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An approach for generating trajectory-based dynamics which conserves
the canonical distribution in the phase space formulation of quantum
mechanics. I. Theories
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Department of Chemistry and K. S. Pitzer Center for Theoretical Chemistry, University of California
and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley 94720-1460, California

(Received 18 November 2010; accepted 27 January 2011; published online 8 March 2011)

We have reformulated and generalized our recent work [J. Liu and W. H. Miller, J. Chem. Phys. 126,
234110 (2007)] into an approach for generating a family of trajectory-based dynamics methods in
the phase space formulation of quantum mechanics. The approach (equilibrium Liouville dynamics)
is in the spirit of Liouville’s theorem in classical mechanics. The trajectory-based dynamics is able to
conserve the quantum canonical distribution for the thermal equilibrium system and approaches clas-
sical dynamics in the classical (¯→ 0), high temperature (β → 0), and harmonic limits. Equilibrium
Liouville dynamics provides the framework for the development of novel theoretical/computational
tools for studying quantum dynamical effects in large/complex molecular systems. © 2011 American
Institute of Physics. [doi:10.1063/1.3555273]

I. INTRODUCTION

Quantum mechanics has several equivalent representa-
tions, e.g., the Schrödinger wavefunction formulation, the
Heisenberg operator picture, and Feynman’s path integral
interpretation.1 There also exist phase space formulations
of quantum mechanics since Wigner’s work in 1932.2 Be-
cause phase space formulations provide a natural frame-
work for using concepts of classical mechanics to describe
quantum phenomena and can offer useful insight about the
quantum-classical correspondence, they have been widely
used in many areas of physics and chemical physics, such as
statistical physics,2, 3 quantum optics and electronics,4, 5 dy-
namics of nonlinear or nonintegrable systems,6, 7 molecular
collisions,8–11 and quantum transport.12, 13 Recently they have
also been used to provide an approximate description of quan-
tum effects in the dynamics of condensed phase systems: for
example, the Wigner distribution function2, 14 arises naturally
when a linearized approximation15–26 to the initial value rep-
resentation of semiclassical theory27–29 [i.e., linearized semi-
classical initial value representation (LSC-IVR)] is used for
time correlation functions, and the forward–backward semi-
classical dynamics approach of Makri and co-workers30–36

employs the Husimi distribution function37 when treating
these same quantities.

The LSC-IVR/classical Wigner model, for example,
gives the following classical-like expression for generalized
time correlation functions:

Tr[ Âei Ĥ t/¯ B̂e−i Ĥ t/¯] =
∫

dx0

∫
dp0 AW (x0, p0; 0)BW (xt , pt ),

(1)

where Ĥ is the Hamiltonian of the system; Aw and Bw are the
Wigner functions2, 14 [cf. Eqs. (18) and (23) below, respec-
tively] corresponding to operators Â and B̂. Here (x0, p0) is

a)Electronic mail: jianliu@berkeley.edu.
b)Electronic mail: millerwh@berkeley.edu.

the set of initial conditions (i.e., coordinates and momenta)
for a classical trajectory, (xt (x0, p0) , pt (x0, p0)) being the
phase point at time t along this trajectory. As discussed in
the literature,19–23 the LSC-IVR/classical Wigner model gives
the correct quantum result in the short-time, classical, and
harmonic limits for generalized time correlation functions,
and also in the high temperature limits for thermal equilib-
rium correlation functions. In spite of these merits, however,
the LSC-IVR/classical Wigner approximation does not give
a time-invariant result for thermodynamic properties of ther-
mal equilibrium systems: i.e., while the following quantum
expression:

〈B(t)〉 = 1

Z
Tr[e−β Ĥ ei Ĥ t/¯ B̂e−i Ĥ t/¯]

= 1

Z
Tr[e−β Ĥ B̂] = 〈B(0)〉, (2)

is clearly time independent, the corresponding LSC-
IVR/classical Wigner result [with Â = e−β Ĥ in Eq. (1)] is not

〈B (t)〉LSC−IVR �= 〈B (0)〉LSC−IVR , (3)

because classical dynamics in general does not conserve the
Wigner distribution function,

AW (xt , pt ; 0) �= AW (xt , pt ; t) . (4)

In order to remedy this inconsistency of LSC-IVR/classical
Wigner approximation, Liu and Miller proposed several years
ago19 two kinds of trajectory-based dynamics in the Wigner
phase space to replace the classical dynamics in Eq. (1); the
Wigner density distribution function is conserved for thermal
equilibrium systems with either of them.

However, the phase space density distribution
function14, 38–40—the primary object of a phase space
formulation of quantum mechanics—is not limited to the
Wigner distribution function:2, 14 due to the noncommutivity
of quantum mechanical operators, it is not possible to define
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a unique probability at a phase-space point (x, p), leading to
a variety of different distribution functions2, 4, 5, 14, 37, 41–50 that
have been proposed and found useful application for different
problems. The purpose of this paper is to reformulate and
generalize the approach that Liu and Miller proposed19 to any
kind of distribution function for quantum thermal equilibrium
systems. For the distribution function of choice, we wish to
define a generalized trajectory-based dynamics that satisfies
at least the following desirable properties:

(1) It should be constructed based on the phase space formu-
lation of quantum mechanics [i.e., Eqs. (5)–(8)] so that
it is able to describe correctly all thermal fluctuations of
(large) molecular systems at equilibrium.

(2) Its dynamical evolution should conserve the equilib-
rium phase space distribution function (i.e., the quantum
canonical phase space distribution function of choice).

(3) It reduces naturally to classical dynamics in the classical
(¯→ 0) and high-temperature (β → 0) limits and also
gives correct quantum results in the limit of a harmonic
system with an ensemble of classical trajectories.

The paper is organized as follows: Sec. II gives a brief
introduction to the phase space density distribution func-
tion and the phase space formulation of quantum mechanics.
Section III first reviews Liouville’s theorem in classical me-
chanics, then presents a heuristic viewpoint to derive the force
from the canonical density distribution function for the ther-
mal equilibrium system, and finally introduces Liouville’s
theorem in the phase space formulation of quantum mechan-
ics. Section IV proposes a family of trajectory-based dynam-
ics in the spirit of Liouville’s theorem in classical mechanics,
which conserves the quantum canonical density distribution
function in the phase space formulation of quantum mechan-
ics. Section V further demonstrates that the centroid molec-
ular dynamics (CMD) model of Voth and co-workers51, 52

can be reformulated to fall into the family of dynamics.
Section VI summaries and concludes.

