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We show the exact expression of the quantum mechanical time correlation function in the phase
space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum
canonical distribution–equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to
approximately evaluate the exact expression. It gives exact thermal correlation functions (of even
nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical,
high temperature, and harmonic limits. Various methods have been presented for the implementation
of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been
made for a harmonic oscillator and two strongly anharmonic model problems, for each potential
autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests
ELD can be a potentially useful approach for describing quantum effects for complex systems in
condense phase. © 2011 American Institute of Physics. [doi:10.1063/1.3555274]

I. INTRODUCTION

Thermal time correlation functions encode important
dynamical information of complex systems.1 For example,
dipole moment correlation functions are related to infrared
absorption spectra, flux correlation functions yield reaction
rates, velocity correlation functions can be used to calculate
diffusion constants, energy flux correlation functions produce
thermal conductivities, and vibrational energy relaxation rate
constants can be expressed in terms of force correlation func-
tions. Thermal time autocorrelation functions are of the form

CAB(t) ≡ 〈A(0)B(t)〉 = 1

Z
Tr( Âβei Ĥ t/¯ B̂e−i Ĥ t/¯), (1)

where Âβ

std = e−β Ĥ Â for the standard version of the correla-
tion function, or Âβ

sym = e−β Ĥ/2 Âe−β Ĥ/2 for the symmetrized
version,2 or Âβ

Kubo = 1
β

∫ β

0 dλe−(β−λ)Ĥ Âe−λĤ for the Kubo-
transformed version.3 These three versions are related to one
another by the following identities between their Fourier
transforms,

β¯ω

1 − e−β¯ω
I Kubo

AB (ω) = I std
AB(ω) = eβ¯ω/2 I sym

AB (ω), (2)

where IAB(ω) = ∫∞
−∞ dt e−iωt CAB(t), etc. Here Z = Tr

[e−β Ĥ ] (β = 1/kB T ) is the partition function, Ĥ the (time-
independent) Hamiltonian of the system with the total number
of degrees of freedom N , which we assume to be of standard
Cartesian form

Ĥ = 1
2 p̂T M−1p̂ + V (x̂), (3)

where M is the diagonal “mass matrix” with elements {m j },
and p̂ and x̂ are the momentum and coordinate operators, re-

a)Electronic mail: jianliu@berkeley.edu.
b)Electronic mail: millerwh@berkeley.edu.

spectively; and Â and B̂ are operators relevant to the specific
property of interest.

There are two classes of practical trajectory-based
methods for calculating these correlation functions for
complex/large polyatomic molecular systems which achieve
the exact quantum result as t → 0 and approach the classical
limit in the classical and high-temperature limits (i.e., ¯→ 0
and β → 0, respectively). One class of such approaches
includes the so-called linearized SC-IVR (LSC–IVR) or
classical Wigner model4–10 and the forward–backward semi-
classical dynamics (FBSD) approach,11–27 which are based on
various initial value representations (IVRs) of semiclassical
(SC) theory.28–44 The LSC–IVR/classical Wigner model
gives the exact quantum correlation function in the short
time limit45 (t → 0) and for harmonic potentials6 (even for
nonlinear operators, i.e., nonlinear functions of the position
or momentum operators). The LSC–IVR has the drawback
that the distribution generated for the operator Âβ is not
invariant with time for the case Â = 1 (i.e., Âβ = e−β Ĥ , the
Boltzmann operator itself), which can be a serious problem
if the long time behavior of the correlation function is
important. The LSC–IVR/classical Wigner model also cannot
describe true quantum coherence effects in time correlation
functions, though it can describe quantum decoherence and
tunneling effects very well.5–8, 22, 46–58 The FBSD approach
shares many properties of LSC–IVR.

Another class of approximate approaches that are com-
parable to LSC–IVR and FBSD include centroid molecular
dynamics (CMD) (Refs. 59–61) and ring polymer molecular
dynamics (RPMD).62–64 Similar to LSC–IVR and FBSD, all
these trajectory-based approaches fail to capture true quantum
interferences but do describe quantum decoherence and tun-
neling effects fairly well and are relatively straightforward to
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apply to complex polyatomic molecular systems for the en-
tire range of temperature for systems of chemical interests.
For both CMD and RPMD models, the quantum mechanical
equilibrium distribution is conserved, i.e., for the case Â = 1,
the correlation function is time independent. But both of these
models fail to give the correct result if both operators [ Â and
B̂ in Eq. (1)] are nonlinear operators, even in a harmonic
potential.65, 66 See Refs. 48, 49, 54, and 67 for more discus-
sion and further comparisons. (Reference 67 shows that both
CMD and RPMD models can cause serious problems in the
high frequency regime even for correlation functions with lin-
ear operators.)

To summarize, LSC–IVR/FBSD and CMD/RPMD have
different sets of properties, all of which are desirable. It
would thus be appealing to have a trajectory-based dynami-
cal method for thermal correlation functions which combines
all these properties, i.e., which

1. conserves the quantum mechanical equilibrium distribu-
tion; and

2. produces the exact quantum correlation functions even
for nonlinear functions of the position or momentum op-
erators in the harmonic limit.

Such an approach was presented in our earlier work6

using the Liouville equation for the Wigner distribution
function, and this has been generalized in the preceding paper
(Paper I) to various quantum phase space distribution
functions.

The purpose of this paper is to show how these ap-
proaches, which we refer to as “equilibrium Liouville
dynamics” (ELD), can be implemented in practice and to
test them with various standard problems, to see how they
perform compared to other approaches. Section II first shows
the exact expression of the time correlation function in
the phase space formulation of quantum mechanics, and
Sec. III then discusses the “equilibrium distribution ap-
proximation” (EDA), which allows use of trajectory-based
dynamics such as ELD for practical evaluation of the exact
expression. Section IV and the Appendix present various
approximations for the implementation of Wigner ELD
(W-ELD) or Husimi ELD (H-ELD). Some numerical appli-
cations for the standard, Kubo-transformed, and symmetrized
autocorrelation functions are demonstrated in Sec. V, includ-
ing a harmonic model, a strongly anharmonic oscillator, and
a more challenging quartic potential. Section VI summarizes
and concludes.

II. THE EXACT FORMULATION OF THE
CORRELATION FUNCTION IN THE PHASE SPACE
FORMULATION OF QUANTUM MECHANICS

As a generalization of our recent work on improved
versions of LSC–IVR,6 it is straightforward to show, along
similar lines to Paper I, that the time correlation function
can be expressed in the phase space formulation of quan-
tum mechanics in terms of a “general density operator” Âβ(t)
= e−i Ĥ t/¯ Âβei Ĥ t/¯ for systems at equilibrium, or more gen-
erally Âβ(t) = e−i Ĥ t/¯ρ̂0 Âei Ĥ t/¯ for any initial density ρ̂0 of
the system. We give a brief summary below.

Quite a few representations68–82 of the distribution
function that have been proposed for the standard density
operator ρ̂(t) (as discussed in Paper I) are also able to
generate a one-to-one correspondence mapping from the
general density operator Âβ(t) to the phase space. In other
words, replacing the standard density operator ρ̂(t) by the
general density operator Âβ(t) in Eq. (5) of Paper I, one
obtains the expression of the correlation function in the phase
space formulation of quantum mechanics

CAB(t) = 1

Z

∫
dx
∫

dp A(x, p; t)B̃(x, p). (4)

Here the “general” phase space distribution A(x, p; t) and the
function B̃(x, p) can be expressed in the unified classification
scheme of Cohen83 given by the following equations

A(x, p; t) = 1

4π2

∫
dζ

×
∫

dη Tr[ Âβ(t)eiζ x̂+iη p̂ f (ζ, η)] e−iζ x−iηp,

(5)

B̃(x, p) = 2π¯

4π2

∫
dζ

×
∫

dη Tr[ f (−ζ,−η)−1eiζ x̂+iη p̂ B̂] e−iζ x−iηp.

