full-TGA; Solid triangles:
W-ECD with full-TGA.

V. CONCLUSION REMARKS

Following the two preceding papers (Papers I and II),
in this paper we have presented two approaches in the spirit
of the phase space continuity equation and of the Hamilton
equations of motion in classical mechanics, for generating
two families of trajectory-based dynamics (ECD and EHD,

respectively) which also conserve the quantum canonical dis-
tribution in the phase space formulation of quantum mechan-
ics for thermal equilibrium systems. By virtue of EDA that we
implemented in Paper II, both ECD and EHD can be used for
evaluation of quantum correlation functions for thermal equi-
librium systems. Either ECD or EHD recovers exact quan-
tum correlation functions (of even nonlinear operators) in the
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classical (¯→ 0), high-temperature (β → 0), and harmonic
limits. In addition to ELD, ECD and EHD thus also pro-
vide appealing trajectory-based approximate quantum meth-
ods for thermal correlation functions which combine the prop-
erties of LSC-IVR (Refs. 7, 14–23, and 24, and 38–46) and
other comparable approximate methods.12, 13, 16, 31, 47–50, 54–67

[Such as W-ELD, W-ECD, and W-EHD can also be viewed
as improved versions of LSC-IVR (Ref. 7). More discussion
on the relation between preserving the canonical ensemble
and long time behavior can be found in Refs. 7, 18, 50, 68,
and 69].

It is further shown that EHD and ECD are the same
for one-dimensional systems as long as the canonical dis-
tribution function in the phase space can be expressed as
Eq. (38), but not for general multi-dimensional systems. As
discussed in Appendix F, EHD is always well defined for
multi-dimensional systems as long as Eq. (E4) is a good
approximation for the canonical distribution function, while
one needs some additional criterion to uniquely define ECD
for multi-dimensional systems. (See Appendixes F and G for
more discussion.)

The three approaches (ELD, ECD, and EHD) consist
of two types of trajectory-based dynamics which conserve
canonical distribution in the phase space formulation of quan-
tum mechanics: ECD and EHD preserve Peq (xt , pt ) dxt dpt ,
while ELD conserves Peq (xt , pt ). These two types of
trajectory-based dynamics offer the framework to unite and
improve all trajectory-based approximate quantum methods
in the past [such as W-ELD and W-ECD (Ref. 7), CMD
(Refs. 12 and 13), and GMD (Ref. 30)] which are able to
conserve the quantum canonical distribution in a single phase
space for thermal equilibrium systems. One can even develop
new trajectory-based dynamical methods in the framework of
these approaches in phase space formulations of quantum me-
chanics. (Most discussions on ELD in the two preceding pa-
pers also apply to ECD and EHD.)

We note that all these approaches fail to describe
long-time quantum rephasing (quantum recurrence) effects
in thermal correlation functions. [More advanced SC-IVR
methods33, 34, 70, 71 (than LSC-IVR) or real time path integral
algorithms72, 73 (or other real time quantum approaches81)
will be needed for capturing quantum recurrence effects.]
For many cases in condensed phase systems, such long-time
quantum coherence effects (often shown in one-dimensional
bounded systems) are expected to be quenched by coupling
among the various degrees of freedom.33, 74, 75 Since these ap-
proaches can accurately capture the most important short-
time dephasing behavior and extend the accuracy of corre-
lation functions (of both linear and nonlinear operators) to
longer time (comparing with LSC-IVR and other compara-
ble methods), they can provide practical and promising tools
for including quantum effects for large/complex molecular
systems in condensed phase. In addition to the methods that
we discussed in Paper II, an efficient path integral repre-
sentation of these approaches will be proposed in a subse-
quent paper. It will be a subject of future interest to further
test and compare these two types of trajectory-based dynam-
ics for realistic (polyatomic) molecular systems in condensed
phase.