II. PHASE SPACE DENSITY DISTRIBUTION FUNCTION
AND PHASE SPACE FORMULATION OF QUANTUM
MECHANICS

In quantum mechanics, the density distribution func-
tion in the phase space is not uniquely defined. Quite a few
representations2, 4, 5, 14, 37, 41–50 of the distribution function have
been proposed, which are able to generate a one-to-one cor-
respondence mapping from the density operator ρ̂ (either a
pure state or a mixed state) to the phase space. Thus, the ex-
pectation value of an arbitrary operator B̂ (x̂, p̂) correspond-
ing to an experimental observable for the system at time t in
quantum mechanics can be calculated by using the distribu-
tion function P (x, p; t) as

〈B (t)〉 = Tr[ρ̂ (t) B̂]/Tr[ρ̂ (t)]

= 1

Nc (t)

∫
dx

∫
dp P (x, p; t) B̃(x, p), (5)

where the function B̃(x, p) can be obtained from the operator
B̂ (x̂, p̂) by a well-defined correspondence rule based on the
representation. Here the normalization factor,

Nc (t) = Tr [ρ̂ (t)] =
∫

dx
∫

dp P (x, p; t) , (6)

is usually time independent, i.e., a constant Nc (t) = Nc (0)
≡ Nc.

Most of these phase-space representations can be ex-
pressed in the unified classification scheme of Cohen38 given
by the following equations:

P (x, p; t) = 1

4π2

∫
dζ

∫
dη Tr[ρ̂ (t) eiζ x̂+iη p̂ f (ζ, η)]

× e−iζ x−iηp (7)

and

B̃(x, p) = 2π¯

4π2

∫
dζ

∫
dη Tr[ f (−ζ,−η)−1 eiζ x̂+iη p̂ B̂]

× e−iζ x−iηp. (8)

For example, the Wigner function2, 14 has

f (ζ, η) = 1, (9)

the Husimi function37

f (ζ, η) = e−(ζ 2
/

4�)−(¯2�
/

4)η2
, (10)

the Kirkwood antistandard-ordered function,42, 43

f (ζ, η) = ei¯ζη/2, (11)

the Mehta standard-ordered function44

f (ζ, η) = e−i¯ζη/2, (12)

the Rivier function,45, 46

f (ζ, η) = cos

[
1

2
¯ζη

]
, (13)

the Glauber–Sudarshan P function,4, 5, 41

f (ζ, η) = e¯ζ
2/4mω+¯mωη2/4, (14)

and its generalized versions,50, 53 the Glauber Q function5

f (ζ, η) = e−¯ζ 2/4mω−¯mωη2/4, (15)

the normal-antinormal ordered function40

f (ζ, η) = cosh

[
¯

4mω
ζ 2 + ¯mω

4
η2

]
, (16)

and the distribution function of Born and Jordan47

f (ζ, η) = sin
[

1
2¯ζη

]
1
2¯ζη

, (17)

etc. All these distribution functions are actually equivalent in
the sense that they contain all the physically meaningful in-
formation and can be connected with one another.38–40 For
example, the Wigner function

PW (x, p) = 1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dηTr[eiζ (x̂−x) +iη( p̂−p)ρ̂]

= 1

2π¯

∫
dy

〈
x − y

2

∣∣∣ ρ̂

∣∣∣x + y

2

〉
eiyp/¯

(18)
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and the Husimi function

PH (x, p) = 1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dη

× Tr[e−(ζ 2
/

4�)−(¯2�
/

4)η2
eiζ (x̂−x) +iη( p̂−p)ρ̂]

= 1

2π¯
〈x, p| ρ̂ |x, p〉 (19)

are related by

PH (x, p) = 1

π¯

∫
dx ′

∫
dp′PW (x ′, p′)e−�(x−x ′)2−(p−p′)2

/¯2�,

(20)

or equivalently

PW (x, p) = exp

[
−�

4

∂2

∂x2
− 1

4�

∂2

∂p2

]
PH (x, p). (21)

Here the coherent state |x, p〉 can be expressed in coor-
dinate space as

〈y |x, p〉 =
(

�

π

)1/4

e−(�/2)(y−x)2+(i/¯)p(y−x). (22)

For the function B̃(x, p) of Eq. (5), one has

B̃W (x, p) = 2π¯

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dηTr[eiζ (x̂−x)+iη( p̂−p) B̂]

=
∫

dy
〈
x − y

2

∣∣∣B̂
∣∣∣x + y

2

〉
eiyp/¯ (23)

in the Wigner representation, and

B̃H (x, p) = 2π¯

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dη

× Tr[e(ζ 2
/

4�)+(¯2�
/

4)η2
eiζ (x̂−x)+iη( p̂−p) B̂] (24)

in the Husimi representation. [Note B̃H (x, p)
�= 〈x, p| B̂ |x, p〉 in most cases.] The Wigner function,2, 14 the
Husimi function,37 the Glauber–Sudarshan P function,4, 5, 41

the Glauber Q function,5 the Rivier function,45, 46 and some
others48–50 are all real valued, which are the distribution
functions that we discuss in this paper. Obviously, all these
distribution functions are able to correctly describe thermal
fluctuations of the (molecular) system at equilibrium since
they contain all the physically meaningful information. The
phase space formulation of quantum mechanics provides a
solid basis for making the quantum-classical correspondence
or analogy, as we will discuss further in Secs. IV and VI and
two subsequent papers.

III. LIOUVILLE’S THEOREM IN CLASSICAL
MECHANICS AND QUANTUM MECHANICS

A. Liouville’s theorem in classical mechanics

1. Liouville’s theorem

For the density distribution function P of the system with
the Hamiltonian,

H (x, p) = p2

2m
+ V (x), (25)

in classical mechanics, Liouville’s theorem in the Eulerian
viewpoint54 states

∂P (x, p; t)

∂t
= −{P, H}Poisson

= −
(

∂P (x, p; t)

∂x

∂ H (x, p)

∂p
− ∂P (x, p; t)

∂p

∂ H (x, p)

∂x

)
,

(26)

which for the Hamiltonian [Eq. (25)] is

∂P (x, p; t)

∂t
= −∂P (x, p; t)

∂x

p

m
+ ∂P (x, p; t)

∂p
V ′(x). (27)

In this paper, we refer to Eqs. (26) or (27) as Liouville’s
theorem of the first kind in classical mechanics. In classi-
cal mechanics, an alternative statement of the theorem54 [in
the Lagrangian picture, i.e., following the classical trajectory
(xt , pt )] is

dP (xt , pt ; t)

dt
= 0, (28)

i.e., the value of the density distribution function is invariant
along the classical trajectory. We refer to Eq. (28) as Liou-
ville’s theorem of the second kind in classical mechanics.

The following equality always holds:

dP (xt , pt ; t)

dt
= ∂P (xt , pt ; t)

∂xt
ẋt + ∂P (xt , pt ; t)

∂pt
ṗt

+ ∂P (xt , pt ; t)

∂t
, (29)

where the first two terms on the right-hand side (RHS) arise
from the implicit dependence, and the last term on the RHS
from the explicit dependence. Since Eqs. (27)–(29) hold for
any phase point at any time for any arbitrary density distribu-
tion function P (xt , pt ; t), if one selects ẋt = pt/m to be the
relation between the position and momentum which is inde-
pendent of the density distribution function and of the sys-
tem, then one obtains the classical equations of motion from
Liouville’s theorem,

ẋt = pt

m
ṗt = −V ′ (xt ) .