(6)

For the general density operator Âβ(t), the quantum Liouville
theorem (von Neumann equation) describes how it evolves in
time,

∂ Âβ(t)

∂t
= − 1

i¯
[ Âβ(t), Ĥ ]. (7)

By applying exactly the same procedure demonstrated
in Appendix A of Paper I, one can show that Eq. (7) in
the Wigner phase space representation becomes Eq. (36) of
Paper I by replacing PW(x, p; t) by AW(x, p; t), and that
in the Husimi phase space representation gives Eq. (37) of
Paper I by replacing PH (x, p; t) by AH (x, p; t). Similarly,
one can also express the phase space formulation of quantum
Liouville’s theorem for the general density operator Âβ(t)
with any of other distribution functions (and corresponding
phase spaces) mentioned in Paper I.

In principle, if one could exactly solve the partial differ-
ential equations [i.e., Eq. (36) or (37) of Paper I by replacing
P(x, p; t) by A(x, p; t)], one would get the exact dynamics for
the general phase space distribution A(x, p; t) and, thus, the
exact quantum correlation function [Eq. (4)]. However, this
task is intractable for large systems. We present another point
of view in Sec. III, which allows one to solve the problem
approximately.

III. EQUILIBRIUM DISTRIBUTION APPROXIMATION

A. Evaluation of the correlation function
in classical mechanics

In classical mechanics, the phase space continuity equa-
tion or Liouville’s theorem holds for the general density
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distribution Acl (x, p; t), i.e.,

∂Acl(x, p; t)

∂t
= − ∂

∂x

(
Acl

p

m

)
+ ∂

∂p

(
Acl

∂V (x)

∂x

)
, (8)

or

∂Acl(x, p; t)

∂t
= − ∂

∂x
(Acl ẋ) − ∂

∂p
(Acl ṗ), (9)

which states

Acl(xt , pt ; t)dxt dpt = Acl(x0, p0; 0)dx0dp0. (10)

(It is easy to further show Acl (xt , pt ; t) = Acl (x0, p0; 0) along
classical trajectory.)

The expression of the correlation function [i.e., Eq. (1) or
Eq. (4)] in classical mechanics becomes

CAB(t) = 1

Zcl

∫
dx
∫

dpAcl(x, p; t)Bcl(x, p). (11)

Since the classical dynamics conserves the volume el-
ement of the phase space, Eq. (11) has the equivalent form

CAB(t) = 1

Zcl

∫
dxt

∫
dpt Acl (xt , pt ; t)Bcl(xt , pt )

= 1

Zcl

∫
dx0

∫
dp0Acl(x0, p0; 0)Bcl(xt , pt ). (12)

In classical mechanics, the general density distribution is de-
termined by its initial value along the trajectory

Acl (xt , pt ; t) = Acl (x0, p0; 0) = Peq
cl (x0, p0; 0)Acl(x0, p0),

(13)

which leads Eq. (12) to

CAB(t) = 1

Zcl

∫
dx0

∫
dp0Peq

cl (x0, p0; 0)

×Acl(x0, p0)Bcl(xt , pt ). (14)

Here Acl and Bcl are the classical quantities cor-
responding to operators Â and B̂, respectively, and Zcl

= ∫ dx0
∫

dp0Peq
cl (x0, p0; 0) is the classical partition func-

tion.
One sees that there are two ways for calculating the ther-

mal correlation function in classical mechanics. One way is to
solve the partial differential equation [Eq. (8)] in the Eulerian
viewpoint, which is not feasible for large systems. The other
is to evaluate the classical correlation function along classical
trajectories, which conserve the classical canonical distribu-
tion, i.e.,

∂Peq
cl (x, p; t)

∂t
= 0, (15)

although the general density distribution Acl(x, p; t) is in gen-
eral not stationary, i.e.,

∂Acl(x, p; t)

∂t
�= 0. (16)

The latter approach is conventional for calculating the
correlation function in classical mechanics.

B. Evaluation of the correlation function
with the trajectory-based dynamics in the phase
space formulation of quantum mechanics

Making the analogy to the second approach for evaluat-
ing the correlation function in classical mechanics, we sup-
pose that the thermal correlation function can be evaluated
along the trajectories in dynamics that conserves the quantum
canonical distribution, i.e.,

∂Peq (x, p; t)

∂t
= 0, (17)

such that

CAB(t) = 1

Z

∫
dx0

∫
dp0 A(x0, p0; 0)

×B̃(xt (x0, p0), pt (x0, p0)). (18)

Although presented here in a new way, this is essentially
the same as the “equilibrium distribution approximation” that
we introduced in our earlier work.6 It is easy to verify that
Eq. (18) in principle gives the exact result at t = 0. The EDA
allows the use of ELD, a family of trajectory-based dynam-
ics satisfying Eq. (17), for evaluation of thermal correlation
functions based on Eq. (18). As one can verify, for the case
Â = 1, Eq. (18) reduces to the canonical ensemble average
Eq. (51) in Paper I for 〈B(t)〉, which is time invariant for any
trajectory-based dynamics satisfying Eq. (17).

For convenience, one can define the function f Aβ

f Aβ (x0, p0; 0) = A(x0, p0; 0)

Peq (x0, p0; 0)
, (19)

as is often done in the Wigner phase space for the LSC–
IVR.6, 47, 48, 54, 55 For instance,

f W
Aβ (x0, p0; 0) =

∫
d
x

〈
x − 
x

2

∣∣ Âβ
∣∣x + 
x

2

〉
eip
x/¯∫

d
x
〈
x − 
x

2

∣∣ e−β Ĥ
∣∣x + 
x

2

〉
eip
x/¯

,

(20)

for the Wigner phase space, and

f H
Aβ (x0, p0; 0) = 〈x, p| Âβ |x, p〉

〈x, p|e−β Ĥ |x, p〉 , (21)

for the Husimi phase space, and so on.
Then Eq. (18) for ELD becomes

CAB(t) ≡ 〈A(0)B(t)〉 = 1

Z

∫
dx0

∫
dp0 Peq (x0, p0; 0)

× f Aβ (x0, p0; 0)B̃(xt , pt ). (22)

Interestingly, one has

〈A(t ′)B(t ′ + t)〉 = 1

Z

∫
dx0

∫
dp0 Peq (xt ′ , pt ′ ; t ′)

× f Aβ (xt ′ , pt ′ ; t ′)B̃(xt ′+t , pt ′+t )

= 1

Z

∫
dx0

∫
dp0 Peq (x0, p0; 0)

× f Aβ (xt ′ , pt ′ ; t ′)B̃(xt ′+t , pt ′+t ), (23)

for ELD. One can prove that ELD gives the same results for
Eq. (22) and for Eq. (23), by expressing the correlation func-
tion in a similar form to Eq. (D5) in Appendix D of Paper I.
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Time-averaging Eq. (23) leads to

CAB(t) = 1

T

∫ T

0
dt ′〈A(t ′)B(t ′ + t)〉

= 1

Z

∫
dx0

∫
dp0 Peq (x0, p0; 0)

× 1

T

∫ T

0
dt ′ f Aβ (xt ′ , pt ′ ; t ′)B̃(xt ′+t , pt ′+t ). (24)

If the system is ergodic, Eq. (24) for ELD reduces to

CAB(t) = lim
T →∞

1

T

∫ T

0
dt ′ f Aβ (xt ′ , pt ′ ; t ′)B̃(xt ′+t , pt ′+t ). (25)

In Sec. IV, we arrive at explicit expressions for the corre-
lation function within W-ELD and H-ELD.