Finally, we note that the strategies that we used to gener-
ate trajectory-based dynamics which conserves the canonical
distribution in the phase space formulation of quantum me-
chanics in the series of papers (Papers I and II and the cur-
rent manuscript) can be generalized for systems with multi-
electronic potential surfaces. For example, one can extend
our approaches (ELD, ECD, and EHD) to the Meyer-Miller-
Stock-Thoss mapping model76, 77 for generating trajectory-
based dynamics which satisfies detailed balance. All three
approaches can also be used as models for systems with non-
equilibrium initial conditions (i.e., pure states or mixed states)
coupled with the bath with infinite modes, which defines the
temperature of the whole system-bath system.
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APPENDIX A: PHASE SPACE CONTINUITY
EQUATION OF THE FIRST KIND AND ITS
ALTERNATIVE STATEMENT

For convenience, we define the vector υ t = (xt , pt )T ,
∇t = (∂/∂xt , ∂/∂pt )T , and the Jacobian matrix of the trans-
formation (generated from the dynamics)

J(t) = ∂ (xt , pt )

∂(x0, p0)
≡ ∂υ t

∂υ0
. (A1)

Because the equality of Eq. (29) in Paper I always holds,
one can obtain

dP
dt

= υ̇ t · ∇tP+ ∂P
∂t

= υ̇ t · ∇t P−∇t · (Pυ̇ t )=−P∇t · υ̇ t ,

(A2)
from the phase space continuity equation of the first kind
[Eq. (8)].

If the dynamics is time-implicit (irrespective of whether
it is Hamiltonian or non-Hamiltonian), one can show

d (P (υ t ; t) det(J(t)))

dt
= dP (υ t ; t)

dt
det(J(t))

+P (υ t ; t)
d (det(J(t)))

dt
= 0,

(A3)
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with Eq. (C8) in Paper I and Eq. (A2). That is,
ρ (υ t ; t) det(J(t)) is a constant during the dynamics, i.e.,

ρ (υ t ; t) det(J(t)) = ρ (υ0; 0) det (J (0)) . (A4)

The initial value of the Jacobian matrix is always an iden-
tity matrix, i.e.,

J (0) = 1, (A5)

which leads to

det (J (0)) = 1. (A6)

The determinant of the Jacobian matrix J(t) by its defini-
tion in Eq. (A1) measures the change of the volume element
during the dynamics, i.e.,

dxt dpt =
∣∣∣∣∂ (xt , pt )

∂(x0, p0)

∣∣∣∣ dx0dp0 = det(J(t))dx0dp0. (A7)

Substituting Eq. (A6) and Eq. (A7) into Eq. (A4), one
obtains Eq. (10), or equivalently,

d (ρ (υ t ; t) dυ t )

dt
= 0. (A8)

Eq. (10) or Eq. (A8) is an alternative statement of the
phase space continuity equation of the first kind [Eq. (8)], as
long as the dynamics is time-implicit.

APPENDIX B: MORE DISCUSSION ON THE
EFFECTIVE FORCE AND THE CHOICE OF
EQUATIONS OF MOTION IN ECD

It is important to point out that the effective force
−∂/∂xVeff (x, p) is not guaranteed to be always well defined
[in Eq. (16) or Eq. (17)] at any phase point (x, p), although the
right-hand side (RHS) of Eq. (16) or Eq. (17) always exists.
One should be careful with this particularly for nonstationary
density distribution functions [while the phase points satisfy
P (x, p; t) = 0]. For nonstationary systems, it is more conve-
nient to work with nonnegative distribution functions, such as
the Husimi distribution function,25 the Glauber Q function11

and several others.26–28 Nevertheless, the effective force for
the thermal equilibrium system is often well defined (even
for such as the Wigner distribution function2, 78), because
those phase points for P eq (x, p) = 0 do not change with time
for the thermal equilibrium system and have no (or little)
contribution to the integral over the phase space in such as
Eq. (25) and Eq. (33) (that is those phase points can be effec-
tively ignored).