(30)

Since the classical force −V ′(xt ) is uniquely defined, the
classical equations of motion above are deterministic and thus
time reversible.

2. A heuristic viewpoint for deriving the force from the
canonical density distribution function for the thermal
equilibrium system

For systems at equilibrium, the classical Boltz-
mann/canonical distribution Peq(x, p) is

Peq(x, p) =
(

β

2πm

)1/2

e−β((p2
/

2m)+V (x))

=
(

β

2πm

)1/2

e−β H (x,p), (31)
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with the classical partition function as the normalization fac-
tor

Z =
∫

dx e−βV (x) =
∫

dx
∫

dp Peq(x, p). (32)

It is easy to see that the classical equations of motion
[Eq. (30)] conserve the classical canonical distribution
[Eq. (31)], i.e., the canonical distribution function Peq(x, p)
is stationary,

∂Peq (x, p; t)

∂t
= 0. (33)

Equation (33) provides alternative ways to derive the
classical force from the canonical density distribution func-
tion for the thermal equilibrium system, as we show below.

By virtue of Liouville’s theorem of the first kind in clas-
sical mechanics, substituting Eq. (33) into Eq. (27), one has

∂Peq(x, p)

∂p
V ′(x) = ∂Peq(x, p)

∂x

p

m
, (34)

which gives an equivalent form to calculate the classical force
−V ′(x) by using its canonical density distribution function
Peq(x, p) for the thermal equilibrium system. Since the par-
tial distribution function for the momentum p at any fixed
position x is a Gaussian function according to Eq. (31), the
classical force −V ′(x) given in Eq. (34) is always uniquely
defined by the classical Boltzmann/canonical density distri-
bution function Peq(x, p) [Eq. (31)].

For thermal equilibrium systems in classical mechanics,
one can always define the classical equations of motion [i.e.,
Eq. (30)] based on Liouville’s theorem with the classical force
given by Eq. (34). The insight provides a heuristic procedure
for making the quantum-classical correspondence or analogy
in the phase space formulation of quantum mechanics.

B. Liouville’s theorem in the phase space formulation
of quantum mechanics

Liouville’s theorem in quantum mechanics (the von Neu-
mann equation) states that

∂ρ̂ (t)

∂t
= − 1

i¯
[ρ̂ (t) , Ĥ ]. (35)

As shown in Appendix A, Eq. (35) can be written in the
Wigner phase space representation as

∂PW (x, p; t)

∂t
= −∂PW

∂x

p

m
+ ∂PW

∂p
V ′(x)

− ¯
2

24

∂3PW

∂p3
V (3)(x) + · · · , (36)

which is known as the Wigner–Moyal equation;2, 3 and in the
Husimi phase space representation as

∂PH (x, p; t)

∂t
= −∂PH

∂x

p

m
+ ∂PH

∂p
V ′(x) − ¯

2�

2m

∂2PH

∂p∂x

+¯V (2)(x)

2!

∂

∂p
〈x, p|

(
−i

←−
∂

∂p

)
ρ̂

2π¯

+ ρ̂

2π¯

(
−i

−→
∂

∂p

)
|x, p〉 + ¯2 V (3)(x)

3!

∂

∂p

× 〈x, p|
(

−i
←−
∂

∂p

)2
ρ̂

2π¯
+

(
−i

←−
∂

∂p

)
ρ̂

2π¯

×
(

−i
−→
∂

∂p

)
+ ρ̂

2π¯

(
−i

−→
∂

∂p

)2

|x, p〉

+ · · · (37)

with the notation for half operators (acting on either the co-
herent state ket or bra) defined as

¯ 〈x, p|
(

−i
←−
∂

∂p

)
ρ̂ = 〈x, p| (x̂ − x) ρ̂

¯ρ̂

(
−i

−→
∂

∂p

)
|x, p〉 = ρ̂ (x̂ − x) |x, p〉 .

(38)

Similarly, one can also express quantum Liouville’s the-
orem in the phase space based on any of the other distribution
functions discussed in Sec. II. A general form of the phase
space formulation of Liouville’s theorem can be obtained as
shown by Cohen38 and Lee.40

For thermal equilibrium systems, the canonical distribu-
tion function Peq(x, p), i.e., the density distribution function
for the Boltzmann operator e−β Ĥ (x̂, p̂) ≡ e−β(( p̂2

/
2m)+V (x̂)) in

the phase space, can be rigorously generated from the distri-
bution functions in Sec. II. For instance, the Wigner density
distribution function for the Boltzmann operator gives

Peq
W (x, p) = 1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dηTr[eiζ (x̂−x)+iη( p̂−p)e−β Ĥ ]

= 1

2π¯

∫
dy

〈
x − y

2

∣∣∣ e−β Ĥ
∣∣∣x + y

2

〉
eiyp/¯ (39)

and the Husimi distribution function

Peq
H (x, p) = 1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dη

× Tr[e−(ζ 2
/

4�)−(¯2�
/

4)η2
eiζ (x̂−x)+iη( p̂−p)e−β Ĥ ]

= 1

2π¯
〈x, p| e−β Ĥ |x, p〉 , (40)

with the quantum partition function as the normalization
factor

Z = Tr[e−β Ĥ ] =
∫

dx
∫

dp Peq(x, p). (41)

Because the system is at thermal equilibrium, the canon-
ical distribution function Peq(x, p) is stationary no matter
which phase space representation of the distribution function
is used, i.e.,

∂Peq(x, p; t)

∂t
= 0. (42)

There are various ways to rewrite the phase space for-
mulation of quantum Liouville’s theorem [e.g., Eq. (36) or
Eq. (37)] for making analogies to classical mechanics (i.e., to



104101-5 Dynamical approaches in quantum phase spaces J. Chem. Phys. 134, 104101 (2011)

show the quantum-classical correspondence), as we will dis-
cuss in Sec. IV, Appendix B, and a subsequent paper.

IV. TRAJECTORY-BASED DYNAMICS IN THE SPIRIT
OF LIOUVILLE’S THEOREM IN CLASSICAL
MECHANICS

A. Equilibrium Liouville dynamics

If one can define an effective force −(∂/∂x)Veff(x, p) in
Eq. (36) as(

∂PW

∂p

)
∂Veff(x, p)

∂x
=

(
∂PW

∂p

)
V ′(x)

− ¯
2

24

∂3PW

∂p3
V (3)(x) + · · · (43)

[e.g., as in Lee and Scully’s “Wigner trajectories” in 1980s55],
or in Eq. (37) as(

∂PH

∂p

)
∂Veff(x, p)

∂x
=

(
∂PH

∂p

)
V ′(x) − ¯

2�

2m

∂2PH

∂p∂q

+¯V (2)(x)

2!