IV. THERMAL GAUSSIAN APPROXIMATION (TGA)
IN THE POSITION REPRESENTATION

Calculation of the function B̃(x, p) for operator B̂ [as
defined in Eq. (6)] in Eqs. (22)–(25) is usually straightfor-
ward. In fact, B̂ is often a function only of coordinates or only
of momenta, in that case B̃(x, p) in the Wigner phase space

is simply the classical function itself. B̃(x, p) in the Husimi
phase space is the anti-Husimi function, which is

B̃H (x, p) = x2 − (2�)−1 (26)

for B̂ = x̂2;

B̃H (x, p) = p (27)

for B̂ = p̂, etc.
Calculating the Wigner or Husimi function A(x, p) (or

f Aβ (x, p)) for the operator Âβ , however, involves the Boltz-
mann operator with the total Hamiltonian of the complete
system, so that carrying out the multidimensional Fourier
transform to obtain it is far from trivial. Furthermore, it is
necessary to do so in order to obtain the distribution of initial
conditions of momenta p0 and the ELD effective force [as de-
fined in Eq. (46) in Paper I] of real-time trajectories. Here we
use the Thermal Gaussian approximation (TGA) in the po-
sition representation, also known as the variational Gaussian
wavepacket (VGW), which was first proposed by Hellsing
et al.84 and later modified by Mandelshtam et al.85–87 to a
more accurate version. We have implemented it into the LSC–
IVR calculations recently.6, 22, 47–49 In the VGW, the Boltz-
mann matrix element is approximated by a Gaussian form

〈x |e−τ Ĥ |q0〉 =
(

1

2π

)N/2 1

|det (G (τ ))|1/2 exp

(
−1

2
(x − q(τ ))T G−1(τ )(x − q(τ )) + γ (τ )

)
, (28)

〈q0|e−2τ Ĥ |q0〉 =
∫

dx 〈q0| e−τ Ĥ |x〉 〈x | e−τ Ĥ |q0〉

=
(

1

4π

)N/2

|det(G(τ ))|−1/2 exp(2γ (τ )), (29)

where G(τ ) is an imaginary-time dependent real symmetric
and positive-definite matrix, q(τ ) the center of the Gaussian,
and γ (τ ) a real scalar function. The parameters are governed

by the equations of motion:

d

dτ
G(τ ) = −G(τ )〈∇∇T V (q(τ ))〉VGWG(τ ) + h2 M−1,

d

dτ
q(τ ) = −G(τ )〈∇V (q(τ ))〉VGW,

d

dτ
γ (τ )=−1

4
Tr(〈∇∇T V (q(τ ))〉VGWG(τ )) − 〈V (q(τ ))〉VGW.

(30)

with the notation

〈h (q (τ ))〉VGW =
(

1

π

)N/2 1

|det (G (τ ))|1/2

∫ ∞

−∞
dx exp[− (x − q (τ ))T G−1 (τ ) (x − q (τ ))]h (x) . (31)

The initial conditions for the imaginary time propagation
are

q (τ 
 0) = q0; G (τ 
 0) = ¯2τ M−1;

γ (τ 
 0) = −τ V (q0) . (32)

The element of the Boltzmann operator can be expressed
as

〈x | e−β Ĥ
∣∣x ′〉=∫ dq0 〈x | e−β Ĥ/2 |q0〉 〈q0| e−β Ĥ/2

∣∣x ′〉 . (33)
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The expression for a partition function Z, for example,
becomes

Z =
∫

dx
∫

dq0 〈x | e−β Ĥ/2 |q0〉 〈q0| e−β Ĥ/2 |x〉

=
∫

dq0
1

(4π )N/2

exp
(

2γ
(

β

2 ; q0

))
∣∣∣det G

(
β

2 ; q0

)∣∣∣1/2 . (34)

A. W-ELD with full TGA

The Wigner density distribution can be written as

Peq, VGW
W (x, p) =

∫
dq0ρ

eq, VGW
W (x, p; q0) (35)

with

ρ
eq, VGW
W (x, p; q0) = 1

(4π )N/2

exp
(

2γ
(

β

2 ; q0

))
∣∣∣det G

(
β

2 ; q0

)∣∣∣1/2

· 1

π N/2
∣∣∣det G

(
β

2 ; q0

)∣∣∣1/2 exp
(
−
(

x − q

(
β

2
; q0

))T

G−1

(
β

2
; q0

)(
x − q

(
β

2
; q0

)))

·

∣∣∣det G
(

β

2 ; q0

)∣∣∣1/2

(
π¯2

)N/2 exp

(
−pT G

(
β

2
; q0

)
p/¯2

)
. (36)

Because Eq. (35) requires an integral or a sum of imaginary trajectories for the calculation of the Wigner density distribution
function, we refer to this method as “full TGA.”

The function f Aβ [as defined in Eq. (19)] in the ELD formulation of the correlation function, i.e., Eqs. (22)–(25), can be
evaluated together with full TGA. For instance,

Re
[

f W
Aβ (x, p)

] =

∫
dq0 ρ

eq, VGW
W (x, p; q0)

[
x2+ G(β/2; q0)

2
− (G (β/2; q0) p)

¯2

2
]

∫
dq0 ρ

eq, VGW
W (x, p; q0)

, (37)

for Âβ = e−β Ĥ x̂2;

f W
Aβ (x, p)=

∫
dq0 ρ

eq, VGW
W (x, p; q0)

[
2mG(β/2; q0)p

β¯2

]
∫

dq0 ρ
eq, VGW
W (x, p; q0)

,

(38)

for Âβ = p̂β

Kubo = i
¯β

M[x̂, e−β Ĥ ]; and

f W
Aβ (x, p) =

∫
dq0 ρ

eq, VGW
W (x, p; q0) f (q0)∫

dq0 ρ
eq, VGW
W (x, p; q0)

, (39)

for Âβ = e−β Ĥ/2 f (x̂)e−β Ĥ/2 where f (x) = −∂V (x)/∂x . It is
straightforward to obtain Eqs. (37)–(39) from Eq. (20).

The full TGA gives the ELD effective force [as defined
in Eq. (46) in Paper I] in the Wigner phase space as

− ∂

∂x
V W−ELD

eff (x, p) = −¯2

[∫
dq0ρ

eq, VGW
W (x, p; q0) G

(
β

2
; q0

)]−1

M−1

×
[∫

dq0ρ
eq, VGW
W (x, p; q0) G

(
β

2
; q0

)−1 (
x − q

(
β

2
; q0

))]
.

(40)

Implementing Eq. (40) in the equations of motion
[Eq. (49) in Paper I], one is able to propagate ELD trajec-
tories, from which the quantum thermal correlation function
can be evaluated with Eqs. (22)–(25). W-ELD with full TGA
has already been used in our earlier work.6

B. W-ELD with LGA–TGA

For the one-dimensional harmonic case V (x)
= 1/2 Mω2x2, note
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G

(
β

2
; x

)
= ¯

Mω
tanh

[
β¯ω

2

]
, (41)

〈
x − 
x

2

∣∣ e−β Ĥ
∣∣x + 
x

2

〉
〈x | e−β Ĥ |x〉 = exp

⎡
⎣− (
x)2

4G
(

β

2 ; x
)
⎤
⎦ . (42)

As we have already mentioned the possibility in an earlier
paper,54 one can use the local Gaussian approximation (LGA)
strategy54 and Eq. (29) to obtain the Wigner density distribu-
tion function based on the VGW as

Peq, LGA–TGA
W (x, p)

= 1

(2π¯)N
〈x | e−β Ĥ |x〉

×
∫

d
x
〈x − 
x/2| e−β Ĥ |x + 
x/2〉

〈x | e−β Ĥ |x〉 ei
xT p/¯

= 〈x | e−β Ĥ |x〉

∣∣∣det G
(

β

2 ; x
)∣∣∣1/2

(π¯2)N/2

× exp

[
−pT G

(
β

2
; x

)
p/¯2

]
.