Note that the definition of the ELD effective force (as dis-
cussed in Paper I) requires that the partial distribution func-
tion for the momentum p at any fixed position x based on the
equilibrium density distribution P eq (x, p) be (effectively) a
Gaussian function. The definition of the ECD effective force
[given by Eq. (18) or Eq. (19)], however, does not particu-
larly require that. So ECD can be more generally applied than
ELD.

Rather than the effective potential Veff (x, p), it is more
convenient to define the effective force −∂/∂xVeff (x, p) as
we initially did in Ref. 7. Defining the effective force is ad-
equate for the purpose of constructing trajectory-based dy-

namics in the phase space formulation of quantum mechanics,
while defining the effective potential Veff (x, p) often involves
much more redundant information.

For either ECD or EHD in the present paper, we always
define ẋ = p/m to be the relation between the position and
momentum, which is independent of the density distribution
function and independent of the system. Although this is per-
haps the most convenient and most useful choice, there are
still many other ways to define the equations of motion (from
quantum Liouville’s theorem) in the phase space formulation
of quantum mechanics in the spirit of the phase space continu-
ity equation of the first kind [Eq. (6) or Eq. (8)] or Hamilton
equations of motion in classical mechanics. The discussion
on ELD in Appendix B of Paper I can similarly apply to ei-
ther ECD or EHD. For all these approaches (ELD, ECD, and
EHD) which conserve the canonical distribution in the phase
space formulation of quantum mechanics, one can define the
equations of motion similar to those in the literature10, 79 and
even propose some type of sourceless trajectory-based dy-
namics in the quantum phase space [i.e., Eq. (5) holds]. In
addition, these approaches offer the framework for one to use
the perturbation technique or the variational principle to de-
fine the equations of motion such that they lead to more accu-
rate results. [Meanwhile one should also consider whether the
choice of equations of motion is practical to obtain or not for
general (complex) systems.] Further work along these lines
would certainly be of interest.

We also note some other work80 has been done since we
first pointed out that a generalized density operator ( Âβor ρ̂ Â)
can be defined such that the quantum Liouville theorem can
be applied for calculating quantum time correlation function.7

APPENDIX C: EXPECTATION VALUE OR ENSEMBLE
AVERAGE IN ECD

Suppose υ = (x, p)T represents a point in a fixed frame-
work of the coordinate system for the phase space. ρ is the
density distribution function. Here, we focus on the trajectory-
based dynamics that satisfies the phase space continuity equa-
tion of the first kind [i.e., Eq. (6) or Eq. (8)].

Note that the dynamics is already described in the Eule-
rian picture (i.e., the coordinate system is fixed), because only
the partial time derivative is involved. This means one can ex-
change υ ′ with υ t , so one has

〈B(t)〉= 1

Z

∫
dυ ′ρ(υ ′; t)B̃(υ ′)= 1

Z

∫
dυ tρ (υ t ; t) B̃ (υ t ).

(C1)
By virtue of Eq. (10), which is an alternative statement of

the phase space continuity equation of the first kind, Eq. (C1)
becomes

〈B(t)〉 = 1

Z

∫
dυ0ρ (υ0; 0) B̃ (υ t ). (C2)

Please note Eq. (C1) or Eq. (C2) applies to all kinds
of time-implicit trajectory-based dynamics which satisfies
Eq. (A8). Classical dynamics and ECD discussed in Sec. II
are two examples.

Interestingly, one sees that Eq. (C2) is always the ex-
pression for evaluating the expectation value or ensemble
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average, irrespective of whether the dynamics conserves
ρ (υ t ; t) or ρ (υ t ; t) dυ t along the trajectory, and regardless
of whether the dynamics is Hamiltonian or non-Hamiltonian.