∂

∂p
〈x, p|

(
−i

←−
∂

∂p

)
ρ̂

2π¯
+ ρ̂

2π¯

(
−i

−→
∂

∂p

)
|x, p〉

+¯2 V (3)(x)

3!

∂

∂p
〈x, p|

(
−i

←−
∂

∂p

)2
ρ̂

2π¯

+
(

−i
←−
∂

∂p

)
ρ̂

2π¯

(
−i

−→
∂

∂p

)
+ ρ̂

2π¯

(
−i

−→
∂

∂p

)2

|x, p〉

+ · · · , (44)

then Eq. (36) or Eq. (37) becomes

∂P(x, p; t)

∂t
= −∂P

∂x

p

m
+ ∂P

∂p

∂Veff(x, p)

∂x
. (45)

Equation (45) is another expression of Liouville’s
theorem in the phase space formulation of quantum me-
chanics. One sees the quantum-classical correspondence
between Eq. (45) and its classical counterpart Eq. (27).
[However, it is important to point out that the effective force
−(∂/∂x)Veff(x, p) is not guaranteed to be always well defined
[in Eq. (43) or Eq. (44)] at any phase point (x, p), although
the RHS of Eq. (43) or Eq. (44) always exists and is equal to
(∂P(x, p; t)/∂t) + (∂P/∂x)(p/m). One should be careful with
this particularly for nonstationary density distribution func-
tions [while the phase points satisfy (∂P(x, p; t)/∂p) = 0].
Nevertheless, the effective force for the thermal equilibrium
system is often well defined as we will discuss below.]

Similar to the viewpoint that stationarity of the classical
canonical distribution function enables one to obtain the clas-
sical force [i.e., Eq. (34)], stationarity of the quantum canoni-
cal distribution function [i.e., Eq. (42)] provides a way to ob-
tain the effective force −(∂Veff(x, p)/∂x),

∂Peq(x, p)

∂p

∂Veff(x, p)

∂x
= ∂Peq(x, p)

∂x

p

m
. (46)

Once a phase space is constructed based on a (real) distri-
bution function in Sec. II, the quantum canonical distribution

function ρeq(x, p) is uniquely defined and continuous in the
phase space. If the partial distribution function for the mo-
mentum p at any fixed position x based on the equilibrium
density distribution Peq(x, p) is (effectively) a Gaussian func-
tion, then Eq. (46) always gives a uniquely defined and con-
tinuous effective force −(∂Veff(x, p)/∂x) for any phase point
(x, p). [See more discussion in Appendix E.]

If the trajectory in the phase space is chosen to satisfy

dPeq (xt , pt ; t)

dt
= 0 (47)

as an analogy to Liouville’s theorem of the second kind
in classical mechanics [Eq. (28)], one can use the equality
Eq. (29) and the phase space formulation of Liouville’s theo-
rem in quantum mechanics Eq. (45) to obtain

dPeq (xt , pt ; t)

∂t
= ∂Peq (xt , pt ; t)

∂xt

(
ẋt − pt

m

)

+ ∂Peq (xt , pt ; t)

∂pt

(
ṗt + ∂Veff (xt , pt )

∂xt

)
.

(48)

[Note that one can derive Eq. (48) from Eqs. (29) and
(45) for not only equilibrium density distribution functions
Peq (xt , pt ; t) but also nonequilibrium density distribution
functions P(xt , pt ; t).] As before, we define ẋt = pt/m to be
the relation between the position and momentum, which is
independent of the density distribution function and indepen-
dent of the system. Equation (47) requires that the RHS of
the above equation always be zero for any phase point (xt , pt )
along the trajectory at any time for any density distribution
function in Eq. (47). The solution to Eq. (48) consistent with
all these conditions leads to the equations of motion for the
trajectory

ẋt = pt

m

ṗt = −∂Veff (xt , pt )

∂xt
.

(49)

By virtue of Eq. (45), the equations of motion [Eq. (49)]
with the effective force given by its equilibrium density dis-
tribution function Peq(x, p) [Eq. (46)] are able to gener-
ate a trajectory-based dynamics that conserves the equilib-
rium density distribution [Eq. (42)] based on any distribution
function discussed in Sec. II. We have already proposed the
trajectory-based dynamics [i.e., Eq. (49) with Eq. (46)] in the
Wigner phase space formulation as one of the key results of
our recent paper19 (i.e., so-called “full Wigner dynamics”).
Here we show that the approach can be generalized to other
distribution functions in Sec. II. We refer to this family of dy-
namics as “equilibrium Liouville dynamics” (ELD).

It is important to point out that Eq. (47) cannot be de-
rived from quantum Liouville’s theorem even though Eq. (28)
is Liouville’s theorem of the second kind in classical me-
chanics. This is not surprising. Due to the Heisenberg uncer-
tainty principle, there is no unique way to define the equations
of motion for trajectories in the phase space formulation of
quantum mechanics. The phase space formulation of quantum
mechanics naturally gives insights into the quantum-classical
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correspondence [e.g., between Eqs. (27) and (45)] and non-
correspondence [e.g., Eq. (28) always holds in classical
mechanics but Eq. (47) is not required in quantum mechan-
ics] for Liouville’s theorem. Equation (47) is a way to gen-
erate a family of trajectory-based dynamics (i.e., ELD) in
the spirit of the classical Liouville’s theorem of second kind
[Eq. (28)]. One can define other types of trajectory-based
dynamics in other ways. More discussions are available in
Appendix B and a subsequent paper.

B. ELD trajectories and canonical ensemble averages

We now show four important properties of the ELD dy-
namics [i.e., Eq. (49) with Eq. (46)]. First, the value of the
density distribution function that the ELD trajectory carries is
invariant as the trajectory propagates due to Eq. (47), i.e.,

Peq (xt (x0, p0) , pt (x0, p0) ; t) = Peq (x0, p0; 0) . (50)

The ELD trajectory evolves on a shell with a constant
value of the density distribution function Peq(x, p) (i.e., the
equiquasidensity hypersurface).

Second, any two trajectories from different initial phase
points in the phase space governed by the dynamics do
not cross each other. Due to the one-to-one correspondence
mapping of the density distribution function described in
Sec. II, the canonical distribution function and the effective
force −(∂Veff(x, p)/∂x) given by Eq. (46) are uniquely de-
fined at any phase point (x, p) for the thermal equilibrium
system. So any two trajectories from different initial phase
points do not cross each other in the phase space, similar to
classical dynamics.

Third, the ELD trajectory is time reversible. This fol-
lows for the same reasons as above —the density distribution
function and the effective force −(∂Veff(x, p)/∂x) given by
Eq. (46) are uniquely defined at any phase point (x, p) for the
thermal equilibrium system, such that the ELD equations of
motion in Eq. (49) are deterministic.