= 1

(2π¯)N
exp

[
2γ

(
β

2
; x

)]

× exp

[
−pT G

(
β

2
; x

)
p/¯2

]
(43)

We refer to this method as LGA–TGA.
By virtue of Eq. (46) in Paper I and Eq. (43), the LGA–

TGA gives the ELD effective force as

− ∂

∂x
V W − ELD

eff (x, p)

= G

(
β

2
; x

)−1

M−1

×
⎡
⎣̄ 2

∂γ
(

β

2 ; x
)

∂x
− 1

2
pT

∂G
(

β

2 ; x
)

∂x
p

⎤
⎦ . (44)

It is straightforward to show that the function f Aβ takes
the form

Re
[

f W
Aβ (x, p)

] = x2 +
G
(

β

2 ; x
)

2
−
(

G
(

β

2 ; x
)

p
)

¯2

2

, (45)

for Âβ = e−β Ĥ x̂2;

f W
Aβ (x, p) =

2MG
(

β

2 ; x
)

p

β¯2
, (46)

for Âβ = p̂β

Kubo;

f W
Aβ (x, p) = −

〈
∂V
(

x ′
(

β

2 ; x
))

∂x ′

〉
VGW

(47)

for Âβ = e−β Ĥ/2 f (x̂) e−β Ĥ/2, where the Gaussian average in
Eq. (47) is given by Eq. (31).

LGA–TGA [Eqs. (43)–(47)] provides a more economic
(but less accurate) way for calculating thermal correlation
functions for multidimensional systems with W-ELD than full
TGA [Eqs. (35)–(40)]. While full TGA involves storage of
multiple imaginary-time trajectories so that the Wigner den-
sity distribution function at each phase space points (x, p) can
be evaluated with those imaginary-time trajectories, LGA–
TGA only requires propagating a single imaginary-time tra-
jectory for each phase space point. We directly compare
LGA–TGA and full TGA in our numerical examples in
Sec. V.

C. H-ELD with full TGA

One can also obtain the Husimi density distribution based
on the full TGA

Peq, VGW
H (x, p) = 1

Z

∫
dq0ρ

eq, VGW
H (x, p; q0) , (48)

where

ρ
eq, VGW
H (x, p; q0)=

(
1

2π

)N/2 exp
(

2γ
(

β

2 ; q0

))
|det�|1/2∣∣∣det

(
1 + �G

(
β

2 ; q0

))∣∣∣ exp
(
−pT G

(
β

2
; q0

)(
1 + �G

(
β

2
; q0

))−1

p/¯2
)

×exp
(−(x − q

(
β

2
; q0

))T

�

(
1 + �G

(
β

2
; q0

))−1 (
x − q

(
β

2
; q0

)))
. (49)

Here � is the width parameter of the Husimi coherent state |x, p〉 [e.g., Eq. (10) or (22) of Paper I].
The ELD effective force in the Husimi phase space is

− ∂

∂x
V H−ELD

eff (x, p) = −¯2

[∫
dq0ρ

eq, VGW
H (x, p; q0) G

(
β

2
; q0

)(
1 + �G

(
β

2
; q0

))−1
]−1

M−1

×
[∫

dq0ρ
eq, VGW
H (x, p; q0) �

(
1 + �G

(
β

2
; q0

))−1 (
x − q

(
β

2
; q0

))]
. (50)
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Note

〈y| e−β Ĥ/2 x̂ |x, p〉 =
(

x − i¯
∂

∂p

)
〈y| e−β Ĥ/2 |x, p〉 , (51)

〈y| e−β Ĥ/2 x̂2 |x, p〉=
(

x − i¯
∂

∂p

)2

〈y| e−β Ĥ/2 |x, p〉 . (52)

It is easy to show

Re
[

f H
Aβ (x, p)

] =
[∫

dq0 ρ
eq, VGW
H (x, p; q0)

]−1 ∫
dq0 ρ

eq, VGW
H (x, p; q0)

×
⎡
⎣ G

(
β

2 ; q0

)
1 + G

(
β

2 ; q0

)
�

−
[
G
(

β

2 ; q0

)
p
]2

¯2
[
1 + G

(
β

2 ; q0

)
�
]2 +

[
q
(

β

2 ; q0

)
+ G

(
β

2 ; q0

)
�x
]2

[
1 + G

(
β

2 ; q0

)
�
]2

⎤
⎥⎦ , (53)

for Âβ = e−β Ĥ x̂2;

f H
Aβ (x, p) =

[∫
dq0 ρ

eq, VGW
H (x, p; q0)

]−1

×
∫

dq0 ρ
eq, VGW
H (x, p; q0)

×
⎡
⎣ 2mG

(
β

2 ; q0

)
p

β¯2
[
1 + G

(
β

2 ; q0

)
�
]
⎤
⎦ , (54)

for Âβ = p̂β

Kubo; and

f H
Aβ (x, p) = −

∫
dq0 ρ

eq, VGW
H (x, p; q0)

∂

∂q0
V (q0)∫

dq0 ρ
eq, VGW
H (x, p; q0)

, (55)

for Âβ = e−β Ĥ/2 f (x̂) e−β Ĥ/2.

The relation

〈 Â(0) ¨̂A(0)〉 =
[

d2

dt2
〈 Â(0) Â(t)〉

]
t=0

= −〈 ˙̂A(0) ˙̂A(0)〉, (56)

or around � = Mω/¯ near the minimum of the potential well
provides a good starting point for searching the optimum
regime for the width parameter for H-ELD.

V. NUMERICAL EXAMPLES

A. Harmonic potential

It has already been demonstrated in Paper I and our ear-
lier work6 that W-ELD leads to classical dynamics for a har-
monic potential (e.g., V (x) = 1/2Mω2x2). More precisely,
the W-ELD approach for the correlation function reduces to
LSC–IVR in the harmonic limit. W-ELD therefore recovers
exact quantum correlation functions of even nonlinear opera-
tors. Similarly, one can verify that this is also true for H-ELD
when the width parameter is � = Mω/¯.

Consider a harmonic potential V (x) = 1/2Mω2x2 with
M = 1, ω = 1, and ¯ = 1. Figure 1 shows the correlation

functions 〈p (0) p (t)〉Kubo and
〈
x2 (0) x2 (t)

〉
std for a low tem-

perature β = 8. Both W-ELD and H-ELD are able to produce
the exact results as LSC–IVR does. In contrast, CMD and
RPMD do not work well for correlation functions involving
nonlinear operators even in the limit of a harmonic potential,
as demonstrated in Fig. 1(d) and earlier by Horikoshi and Kin-
ugawa in Fig. 1 of Ref. 66.