APPENDIX D: PROOF OF CONSERVATION
OF THE VOLUME ELEMENT IN THE EQUILIBRIUM
HAMILTON DYNAMICS

One can show the proof of Eq. (53) within the same
procedure described in Appendix C of Paper I, by exchang-
ing the phase space variables υ = (x, p)T with the new vari-
ables υeff = (xeff, peff)T . For the dynamics [Eq. (50)] gener-
ated from the effective Hamiltonian Heff(xeff, peff) [such as
Eq. (49)], it is straightforward to show the matrix ∂υ̇

eff
t /∂υ

eff
0

is given by

∂υ̇
eff
t

∂υ
eff
0

= TH (t)
∂υ

eff
t

∂υ
eff
0

, (D1)

with the matrix TH (t) given by

TH (t) =

⎛
⎜⎜⎜⎜⎝

∂2 Heff

∂xeff
t ∂peff

t

∂2 Heff(
∂peff

t

)2

− ∂2 Heff(
∂xeff

t

)2 − ∂2 Heff

∂xeff
t ∂peff

t

⎞
⎟⎟⎟⎟⎠ . (D2)

One can verify that the RHS of Eq. (D1) is zero, which
suggests that the velocity field (ẋ eff, ṗeff) for EHD is source-
less. Followed from Eq. (C3) in Appendix C of Paper I, the
determinant of the Jacobian matrix is invariant with time,

d

dt
det(J(t)) = 0. (D3)

Because the Jacobian matrix is an identity matrix at time
t = 0 [Eq. (A5)], the determinant of the Jacobian matrix is
always 1, i.e., ∣∣∣∣∣∂

(
xeff

t , peff
t

)
∂

(
xeff

0 , peff
0

)
∣∣∣∣∣ = 1. (D4)

This proves conservation of the volume element during
the dynamics [i.e., Eq. (53)].

As a special case, when meff → m, peff → p, and xeff ≡
x , the above procedure also gives the proof for that classical
dynamics conserves the volume element of the phase space
(x, p).

APPENDIX E: LGA BASED ON LOCAL HARMONIC
APPROXIMATION (LGA-LHA)

Preliminaries to this appendix are covered in Sec. II C of
our earlier work.20 Let M be the diagonal “mass matrix” and
let T be an orthogonal matrix, which diagonalizes the mass-
weighted Hessian matrix. By virtue of the fact that〈

x − 	x
2

∣∣ e−β Ĥ
∣∣x + 	x

2

〉
〈x | e−β Ĥ |x〉 = exp

[
−m Q (u)

2¯2β
(	x)2

]
,

(E1)
for the 1-dim harmonic case which was first implemented in
the local harmonic approximation (LHA) of Shi and Geva,23

it is straightforward to show the Wigner function of the Boltz-
mann operator e−β Ĥ is given by

Peq
W (x, P) = 〈x| e−β Ĥ |x〉

N∏
k=1

[(
β

2π Q (uk)

)1/2

× exp

[
−β

(Pk)2

2Q (uk)

] ]
, (E2)

where uk = β¯ωk , Pk is the k-th component of the mass-
weighted normal-mode momentum P and the quantum cor-
rection factor with the LGA ansatz proposed by Liu and
Miller20 for both real and imaginary frequencies is given by

Q(u) =

⎧⎪⎪⎨
⎪⎪⎩

u/2

tanh (u/2)
for real u,

= 1

Q (ui )
= tanh (ui/2)

ui/2
, for imaginary u(u = iui ).

(E3)

We express Eq. (E2) in the phase space (x, p) as

Peq, LGA (x, p)=〈x| e−β Ĥ |x〉
(

β

2π

)N/2∣∣det
(
M−1

therm (x)
)∣∣1/2

× exp

[
−β

2
pT M−1

thermp
]
, (E4)

with the thermal mass matrix Mtherm given by

M−1
therm (x) = M−1/2TQ (u)−1 TT M−1/2, (E5)

and the diagonal matrix Q (u) = {Q (uk)}.
Note that the element 〈x| e−β Ĥ |x〉 in Eq. (E4) can be ac-

curately evaluated by path integral techniques without any
approximation on the Hamiltonian. In addition, the thermal
mass matrix Mtherm can be obtained from the Hesian of the
bare potential [i.e., Eq. (2.15) of Ref. 20] or from that of
the more sophisticated Gaussian averaged potential, by LGA-
FKA or various TGAs (discussed in Paper II) when the poten-
tial can be fitted by polynomials or Gaussian functions.