Fourth, the phase space represented by the variables
(xt , pt ) at time t is a one-to-one correspondence mapping of
the phase space represented by the variables (x0, p0) at time
0. The mapping rule is governed by the equations of motion
Eq. (49) with the effective force defined in Eq. (46). Because
of the noncrossing and time-reversibility properties outlined
above, (x0, p0) and (xt , pt ) are in one-to-one correspondence.
As long as the ensemble of initial points (x0, p0) is able to
represent the whole phase space (x, p) in the Eulerian pic-
ture, its counterpart ensemble of points (xt , pt ) at time t is
able to do the same as well, i.e., no area of the phase space
in the Eulerian picture will not be visited by the ensemble of
trajectories.

These properties suggest ELD can provide a robust al-
gorithm for including quantum effects in (large) molecular
systems. One can use Eq. (D5) or Eq. (D6) in Appendix D
to evaluate a dynamical physical property [i.e., Eq. (5)] for
systems at thermal equilibrium, i.e.,

〈B (t)〉 = 1

Z

∫
dx0

∫
dp0 Peq (x0, p0; 0) B̃(xt (x0, p0),

pt (x0, p0)). (51)

Because ELD conserves the (thermal) equilibrium den-
sity distribution by construction [i.e., Eq. (42) or Eq. (46)]
and satisfies Eq. (50), one can switch Eq. (51) to the Eulerian
viewpoint [i.e., Eq. (5)] based on Eq. (D5) to show that canon-
ical ensemble averages or thermodynamic properties (such as
the average kinetic energy) and their thermal fluctuations for
systems at equilibrium are invariant with time as the exact
case is [i.e., Eq. (2)].

One can implement the time average in Eq. (51) to obtain
the ensemble average of the thermal equilibrium system, i.e.,

〈B〉 = 1

T

∫ T

0
dt 〈B (t)〉

= 1

Z

∫
dx0

∫
dp0 Peq (x0, p0; 0)

×
[

1

T

∫ T

0
dt B̃ (xt (x0, p0) , pt (x0, p0))

]
. (52)

For ergodic systems, Eq. (52) can be given by

〈B〉 = lim
T →∞

1

T

∫ T

0
dt B̃ (xt (x0, p0) , pt (x0, p0)) . (53)

C. Choice of the phase space distribution function

Since the ELD approach can generate trajectory-based
dynamics that conserves the quantum canonical distribution
in any phase space formulation of quantum mechanics, one
might conclude that it is a matter of taste to choose the distri-
bution function for ELD. However, this is often not the case.
Whether a reasonable description on quantum dynamics is ob-
tained or not actually depends on the choice of phase space
distribution function. This is because Eq. (47) or Eq. (49) is a
sufficient but not necessary condition for conserving the quan-
tum canonical distribution function. Although Liouville’s
theorem in classical mechanics can be expressed in either
Eq. (27) or Eq. (28), its correspondence in the phase space
formulation of quantum mechanics only requires Eq. (45) but
not Eq. (47). Due to the Heisenberg uncertainty principle,
it is impossible to uniquely define the distribution function
and trajectory-based dynamics in the phase space formulation
of quantum mechanics. Criterion 3 suggested in Sec. I helps
choose a particular phase space distribution function that is
able to get quantum dynamics results in the following three
important limits.

1. Classical limit

In the classical limit ¯→ 0, quantum Liouville’s the-
orem in any phase space representation (i.e., with any dis-
tribution function in Sec. I) naturally reduces to classical
Liouville’s theorem. For example, in the limit of ¯→ 0,
Eq. (36) or Eq. (37) [with � → ∞, i.e., coherent state goes
to position state] leads to the classical form [Eq. (34)], the
effective force −V ′

eff(x, p) in Eq. (46) approaches the classi-
cal force −V ′(x), and dynamics in Eq. (49) becomes classical
dynamics.
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2. High temperature limit

In the high temperature limit β → 0, one has e−β Ĥ

→ e−β( p̂2/2m)e−β V̂ (x̂). It is straightforward to show the canoni-
cal distribution in any representation (i.e., for any distribution
function in Sec. I) becomes the classical density distribution.
For example, the Wigner or Husimi representation [Eq. (39)
or Eq. (40)] naturally reduces to the classical form [Eq. (31)],
the effective force −V ′

eff(x, p) in Eq. (46) approaches the clas-
sical force −V ′(x), and dynamics in Eq. (49) becomes classi-
cal dynamics.

3. Harmonic limit

For a 1-dim harmonic potential V (x) = (1/2)mω2x2, one
has

〈x | e−β Ĥ |y〉=
(

mω

2π¯ sinh [u]

)1/2

× exp

[
− mω

2¯ sinh[u]
(cosh[u](x2+y2)−2xy)

]
(54)

with the dimensionless parameter

u = β¯ω. (55)

Defining the quantum correction factor Q (u) as

Q(u) = u/2

tanh[u/2]
, (56)

it is then trivial to show that the Wigner density distribution
function is

Peq
W (x, p) = 1

2π¯ cosh
[
u/2

]
× exp

[
− β

Q (u)

(
p2

2m
+ 1

2
mω2x2

)]
(57)

and the effective force defined in Eq. (46) is

− ∂Veff(x, p)

∂x
= −mω2x . (58)

The equations of motion in ELD [Eq. (49)] then reduces
to the classical case.

One can also show that the Husimi density distribution
function is

Peq
H (x, p)

= 1

2π¯ sinh[u/2]

(
�mu2

(β¯2�+2m Q(u))(2�Q(u)+βmω2)

)1/2

× exp

[
− p2(
¯2�+2m Q (u) /β

) − �βmω2

2�Q (u)+βmω2
x2

]
.

(59)

The effective force is

− ∂Veff(x, p)

∂x
= −mω2x

(
2�Q (u) + β¯2�2/m

2�Q (u) + βmω2

)
. (60)

It becomes the classical force if and only if

� = mω

¯
, (61)

i.e., when the Husimi distribution function is the same as the
Glauber Q function5 listed in Eq. (15). For the general an-
harmonic potential, one will have to find the optimal value
(regime) for the width parameter �. (See Paper II for more
discussions.)

As one can verify, the Wigner function, the Husimi func-
tion, and the Glauber Q function are among those distribution
functions that are able to make ELD approach classical dy-
namics in the harmonic limit. Note that the Glauber Q func-
tion can be viewed as a special case of the Husimi function.
When the Wigner distribution function Eq. (39) is used for the
dynamics Eq. (49), we refer to it as Wigner ELD (W-ELD)
for convenience. Similarly, we refer to the ELD dynamics
Eq. (49) with the Husimi function Eq. (40) as Husimi ELD
(H-ELD). One sees that H-ELD has an adjustable parameter
� while W-ELD has none.