Although both ELD and LSC–IVR give exact correla-
tion functions in the harmonic limit, ELD (W-ELD) can ex-
hibit significant improvement over LSC–IVR for anharmonic
potentials, as already discussed in our earlier work.6 This
is because ELD conserves the quantum canonical distribu-
tion, while LSC-IVR does not. ELD shares both the merits of
LSC–IVR/FBSD and of CMD/RPMD. Here we focus on how
well W-ELD and H-ELD perform within the framework of
Eq. (18) [or Eq. (22), or (24)], comparing the results to the ex-
act quantum correlation functions and the LSC–IVR values.
(The classical correlation functions are not shown because
they work poorly in low temperature region as demonstrated
in the literature.6, 22) We calculate the Kubo-transformed mo-
mentum autocorrelation function, the standard x2 autocorre-
lation function, and the symmetrized force autocorrelation
function (the latter two involving nonlinear local operators)
for two one-dimensional anharmonic models.

B. Asymmetric anharmonic oscillator

The first anharmonic model is

V (x) = 1
2 Mω2x2 − 0.10x3 + 0.10x4, (57)

with M = 1, ω = √
2, and ¯ = 1. This quite anharmonic po-

tential has been used as a benchmark system and discussed
previously in the literature.6, 11, 14, 22, 88, 89 For full TGA de-
scribed in Sec. IV, we use 21 imaginary trajectories for a high
temperature β = 0.1 and 101 for a low temperature β = 8.
These imaginary trajectories, once computed, are stored for
use in the propagation of real-time ELD trajectories. For
LGA–TGA, however, an imaginary trajectory has to be prop-
agated at each real-time step of the ELD trajectory. The
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FIG. 1. The autocorrelation functions for the one-dimensional harmonic oscillator for β = 8. Panel (a) Kubo-transformed momentum autocorrelation function.
(b) Real part of standard x2 autocorrelation function. solid line: Exact quantum result; solid triangles: W-ELD; solid circles: H-ELD; hollow squares: LSC–IVR.
Panel (c) Kubo-transformed momentum autocorrelation function. (d) Kubo-transformed x2 autocorrelation function. Solid line: Exact quantum result; dashed
line: RPMD; dotted line: CMD with classical operator; dot-dashed line: CMD with effective classical operator.

time-averaging technique [i.e., Eq. (24)] is used for the cal-
culation of the correlation functions.

Consider W-ELD first. Results of the correlation func-
tions are shown at a high temperature β = 0.1 in Fig. 2. Ei-
ther W-ELD with full TGA or W-ELD with LGA–TGA gives
correct results. This is not surprising since the ELD corre-
lation functions approach the LSC–IVR results in the high
temperature regime, where classical dynamics is a good ap-
proximation to the exact quantum correlation function. At a
much lower temperature β = 8 (in Fig. 3), the correlation
functions 〈p (0) p (t)〉Kubo and 〈 f (0) f (t)〉mid calculated by
W-ELD with full TGA match the exact quantum results al-
most perfectly, while

〈
x2 (0) x2 (t)

〉
std by the same approach

gives the amplitude of oscillation quite well but shows a
slight frequency shift at long times. W-ELD with LGA–TGA
performs similarly, though with slight dephasing in the am-
plitude. Both W-ELD with full TGA and W-ELD with
LGA–TGA show systematical improvement over LSC–IVR
at longer times.

Now consider H-ELD, focusing on the low temperature
regime where quantum effects are important. The width pa-
rameter � of H-ELD is adjustable. As in other implementa-

tions of the Husimi coherent state in the literature,39, 90 there
exists an optimum regime for the parameter, which depends
on the frequency of the correlation function. [Equation (56) is
a good starting point for searching the optimum regime.] For
the present model, for example, these regimes are centered
around � = 1.52 for 〈p (0) p (t)〉Kubo and 〈 f (0) f (t)〉mid, and
about � = 1.63 for

〈
x2 (0) x2 (t)

〉
std. Figure 4 shows the corre-

lation functions computed by H-ELD with full TGA with the
optimum �s. It is encouraging to note that the H-ELD corre-
lation function with the optimum width parameter is a nearly
perfect match to the exact quantum result.

C. Quartic potential

The next anharmonic model potential is

V (x) = x4

4
, (58)

with M = 1 and ¯ = 1. Because no harmonic term is involved
in the model, it represents a more challenging test since quan-
tum rephrasing effects are much stronger. The simulation de-
tails for this potential are the same as those for the previous
model.
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FIG. 2. The autocorrelation functions for the one-dimensional anharmonic
oscillator for β = 0.1. Solid line: Exact quantum result. In the following re-
sults, the Boltzmann operator is treated by the TGA. Dotted line: W-ELD
with full TGA. Solid circles: W-ELD with LGA–TGA. Dashed line: LSC–
IVR with full TGA. Panel (a) Kubo-transformed momentum autocorrelation
function. (b) Symmetrized force autocorrelation function. (c) Real part of
standard x2 autocorrelation function.

FIG. 3. As in Fig. 2, but for a much lower temperature β = 8.

Figure 5 shows that at the temperature β = 0.1 both W-
ELD with full TGA and W-ELD with LGA–TGA can give
correct results in the dephasing regime (up to three vibrational
periods) but fails to describe the rephasing at longer times.
(H-ELD behaves similarly, though the plot is not shown.) We
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FIG. 4. The autocorrelation functions for the one-dimensional anharmonic
oscillator for β = 8. Solid line: Exact quantum result. Solid triangles: H-
ELD with full TGA. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-
transformed momentum autocorrelation function. (b) Symmetrized force au-
tocorrelation function. (c) Real part of standard x2 autocorrelation function.

FIG. 5. The autocorrelation functions for the one-dimensional quartic oscil-
lator for β = 0.1. Solid line: Exact quantum result. In the following results,
the Boltzmann operator is treated by the TGA. Dotted line: W-ELD with full
TGA. Solid circles: W-ELD with LGA–TGA. Dashed line: LSC–IVR with
full TGA. Panel (a) Kubo-transformed momentum autocorrelation function.
(b) Symmetrized force autocorrelation function. (c) Real part of standard x2

autocorrelation function.
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FIG. 6. As in Fig. 5, but for a much lower temperature β = 8.

may infer that the EDA (introduced in Sec. III) is incapable
of describing long-time quantum coherence effects. (For ex-
ample, the EDA is not good for describing quantum coher-
ence or interference effects in a one-dimensional double-well
system.) However, one would often expect such long-time

FIG. 7. The autocorrelation functions for the one-dimensional quartic oscil-
lator for β = 8. Solid line: Exact quantum result. Solid triangles: H-ELD with
full TGA. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-transformed
momentum autocorrelation function. (b) Symmetrized force autocorrelation
function. (c) Real part of standard x2 autocorrelation function.



104102-12 J. Liu and W. H. Miller J. Chem. Phys. 134, 104102 (2011)

FIG. 8. The autocorrelation functions for the one-dimensional anharmonic
oscillator for β = 8. Solid line: Exact quantum result. Solid triangles: W-
ELD with FKA. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-
transformed momentum autocorrelation function. (b) Real part of standard
x2 autocorrelation function.

rephrasing effects to be quenched by coupling among the var-
ious degrees of freedom in condensed phase systems;42, 91, 92

the most important behavior to capture in these cases is the
short-time dephasing in the correlation function, for which
ELD can provide an accurate description.