It is straightforward to show Eq. (E4) is the general form
for the Wigner canonical distribution function when any of the
LGAs or TGAs with the LGA strategy mentioned in Paper II
are used for the thermal mass matrix Mtherm (x). (Note that the
element 〈x| e−β Ĥ |x〉 can also approximately be evaluated by
the TGAs.) For example, Eq. (43) of Paper II can be expressed
as Eq. (E4) as well.

One can further show Eq. (E4) is also the general form for
the Husimi canonical distribution function 〈x, p| e−β Ĥ |x, p〉
when it is evaluated with the strategy that we proposed in
Appendix I-2 of Paper II. For instance, the Husimi canoni-
cal distribution function 〈x, p| e−β Ĥ |x, p〉 evaluated by a sin-
gle imaginary time trajectory by the thermal Frozen Gaussian
[Eqs. (A27) and (A28) of Paper II] or by the thermal Thawed
Gaussian [Eqs. (A39) and (A40) of Paper II] can be written
as Eq. (E4) too. (Note that � is a matrix in multi-dimensional
systems.)
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APPENDIX F: GENERALIZATION OF ECD FOR
MULTI-DIMENSIONAL SYSTEMS

For multi-dimensional systems, the ECD equations of
motion become

ẋ = M−1p,

ṗ = −∂V ECD
eff (x, p)

∂x
,

(F1)

with the ECD effective force −∂V ECD
eff (x, p)/∂x given by

∂

∂p
·
(

P eq (x, p)
∂V ECD

eff (x, p)

∂x

)
= ∂P eq (x, p)

∂x
M−1p.

(F2)
One sees that the ECD effective force −∂V ECD

eff (x, p)/∂x
is not uniquely defined by Eq. (F2) for multi-dimensional
systems. There are infinitely many possible effective forces
for Eq. (F2) in the multi-dimensional case, although one can
choose one according to some additional criterion. (For ex-
ample, one may request that each term of the dot product on
the left-hand side equals to the counterpart of the other side of
Eq. (F2), while it is expressed in mass-weighted normal mode
coordinates.)

APPENDIX G: GENERALIZATION OF EHD
FOR MULTI-DIMENSIONAL SYSTEMS

Similar to Sec. III, the generalization of EHD to multi-
dimensional systems requires a transformation of phase space
variables

xeff = x,

peff = Meff (x) M−1p.
(G1)

The effective canonical distribution function with the
new variables (xeff, peff) becomes

Peq
eff (x

eff, peff) =
∣∣∣∣ ∂(x, p)

∂(xeff, peff)

∣∣∣∣ P eq (x, p)

=
∣∣∣∣ det (M)

det(Meff (x))

∣∣∣∣ P eq (x, p) . (G2)

The effective Hamiltonian Heff(xeff, peff) is then defined
by

Peq
eff (x

eff, peff) =
(

β

2π

)N/2

|det (M)|−1/2 e−β Heff(x
eff,peff)

.