V. THE RELATION BETWEEN THE ELD
TRAJECTORY-BASED DYNAMICS AND CENTROID
MOLECULAR DYNAMICS

The Baker–Campbell–Hausdorff formula

eÂeB̂ = eÂ+B̂+(1/2)
[
Â,B̂

]+(1/12)
[
Â−B̂,

[
Â,B̂

]]+···, (62)

leads to the inequality

eiζ x̂+iη p̂e−β Ĥ �= eiζ x̂+iη p̂−β Ĥ . (63)

If one ignores the noncommutivity of quantum mechani-
cal operators, then one can show the following formula with
the Trotter product formula and with the path integral repre-
sentation:

eiζ x̂+iη p̂e−β Ĥ ≈ eiζ x̂+iη p̂−β Ĥ

= lim
P→∞

(ei(ζ /P)x̂+i(η/P) p̂−(β/P)Ĥ )P

= lim
P→∞

(ei(ζ /2P)x̂−(β/2P)V̂ (x̂)e−(β/P)( p̂2
/

2m)+i(η/P) p̂ei(ζ /2P)x̂−(β/2P)V̂ (x̂))P

= lim
P→∞

∫
dx1 · · ·

∫
dxP+1 |x1〉 e−(β/2P)V (x1)+iζ(x1/2P) 〈x1| e−(β/P)( p̂2

/
2m)+iη( p̂/P) |x2〉 · · ·

× e−(β/P)V (xP )+iζ(xP /P) 〈xP | e−(β/P)( p̂2
/

2m)+iη( p̂/P) |xP+1〉 e−(β/2P)V (xP )+iζ(xP /2P) 〈xP+1| . (64)
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With the equality

〈x | e−(β/P)( p̂2
/

2m)+iη( p̂/P) |y〉 =
∫

dp1 〈x | p1〉 e−(β/P)(p2
1

/
2m)+iη(p1/P) 〈p1 |y〉

=
(

m P

2πβ¯2

)1/2

e−(Pm
/

2β¯2)(x−y)2−(m/β¯)(x−y)η−(m/2β P)η2
, (65)

Equation (64) becomes

eiζ x̂+iη p̂e−β Ĥ ≈ eiζ x̂+iη p̂−β Ĥ

= lim
P→∞

(
m P

2πβ¯2

)P/2 ∫
dx1 · · ·

∫
dxP+1 |x1〉 e

−(Pm
/

2β¯2)
P∑

j=1
(x j −x j+1)2−(β/P)

(
(1/2)V (x1)+

P∑
j=2

V (x j )+(1/2)V (xP+1)

)

× e
iζ

[
(1/P)

(
(1/2)x1+

P∑
j=2

x j +(1/2)xP+1

)]
e−(m/2β)η2−(m/β¯)(x1−xP+1)η 〈xP+1| . (66)

One can then show that the Wigner density distribution
function Eq. (39) can be approximated by

Peq
W (x, p)= 1

Z

1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dηTr[eiζ (x̂−x)+iη( p̂−p)e−β Ĥ ]

= 1

Z

1

4π2
Tr

[∫ ∞

−∞
dζ

∫ ∞

−∞
dη eiζ (x̂−x)+iη( p̂−p)e−β Ĥ

]

≈ 1

Z

1

4π2
Tr

[∫ ∞

−∞
dζ

∫ ∞

−∞
dη eiζ (x̂−x)+iη( p̂−p)−β Ĥ

]

= 1

Z

(
β

2mπ

)1/2

e−β(p2
/

2m)ρc(x) (67)

with the definition of the centroid variable

xc = 1

P
(x1 + x2 + · · · + xP ) (68)

and the centroid density

ρc(x) = lim
P→∞

(
m P

2πβ¯2

)P/2 ∫
dx1 · · ·

∫
dxPδ (x − xc)

× exp

{
− Pm

2β¯2
[(x1 − x2)2 + · · · + (xP − x1)2]

}

× exp

{
− β

P
[V (x1) + · · · + V (xP )]

}
, (69)

which gives the partition function

Z =
∫

dx ρc(x). (70)

By virtue of Eq. (46) in the ELD approach, one obtains
the effective force for the thermal equilibrium system as

− ∂V ELD
eff (x, p)

∂x
=

1
β

∂ρc(x)
∂x

ρc(x)
= 1

β

∂

∂x
ln [ρc(x)] . (71)

With the choice of the equations of motion Eq. (49) of
ELD, one then obtains the CMD initially proposed by Cao
and Voth51 and rederived by Jang and Voth52 [We note that
Eqs. (64)–(70) can be closely related to the work of Jang
and Voth in Refs. 52 and 56 while neglecting the inequality
Eq. (63).]

Comparing Eq. (67) to Eq. (39), one sees that the position
x of the phase space (x, p) of W-ELD corresponds to that of
one path integral bead, while the position x in CMD is that
of the centroid of the path integral beads. Similar to ELD,
CMD conserves the quantum canonical distribution Eq. (67).
To evaluate a dynamical variable (observable) B (t), Eq. (5)
or its equivalent version for the thermal equilibrium system

〈B (t)〉= 1

Z

∫
dx

∫
dp Peq

W (x, p)BW (xt (x, p), pt (x, p))

(72)

can be used by following the trajectories in either “CMD
with the classical operator” [i.e., substituting Eq. (67) into
Eq. (72)], or W-ELD (as described in Sec. IV). [Note that
the Wigner function of the operator B̂ is the classical func-
tion itself when it is a function only of coordinate or only of
momentum, i.e., B̃(x) = BW (x) = Bcl(x) or B̃ (p) = BW (p)
= Bcl (p).] However, due to the inequality [Eq. (63)], CMD
with the classical operator is not a one-to-one correspondence
mapping required in the phase space formulation of quantum
mechanics as Eq. (5) is—it fails to give exact values for gen-
eral operators B̂ (even in the harmonic limit) and thus cannot
correctly describe all thermal fluctuations of the large (molec-
ular) system at equilibrium. [Jang and Voth52 has further pro-
posed “CMD with the effective classical operator” to give the
correct result for 〈B (t)〉, although it still fails to work for cor-
relation functions involving nonlinear operators.] CMD with
the classical operator can be viewed as an approximation to
W-ELD due to Eq. (67).

From another point of view, in order to make the mapping
with the density distribution function in Eq. (67) rigorously
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correct in the phase space formulation of quantum mechanics,
one needs to employ a system-dependent function f (ζ, η) in
Eq. (7), i.e.,

f (ζ, η) = e−iζ x̂−iη p̂eβ Ĥ eiζ x̂+iη p̂−β Ĥ . (73)

[Note that the function f (ζ, η) in Eq. (7) is usually indepen-
dent of the system for most distribution functions in Sec. II
and can also be applied to the system in a pure state.] That is,
Eq. (7) with the function f (ζ, η) defined by Eq. (73) leads to
the density distribution function as

Peq
CMD(x, p)= 1

Z

1

4π2

∫ ∞

−∞
dζ

∫ ∞

−∞
dη Tr[eiζ x̂+iη p̂−β Ĥ ] e−iζ x−iηp

= 1

Z

(
β

2mπ

)1/2

e−β(p2
/

2m)ρc(x). (74)

[While Eq. (74) has already been stated in Refs. 52 and 56,
Eq. (73) suggests that it can be included in the unified classi-
fication scheme of Cohen38 and its extension.] However, since
the function f (ζ, η) in Eq. (73) is system dependent, this
gives rise to ambiguity in using Eq. (8) to obtain the func-
tion B̃CMD (xt (x, p), pt (x, p)) for general nonlinear operators
B̂ along the CMD trajectory. Further work along this line will
be of interest to see whether one can give a unique definition
of B̃CMD so that CMD can give exact autocorrelation functions
of nonlinear operators in the harmonic limit.