Results for the much lower temperature (β = 8) are
shown in Figs. 6 (for W-ELD) and 7 (for H-ELD). W-
ELD with full TGA describes the amplitude of oscillation
quite well (the small residual error originating in the TGA
treatment) with a noticeable frequency shift after one vibra-
tional period. W-ELD with LGA–TGA behaves similarly with
more dephasing in the amplitude. With optimum coherent
state width parameters, H-ELD with full TGA can almost
reproduce the exact quantum correlation functions. For the
present model, the optimum widths lie around � = 1.03 for
〈p(0)p(t)〉Kubo and 〈 f (0) f (t)〉mid, and around � = 1.40 for
〈x2(0)x2(t)〉std for the quartic model. Any of these ELD meth-
ods significantly improve over LSC–IVR, which dephases too
quickly after the first vibrational period.

FIG. 9. The autocorrelation functions for the one-dimensional quartic os-
cillator for β = 8. Solid line: Exact quantum result. Solid triangles: W-
ELD with FKA. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-
transformed momentum autocorrelation function. (b) Real part of standard
x2 autocorrelation function.

VI. CONCLUSIONS

In this paper we have shown that the exact time cor-
relation function [Eq. (1)] can be expressed in the form of
Eq. (4) in the phase space formulation of quantum mechanics.
For thermal equilibrium systems, the EDA invites trajectory-
based dynamics that conserves the canonical distribution in
the phase space formulation of quantum mechanics, which
provides a practical and reasonably good approximation for
calculating the thermal correlation function [Eq. (18)]. The
ELD introduced in Paper I is such a family of trajectory-based
dynamics. It is able to give exact correlation functions (of
even nonlinear operators) in the classical, high temperature,
and harmonic limits.

Both Wigner and Husimi distribution functions have been
used for applications of the ELD correlation function in the
paper. (One can of course use other distribution functions
to implement ELD.) Both W-ELD and H-ELD capture ap-
preciable quantum effects in the correlation functions for
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FIG. 10. The autocorrelation functions for the one-dimensional anharmonic
oscillator for β = 8. Solid line: Exact quantum result. Solid triangles: H-
ELD with TFG. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-
transformed momentum autocorrelation function. (b) Real part of standard
x2 autocorrelation function.

short times, for all temperatures. In low temperature regime,
W-ELD is more convenient to implement and can give rea-
sonably good results, while H-ELD is capable of producing
nearly exact quantum correlation functions when the width
parameter chosen is optimized. A subject for future study is
how one can develop criteria for efficiently locating the opti-
mum regime in the width parameter space for the H-ELD cor-
relation function (for large systems). A possible way is to start
from Eq. (56) or around � = Mω/¯ near the minimum of the
potential well, and then to use the H-ELD result as a priori
for maximum entropy analytic continuation (MEAC). As sug-
gested in our earlier work,49 the MEAC correction should be
applicable to any approximate method for describing quan-
tum dynamics. If the MEAC procedure does little correction
to the H-ELD result, it is likely that the width parameter is
optimum.

Combined with the TGA in the position representation
(discussed in Sec. IV) or other local harmonic/Gaussian ap-
proximations (introduced in the Appendix ) for the Boltz-

FIG. 11. The autocorrelation functions for the one-dimensional quartic oscil-
lator for β = 8. Solid line: Exact quantum result. Solid triangles: H-ELD with
TFG. Dashed line: LSC–IVR with full TGA. Panel (a) Kubo-transformed
momentum autocorrelation function. (b) Real part of standard x2 autocorre-
lation function.

mann operator, W-ELD and H-ELD offer feasible tools for
calculating thermal correlation functions for complex sys-
tems in the condensed phase, because they do not involve os-
cillatory factors in the necessary phase space averages [see
Eqs. (22)–(25)]. The W-ELD with LGA–TGA (or H-ELD
with thermal frozen Gaussian (TFG) or thermal thawed Gaus-
sian (TTG) as discussed in the Appendix) offers a more prac-
tical and promising method for large systems. (An efficient
path integral representation of ELD will be discussed in a
subsequent paper.) The MEAC+ELD approach is also auspi-
cious because ELD offers an even better prior than LSC–IVR
(and other comparable methods). Further work along these
lines for realistic polyatomic molecular systems in condensed
phase would certainly be of interest.
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APPENDIX: MORE APPROACHES FOR ELD

One sees from Sec. IV that the central task in implement-
ing ELD is to evaluate the phase space distribution function
(e.g., Wigner or Husimi function) for the Boltzmann operator.
Besides the TGA in the position representation introduced in
Sec. IV, several other approximations have already been in-
troduced in order to get the Wigner function of the Boltz-
mann operator in the literature, which include the harmonic
approximation by Wang et al.,4 the local harmonic approxi-
mation by Shi and Geva,8 the Feynman–Kleinert approxima-
tion by Poulsen et al.,7 and the local Gaussian approximation
by Liu and Miller which improves on all these approxima-
tions for treating imaginary frequencies.54 Most of these ap-
proximations are also useful to obtain the Husimi function
of the Boltzmann operator. The pair-product approximation93

introduced to FBSD by Nakayama and Makri15 is also useful
to obtain the Husimi or Wigner density distribution function
in ELD. In the following, we show how ELD can be imple-
mented with the FKA or other two TGAs in the coherent state
representation.

1. Feynman–Kleinert approximation (FKA)

The FKA (Refs. 94 and 95) has been used by Cuccoli
et al.96 to calculate the Wigner density distribution for the
Boltzmann operator and later introduced by Poulsen et al.
in the LSC–IVR/classical Wigner model of thermal correla-
tion functions7 [and they called it the FK–LPI (linearized path
integral) in Ref. 7].

Here we use the notation of the quantum correction factor
Q (u)

Q
(
u = β¯� (xc)

) = u/2

tanh (u/2)
, (A1)

where the effective local frequency � (xc) is obtained from
the curvature of the Gaussian-averaged potential Vs (xc)

m�2 (xc) = ∂2

∂x2
c

∣∣∣∣
θ2(xc)

Vs (xc) , (A2)

Vs (xc) =
∫

dy

(
βmθ2 (xc)

2π

)1/2

× exp

[
−β

1

2
mθ2 (xc) (y − xc)2

]
V (y) . (A3)

Vs (xc) can be viewed as the classical thermal average of the
potential function V (y) for the Feynman–Kleinert (FK) har-
monic oscillator whose equilibrium position is the centroid of
the path in imaginary time [xc = 1

β¯

∫ β¯

0 dτ x (τ )] and whose
frequency is given by

θ2 (xc) = �2 (xc)
u/2

tanh (u/2)
− 1

. (A4)

Equations (A2) and (A4) need to be solved iteratively to ob-
tain � (xc) and θ (xc).

Defining the effective (centroid) potential as

Veff (xc) = VS (xc) − 1

2β

(
u/2

tanh (u/2)
− 1

)

+ 1

β
ln

[
sinh (u/2)

u/2

]
, (A5)

the partition function is given by the FKA as95, 96

Z =
∫

dxc

(
m

2π¯2β

)1/2

exp [−βVeff (xc)] . (A6)

Off-diagonal elements of the Boltzmann operator can
also be approximated by the FKA as96

〈
x − 
x

2

∣∣∣∣ e−β Ĥ

∣∣∣∣x + 
x

2

〉FKA



∫

dxc

(
m

2π¯2
β

)1/2

exp[−βV eff (xc)]

×
(

βmθ2(xc)

2π

)1/2

exp

[
−β

1

2
mθ2(xc)(x − xc)2

]

× exp

[
−m�(xc)

4¯
coth(u/2)
x2

]
, (A7)

the Fourier transform of which gives the following expres-
sion for the Wigner density distribution7, 96 [e.g., Eq. (23) in
Paper I]:

Peq, FKA
W (x, p) =

∫
dxc ρ

eq, FKA
W (x, p; xc) , (A8)

with

ρ
eq, FKA
W (x, p; xc)

= 1(
2π¯

) exp [−βVeff (xc)]

(
βmθ2 (xc)

2π Q (u)

)1/2

× exp

[
−β

1

2
mθ2 (xc) (x − xc)2 − β

p2

2m

1

Q (u)

]
. (A9)

The quantum correction factor reflects Q (u) how the
local momentum distribution deviates from the classical
momentum distribution.