(G3)
Here, the effective mass matrix Meff is defined in such a

way that

exp

[
−β

2
(peff)T M−1

eff (x) peff

]

≡ exp

[
−β

2
pT M−1Meff (x) M−1p

]
. (G4)

gives the same exponential term as that of the momentum dis-
tribution function based on the Wigner density function [i.e.,
Peq

W (x, p)] with fixed x. That is, Eq. (E4) leads to the effective

mass matrix

Meff (x) = M M−1
thermalM, (G5)

as a generalization for Eq. (43). Note that the transformation
in Eq. (G1) leads to

ṗeff = Meff (x) M−1ṗ + pT M−1 ∂Meff (x)

∂x
M−1p. (G6)

By virtue of Eq. (E4) and Eq. (G2), the EHD equations
of motion can be expressed in the phase space (x, p) as

ẋ = M−1p,

ṗ = − ∂

∂x
V EHD

eff (x) ,

(G7)

with the EHD effective force defined as

− ∂

∂x
V EHD

eff (x) = M M−1
eff

{
−1

2
pT M−1 ∂Meff

∂x
M−1p

+ 1

β

∂

∂x
ln[〈x| e−β Ĥ |x〉]

− 1

2β

∂

∂x
ln[|det(Meff(x))|]

}
. (G8)

Equations (G7) and (G8) are the generalization of
Eqs. (58) and (59) for the Wigner phase space for the multi-
dimensional system.

Similarly, one can obtain the EHD equations of motion
for the Husimi and other phase spaces based on Eqs. (G1)-
(G5) and Eqs. (G6) and (G7).

APPENDIX H: THE W-ELD AND W-EHD APPROACHES
WITH LGA-TGA FOR MULTI-DIMENSIONAL SYSTEMS

The Wigner canonical distribution function based on
LGA-TGA is given by Eq. (43) of Paper II. It is straightfor-
ward to show the ELD effective force for multi-dimensional
systems is

− ∂

∂x
V W−ELD

eff (x, p) = G
(β

2
; x

)−1
M−1

[
¯2 ∂γ

(
β

2 ; x
)

∂x

− 1

2
pT

∂G
(

β

2 ; x
)

∂x
p

⎤
⎦ , (H1)

as a generalization from Eq. (44) of Paper II. The equations
of motion for W-ELD with LGA-TGA then become

ẋ = M−1p

ṗ = − ∂V W−ELD
eff (x,p)

∂x .
(H2)

Comparing the exponential term for the momenta distri-
bution of Eq. (43) of Paper II to that of Eq. (E4), one obtains
the relation

M−1
thermal (x) = 2

¯2β
G

(
β

2
; x

)
. (H3)
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By virtue of Eq. (G5), the effective mass matrix becomes

Meff (x) = 2

¯2β
M G

(
β

2
; x

)
M, (H4)

as a generalization for Eq. (62) or a special case for Eq. (G5).
According to Eqs. (58) and (59), one can express the

equations of motion in the phase space (x, p) as Eq. (G7),
with the EHD effective force given by

− ∂

∂x
V W−EHD

eff (x)=G
(

β

2
; x

)−1

M−1

×
[
¯2 ∂γ

(
β

2 ; x
)

∂x
− 1

2
pT ∂G

(
β

2 ; x
)

∂x
p− ¯

2

2

∂

∂x
ln

∣∣∣∣G
(

β

2
; x

)∣∣∣∣
]
.

(H5)

(Note the difference between Eq. (H1) for ELD and Eq. (H5)
for EHD.) It is straightforward to show that Eq. (G8) of Ap-
pendix G directly lead to Eq. (H5) when the LGA-TGA is
used for the Wigner density function. (Eqs. (G7) and (G8) of
Appendix G are the general formula for any local Gaussian or
thermal Gaussian approximations.)

As discussed in Appendix of Paper II, LGA-TGA re-
quires that the potential surface be accurately fitted by poly-
nomials, exponentials, or Gaussians such that the Gaussian
integrals necessary to evaluate in the equations of motions
could be evaluated analytically, otherwise performing these
Gaussian integrals in multi-dimensional systems would be
too computationally demanding. We also note that LGA-TGA
does not work well in imaginary frequency regime at low tem-
perature (e.g., for chemical reaction rates), while LGA-LHA
(with imaginary time path integral) can still be applied. We
will show an efficient path integral representation in a subse-
quent paper.
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