Nevertheless, from either point of view, CMD falls into
the category of ELD trajectory-based dynamics, which con-
serves the quantum canonical distribution in the phase space
formulation of quantum mechanics.

VI. CONCLUDING REMARKS

In this paper, we have presented an approach based on
our previous work,19 and in the spirit of Liouville’s theorem
in classical mechanics, for generating a family of trajectory-
based dynamics (ELD) which conserves the quantum canon-
ical distribution in the phase space formulation of quantum
mechanics for thermal equilibrium systems. Requiring the
generated dynamics to approach classical dynamics in three
limits—the classical

(
¯→ 0

)
, high temperature (β → 0), and

harmonic limits—provides guidance in choosing the phase
space distribution function. Although we derive most equa-
tions for one-dimensional systems in the present paper, the
generalization to the multidimensional case is straightforward
(see Appendix E).

Though not specifically couched in the language of phase
space distribution functions, the CMD model by Voth and
coworkers51, 52 can be closely related to and even reformu-
lated in our proposed trajectory-based approach (ELD). Our
approach offers the framework to unite and improve the dy-
namical methods in a single phase space proposed in the past
[such as W-ELD (Ref. 19) and CMD (Refs. 51 and 52)] which
are able to conserve the quantum canonical distribution for
systems at thermal equilibrium. Although we only demon-
strate two examples, the Wigner function and the Husimi
function, the framework will also be useful in exploring all
other possible distribution functions and studying their asso-
ciated trajectory-based dynamics. One can even propose new

(either system dependent or system independent) functions
for f (ζ, η) in Eqs. (5)–(8) (or the extension of the scheme of
Cohen) and then use the ELD approach to generate trajectory-
based dynamics for equilibrium systems in a given field of
interest. [As we point out at the end of Sec. IV A, the ELD
approach is still an approximate one because Eq. (47) is not
required in quantum mechanics for Liouville’s theorem.]

As an analog to classical dynamics, the ELD family of
dynamics satisfies the three criteria in Sec. I, providing a pow-
erful tool to study physical and chemical properties of large
molecular systems at thermal equilibrium. For instance, one
can use several long-time trajectories with a time average to
study macroscopic transport properties57 (such as the self-
diffusion constant, shear and bulk viscosity coefficients, ther-
mal conductivity, etc.) either by the mean-squared displace-
ment

γ = lim
t→∞

∂〈|B (t) − B (0)|2〉
∂t

(75)

or by the thermal correlation function approach

γ =
∫ ∞

0
dt〈Ḃ (0) Ḃ (t)〉. (76)

Another application is to canonical chemical reaction rates.
One either follows the trajectory to count the times that it goes
across the dividing surface or uses the flux–flux or flux–side
correlation functions.58

Although we focus on the real phase space with the
position and momentum (x, p) in the paper, we note that
our mapping approach can also be applied or generalized to
the real phase space with other conjugate variables that are
canonical transformations of (x, p) and also to the complex
space (α, α∗) or (β, β∗), which are popular in quantum optics
and electronics,4, 5 etc. Here α and α∗ are the complex
conjugate variables corresponding to the two operators
α̂ = √

(mω/2¯)x̂ + (i/
√

2¯mω) p̂ and α̂+ = √
(mω/2¯)x̂

− (i/
√

2¯mω) p̂, respectively, and (β, β∗) for β̂ =√
(�/2)x̂ + (i/

√
2¯2�) p̂ and β̂+ = √

(�/2)x̂ − (i/
√

2¯2�) p̂,
respectively.

The strategy that we use in the present paper is not lim-
ited to thermal equilibrium systems. It would also be useful
for studying systems under other stationary conditions, e.g.,
systems at other types of equilibrium or stationary nonequilib-
rium systems. Further work along these lines would certainly
be of interest.
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APPENDIX A: QUANTUM LIOUVILLE’S THEOREM
IN THE WIGNER OR HUSIMI PHASE SPACE
REPRESENTATION

For any operator Â, it is trivial to show that

〈x − x/2| p̂ Â|y〉 = −i¯
∂

∂x
〈x − x/2| Â|y〉

= 2i¯
∂

∂x
〈x − x/2| Â|y〉 (A1)

and

〈y| Â p̂|x + x/2〉 = i¯∂/∂x〈y| Â|x + x/2〉
= 2i¯∂/∂x〈y| Â|x + x/2〉. (A2)

Based on Eqs. (A1) and (A2), one can show

〈x − x/2| p̂ Â + Â p̂|x + x/2〉
= 2i¯∂/∂x〈x − x/2| Â|x + x/2〉 (A3)

and

〈x − x/2| Â p̂ − p̂ Â |x + x/2〉
= i¯∂/∂x 〈x − x/2| Â |x + x/2〉 . (A4)

Note

[ρ̂,
p̂2

2m
] = p̂

2m
[ρ̂, p̂] + [ρ̂, p̂]

p̂

2m
. (A5)

One can derive the following equation from Eqs. (A3)–
(A5), 〈

x − x

2

∣∣∣∣ − 1

i¯

[
ρ̂,

p̂2

2m

] ∣∣∣∣x + x

2

〉

= − i¯

m

∂

∂x

∂

∂x

〈
x − x

2

∣∣∣∣ ρ̂
∣∣∣∣x + x

2

〉
. (A6)

Integrating by parts over x for the above equation leads
to

1

2π¯

∫ ∞

−∞
dx

[〈
x− x

2

∣∣∣∣− 1

i¯

[
ρ̂,

p̂2

2m

] ∣∣∣∣x+ x

2

〉
eipx/¯

]

= − p

m

∂

∂x
PW (x, p). (A7)

Expanding the potential V (x) into a Tyler series, one can
show

〈
x − x

2

∣∣∣∣ [ρ̂, V̂ (x̂)
] ∣∣∣∣x + x

2

〉
=

〈
x − x

2

∣∣∣∣ ρ̂
∣∣∣∣x + x

2

〉 [
V

(
x + x

2

)
− V

(
x − x

2

)]

=
〈
x − x

2

∣∣∣∣ ρ̂
∣∣∣∣x + x

2

〉 [
V ′(x)x + 2

3!
V (3)(x)

(
x

2

)3

+ · · ·
]

. (A8)

Integrating by parts over x again, one has

1

2π¯

∫ ∞

−∞
dx

[〈
x− x

2

∣∣∣∣− 1

i¯

[
ρ̂, V̂ (x̂)