In the imaginary frequency regime, as shown by
Feynman and Kleinert,95 the FKA is able to keep the imag-
inary frequency and temperature in the regime

ui ≡ β¯ |� (xc)| < 2π, (A10)
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so that, by virtue of analytic continuation, the frequency of
the FK harmonic oscillator

θ2 (xc) = |� (xc)|2

1 − ui/2

tan (ui/2)

(A11)

and the effective (centroid) potential

Veff (xc) = VS (xc) − 1

2β

(
ui/2

tan (ui/2)
− 1

)

+ 1

β
ln

[
sin (ui/2)

ui/2

]
(A12)

are always well-defined. However, when the imaginary fre-
quency and temperature are such that

ui ≡ β¯ |� (xc)| ≥ π, (A13)

(i.e., large enough imaginary frequency and/or low enough
temperature), the quantum correction factor Q (u) becomes
negative. The LGA based on the FKA (LGA–FKA) leads to
Eq. (A8) (the Wigner density distribution) with the quantum
correction factor Q (u) (for the local momentum distribution)
given by

Q
(
u = β¯� (xc)

)

=

⎧⎪⎪⎨
⎪⎪⎩

u/2

tanh (u/2)
f or real u

= 1

Q (ui )
= tanh (ui/2)

ui/2
f or imaginary u = iui

.

(A14)

(Since the FK harmonic oscillator frequency θ (xc) and the
effective potential Veff (xc) are always well-defined for imagi-
nary frequencies ui ∈ (0, 2π ) [see Eqs. (A11) and (A12)], no
modification is needed in the LGA–FKA.)54

By virtue of Eq. (46) in Paper I and Eq. (A8), the ELD
effective force in the Wigner phase space satisfies

∫
dxcρ

eq,FKA
W (x, p; xc)

(
−β

p

m

1

Q (u (xc))

)
∂

∂x
V W-ELD

eff (x, p)

=
∫

dxcρ
eq, FKA
W (x, p; xc)

p

m

[−βmθ2 (xc) (x − xc)
]
.

(A15)

Since the above equation holds for any phase point (x, p),
we then have the expression of the ELD effective force

− ∂

∂x
V W-ELD

eff (x, p)

= −
{∫

dxc ρ
eq, FKA
W (x, p; xc) Q (u (xc))−1

}−1

×
∫

dxc ρ
eq, FKA
W (x, p; xc)

[
mθ2 (xc) (x − xc)

]
.

(A16)

One can show the function f Aβ takes the form

Re
[

f W
Aβ (x, p)

] =

∫
dxc ρ

eq, FKA
W (x, p; xc)

[
x2 + β¯2

4m Q (u (xc))
−
(

β¯p

2m Q (u (xc))

)2
]

∫
dxc ρ

eq, FKA
W (x, p; xc)

, (A17)

for Âβ = e−β Ĥ x̂2; and

f W
Aβ (x, p)=

∫
dxc ρ

eq, FKA
W (x, p; xc)

[
p

Q (u (xc))

]
∫

dxc ρ
eq, FKA
W (x, p; xc)

, (A18)

for Âβ = p̂β

Kubo.
The W-ELD correlations functions based on FKA for

〈p (0) p (t)〉Kubo and
〈
x2 (0) x2 (t)

〉
std at the low temperature

(β = 8) are shown in Figs. 8 and 9 for the two anharmonic
models. (Results at the high temperature (β = 0.1) are the
same as the W-ELD results in Figs. 2 and 5, not shown
though.) The W-ELD with FKA behaves nearly the same as
W-ELD with full TGA showing only slightly more dephasing
in amplitude of the oscillation.

It is straightforward to derive equations for H-ELD with
FKA along similar lines.

2. Thermal Gaussian approximations in the coherent
state representation

There are several other thermal Gaussian approximations
based on either the thawed or frozen Gaussian in coherent
state, which are useful to accomplish the task for obtaining
the Wigner or Husimi density distribution function. Particu-
larly, similar to LGA–TGA [i.e., Eq. (43) for the Wigner den-
sity distribution function], it is possible to obtain the Husimi
density distribution function 〈x, p| e−β Ĥ |x, p〉 at each phase
point with only one imaginary-time trajectory by propagating
the coherent state in imaginary time, as we propose below.

1. Thermal frozen Gaussian

One way is to propagate the frozen Gaussian32 in imagi-
nary time, as suggested by Zhang et al.97

〈q| exp
(−τ Ĥ

) |x, p〉 ≈ f (x, p; τ ) 〈q |x, p; τ 〉 , (A19)

where the frozen Gaussian is given by
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〈q |x, p; τ 〉 = |det (�)|1/4

π N/4
exp

[
−1

2
(q − x (τ ))T � (q − x (τ )) + i

¯
p (τ )T (q − x (τ ))

]
, (A20)

with

f (τ ) = exp

(
−
∫ τ

0
dτ ′
[

1

2
p
(
τ ′)T

M−1 p
(
τ ′)+ 〈V (x (τ ′))〉

TFG + ¯
2

4
Tr
[
�M−1

]− i

¯
p
(
τ ′)T ∂x

(
τ ′)

∂τ ′

])
, (A21)

and the following equations of motion:

∂x (τ )

∂τ
= −�−1 〈∇V (x (τ ))〉TFG , (A22)

∂p (τ )

∂τ
= −¯2�M−1 p (τ ) , (A23)

or, equivalently,

p (τ ) = exp
(−¯2�M−1τ

)
p (0) . (A24)

The initial conditions for the imaginary-time propagation are

x (τ = 0) = x ; p (τ = 0) = p. (A25)

The frozen Gaussian averages are defined as

〈h (x (τ ))〉TFG =
(

1

π

)N/2

|det (�)|1/2
∫ ∞

−∞
dq exp

[− (q − x (τ ))T � (q − x (τ ))
]

h (q). (A26)

One can then get

〈x, p| e−β Ĥ |x, p〉 =
∫

dq 〈x, p| e−β Ĥ/2 |q〉 〈q| e−β Ĥ/2 |x, p〉

= exp

{
−2W TFG

(
β

2
; x, p

)}
, (A27)

with

WTFG

(
β

2
; x, p

)
= β¯2

8
Tr
[
�M−1

]+ 1

2
pT
(
2¯2�

)−1

× [
I − exp

(−β¯2�M−1
)]

p

+
∫ β/2

0
dτ ′ [〈V (x (τ ′))〉TFG

]
. (A28)

Here I is the identity matrix. The expression for the partition
function Z becomes

Z =
∫

dx
∫

dp Peq,TFG
H (x, p)

=
(

1

2π¯

)N∫
dx
∫

dp exp

{
−2W TFG

(
β

2
; x, p

)}
(A29)

as follows from Eq. (A27).
The ELD effective force is

− ∂

∂x
V H-ELD

eff (x, p)=−2¯2
[
I−exp

(−β¯2�M−1
)]−1

�M−1

×
∫ β/2

0
dτ ′ [∂ 〈V (x (τ ′))〉

TFG

/
∂x
]
.

(A30)

One can show the function f Aβ takes the form

Re
[

f W
Aβ (x, p)

] = x2 + (2�)−1

−2x

{∫ β/2

0
dτ exp

[−¯2�M−1τ
]

�−1 〈∇V (x (τ ; x))〉TFG

}

+
{∫ β/2

0
dτ exp

[−¯2�M−1τ
]

�−1 〈∇V (x (τ ; x))〉TFG

}2

,

−
{(

2¯�
)−1 (

1 − exp
[−¯2�M−1β

])
p
}2

(A31)

for Âβ = e−β Ĥ x̂2; and

f W
Aβ (x, p)= M

(
β¯2�

)−1 [
1−exp

(−̄ 2�M−1β
)]

p, (A32)

for Âβ = p̂β

Kubo.
The H-ELD correlation functions based on TFG for

〈p(0)p(t)〉Kubo and
〈
x2 (0) x2 (t)

〉
std at the low temperature

(β = 8) are shown in Figs. 10 and 11 for the two anhar-
monic models. [The width parameter is chosen in the opti-
mum regime, which depends on the correlation function and
the TFG approximation. For instance, the optimum widths
lie around � = 1.63 for 〈p (0) p (t)〉Kubo and around� = 1.72
for

〈
x2 (0) x2 (t)

〉
std for the asymmetric anharmonic model

(Eq. (57)); around � = 1.32 and around � = 1.62 respec-
tively for the quartic potential (Eq. (58)).] Similar to W-ELD
with LGA–TGA in which also only a single imaginary tra-
jectory is involved at each phase point, H-ELD with TFG
gives correlation functions that show dephasing in ampli-
tude of the oscillation but still show systematical improve-
ment over LSC–IVR. Comparison of Fig. 10 to Fig. 4 for the
asymmetric anharmonic model and that of Fig. 11 to Fig. 7
for the purely quartic potential demonstrate that H-ELD with
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TFG does not work as well as H-ELD with full TGA. TFG
is the simplest but least accurate way to obtain the Husimi
distribution function 〈x, p| e−β Ĥ |x, p〉 at each phase point
(x, p) for multidimensional condensed phase systems.

2. Thermal thawed Gaussian

Another approach is to follow Baranger et al.41 with the
thawed Gaussian propagated in imaginary time, as suggested
by Pollak and Martin–Fierro98

〈q| exp
(−τ Ĥ

) |x, p〉 ≈ f (x, p; τ ) 〈q |x, p; τ 〉 , (A33)

where

〈q |x, p; τ 〉 = |det � (τ )|1/4

π N/4

× exp

[
−1

2
(q − x (τ ))T � (τ ) (q − x (τ ))

+ i

¯
p (τ )T (q − x (τ ))

]
, (A34)

and

f (τ )= exp

(
−
∫ τ

0
dτ ′
[
1

2
p
(
τ ′)T

M−1 p
(
τ ′)+〈V (x (τ ′))〉

TTG

+¯
2

4
Tr
[
�
(
τ ′)M−1

]− i

¯
p
(
τ ′)T ∂x (τ ′)

∂τ ′

])
, (A35)

with the following equations of motion

∂p (τ )

∂τ
= −¯2� (τ ) M−1 p (τ ) ,

∂x (τ )

∂τ
= −� (τ )−1 〈∇V (x (τ ))〉TTG , (A36)

∂� (τ )

∂τ
= −¯2� (τ ) M−1� (τ ) + 〈∇∇T V (x (τ ))

〉
TTG ,

and the thawed Gaussian averages defined as

〈h (x (τ ))〉TTG =
(

1

π

)N/2

|det (� (τ ))|1/2
∫ ∞

−∞
dq

× exp
[− (q−x (τ ))T � (τ ) (q−x (τ ))

]
h (q) .

(A37)

The initial conditions for the imaginary time propagation are

x (τ =0)= x ; p (τ = 0) = p; � (τ = 0)=�. (A38)

One can then get

〈x, p| e−β Ĥ |x, p〉=
∫

dq 〈x, p| e−β Ĥ/2 |q〉 〈q| e−β Ĥ/2 |x, p〉

= exp
(
−2WTTG

(
β

2

))
, (A39)

with

WTTG

(
β

2

)
=
∫ β/2

0
dτ ′
[

1

2
p(τ ′)T M−1 p(τ ′) + 〈V (x (τ ′))〉

TTG + ¯
2

4
Tr[�

(
τ ′)M−1]

]

= 1

2
pT M−1

TTG

(
β

2

)
p +

∫ β/2

0
dτ ′
[〈

V
(
x
(
τ ′))〉

TTG + ¯
2

4
Tr[�

(
τ ′)M−1]

]
, (A40)

where

M−1
TTG

(
β

2

)
=
∫ β/2

0
dτ ′ exp

[
−¯2

∫ τ ′

0
� (τ ) dτ M−1

]
M−1

× exp

[
−¯2

∫ τ ′

0
� (τ ) dτ M−1

]
. (A41)

The expression for a partition function Z becomes

Z =
∫

dx
∫

dp Peq,TTG
H (x, p)

=
(

1

2π¯

)N∫
dx
∫

dp exp

{
−2WTTG

(
β

2
; x, p

)}
,

(A42)

based on Eq. (A39). TTG is expected to be more accurate and
a little more expensive than TFG when only one imaginary
trajectory is used to evaluate the Husimi distribution function
〈x, p| e−β Ĥ |x, p〉.

The ELD effective force becomes

− ∂

∂x
V H-ELD

eff (x, p) = −MTTG

(
β

2

)
M−1

∫ β/2

0
dτ ′

×
[〈

∂

∂x
V
(
x
(
τ ′))〉

TTG

+ ¯
2

4

∂

∂x
Tr
[
�
(
τ ′)M−1

]]
. (A43)

For either the thermal frozen Gaussian or thermal thawed
Gaussian , in addition to our modified versions with only a
single imaginary trajectory, one can also express the Boltz-
mann operator as

e−β Ĥ =
∫

dx ′
∫

dp′ exp

(
−2W

(
β

2

)) ∣∣∣∣x ′, p′;
β

2

〉 〈
x ′, p′;

β

2

∣∣∣∣ ,
(A44)

as the original authors97, 98 did. One can then obtain the
Wigner or Husimi density distribution in a similar way from
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Eq. (35) or (48) [which is often more accurate but less
efficient than Eq. (A27) or (A39)].

Note that all these approximations (in Sec. IV and
the Appendix) for the Boltzmann operator are exact in
the harmonic limit. Although we show most equations for
one-dimensional cases in the paper, the generalization to
multi-dimensional systems is straightforward.

We note two important points here. First, FKA (or LGA–
FKA) and all TGAs (VGW, TFG, or TTG) require that the
potential surface be accurately fitted by polynomials, ex-
ponentials, or Gaussians such that the Gaussian integrals
[Eqs. (31), (A26) or (A39)] necessary to evaluate in the
equations of motions could be evaluated analytically, oth-
erwise performing these Gaussian integrals in multidimen-
sional systems would be too computationally demanding.
In this sense, FKA (or LGA–FKA) and all TGAs are not
a good option for complex/large polyatomic molecular sys-
tems where angle and dihedral interactions (or dipole-induced
dipole interactions) are important. Second, all TGAs suffer
when imaginary frequencies become important as we first
mentioned in our earlier paper22 (e.g., chemical reactions and
low-temperature molecular liquids54). An approach87, 97, 98 has
been proposed to consistently improve accuracies of all these
TGAs, however, the approach meanwhile loses the merit
of the TGAs—the Wigner or Husimi density distribution
function could be obtained analytically without phase can-
celling problems. The path integral representation of LGA54

can overcome these problems. An efficient path integral
representation of ELD will be discussed in a subsequent
paper.
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