] ∣∣∣∣x+ x

2

〉
eipx/¯

]

= ∂PW

∂p
V ′(x) − ¯

2

24

∂3PW

∂p3
V (3)(x) + · · · . (A9)

Finally, Eqs. (A7) and (A8) demonstrate that the Wigner
phase space representation of quantum Liouville’s theorem
[Eq. (35)] can be expressed as Eq. (36), which is known as
the Wigner–Moyal equation.2, 3

With the coherent state defined in Eq. (22), one can show

〈y| p̂ |x, p〉 = i¯
∂

∂x
〈y |x, p〉 = −i¯

∂

∂y
〈y |x, p〉

= −i¯

[
−� (y − x) + i

¯
p

]
〈y |x, p〉 (A10)

and

〈x, p| p̂ |y〉 = −i¯
∂

∂x
〈x, p |y〉 = i¯

∂

∂y
〈x, p |y〉

= i¯

[
−� (y − x) − i

¯
p

]
〈x, p |y〉 , (A11)

and then

〈x, p| [ Â, p̂
] |x, p〉 = i¯

∂

∂x
〈x, p| Â |x, p〉 . (A12)

One can also show
∂

∂p
〈x, p| Â|x, p〉

=
∫

dy
∫

dy′〈x, p|y〉〈y| Â|y′〉〈y′|x, p〉 i

¯
(y′−y). (A13)

and then

〈x, p| p̂ Â + Â p̂ |x, p〉

=
∫

dy
∫

dy′〈x, p|y〉〈y| Â|y′〉〈y′|x, p〉(2p+i¯�(y′−y))

=
(

2p + ¯2�
∂

∂p

)
〈x, p| Â |x, p〉 . (A14)

By virtue of the equality Eq. (A5), one can further show

1

2π¯
〈x, p|− 1

i¯

[
ρ̂,

p̂2

2m

]
|x, p〉

= − p

m

∂

∂x
PH (x, p) − ¯

2�

2m

∂2

∂p∂x
PH (x, p). (A15)
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Expanding the potential V (x) as a Tyler series around the
position x , one can show

〈x, p|[ρ̂, V̂ (x̂)]|x, p〉

=
∫

dy
∫

dy′〈x, p|y〉〈y|ρ̂|y′〉〈y′|x, p〉[V (y′)−V (y)]

=
∫

dy
∫

dy′〈x, p|y〉〈y|ρ̂|y′〉〈y′|x, p〉

×
{

V ′(x)(y′ − y)+ V ′′(x)

2!
(y′−y)[(y − x) + (y′ − x)]

+ V (3)(x)

3!
(y′ − y)[(y − x)2+(y−x)(y′ − x)+(y′−x)2]

+ · · ·
}
. (A16)

With Eq. (A13), one has

1

2π¯

〈
x, p

∣∣∣∣ 1

i¯

[
ρ̂, V̂ (x̂)

]∣∣∣∣ x, p

〉

= V ′(x)
∂

∂p
PH (x, p) + V ′′(x)

2!

∂

∂p

×
〈
x, p

∣∣∣∣(x̂ − x)
ρ̂

2π¯
+ ρ̂

2π¯
(x̂ − x)

∣∣∣∣x, p

〉
+ V (3)(x)

3!

∂

∂p

×
〈
x, p

∣∣∣∣(x̂−x)2 ρ̂

2π¯
+(x̂−x)

ρ̂

2π¯
(x̂−x)

+ ρ̂

2π¯
(x̂−x)2

∣∣∣∣x, p

〉
+ · · · . (A17)

With Eqs. (A15) and (A17), one can prove that the
Husimi phase space representation of the quantum Liouville
theorem (Eq. (35)) leads to Eq. (37). It is trivial to show that
Eq. (37) has another expression59 as

∂PH (x, p; t)

∂t
=−∂PH

∂x

p

m
− ¯

2�

2m

∂2PH

∂p∂x

+
∞∑

l=1

∞∑
j=0

int[ j/2]∑
k=0

Cl jk
∂ j+2l+1V

∂x j+2l+1

∂2l+1∂ j−2kPH

∂p2l+1∂x j−2k
,

(A18)

where Cl jk = (−1)l¯2l/� j−k[22l+ j (2l + 1)!k!( j − 2k)!] and
int[ j/2] as the integer part of j/2.

Although we show the proofs above for the one-
dimensional case, the generalization to the multidimensional
case is straightforward.

APPENDIX B: MORE DISCUSSION ON THE CHOICE
OF EQUATIONS OF MOTION IN THE PHASE SPACE
FORMULATION OF QUANTUM MECHANICS

Due to the Heisenberg uncertainty principle, it is not pos-
sible to define a unique probability at a phase space point
(x, p), nor is it possible to uniquely define trajectory-based
dynamics in the phase space formulation of quantum mechan-
ics. There are various ways to define trajectory-based dynam-

ics that conserves the quantum canonical distribution in the
phase space formulation of quantum mechanics. Criterion 3
proposed in Sec. I is important for determining whether they
are physically meaningful.

In the present paper, we always define ẋ = p/m to be the
relation between the position and momentum, which is inde-
pendent of the density distribution function and independent
of the system. Although this is the most convenient and most
useful choice, there are still many other ways to define the
equations of motion from quantum Liouville’s theorem in the
phase space formulation of quantum mechanics in the spirit of
Liouville’s theorem of the second kind in classical mechanics.
They can also satisfy all three criteria listed in Sec. I.

For instance, one can rewrite quantum Liouville’s theo-
rem as

∂P (x, p; t)

∂t
= −∂P

∂x

peff

m
+ ∂P

∂p
V ′(x) (B1)

with the effective momentum peff in the Wigner phase space
[i.e., Eq. (36)] defined as

− ∂PW

∂x

peff

m
= −∂PW

∂x

p

m
− ¯

2

24

∂3PW

∂p3
V (3)(x) + · · · (B2)

or that in the Husimi phase space [i.e., Eq. (37)] defined as

− ∂PH

∂x

peff

m
= −∂PH

∂x

p

m
− ¯

2�

2m

∂2PH

∂p∂x

+¯V (2)(x)

2!

∂

∂p
〈x, p|

(
−i

←−
∂

∂p

)
ρ̂

2π¯

+ ρ̂

2π¯

(
−i

−→
∂

∂p

)
|x, p〉 + ¯V (3)(x)

3!

∂

∂p
〈x, p|

×
(
−i

←−
∂

∂p

)2
ρ̂

2π¯
+

(
−i

←−
∂

∂p

)
ρ̂

2π¯

(
−i

−→
∂

∂p

)

+ ρ̂

2π¯

(
−i

−→
∂

∂p

)2

|x, p〉 + · · · . (B3)

Using Eq. (B1) rather than Eq. (45), the equality Eq. (29)
leads to

dPeq (xt , pt ; t)

dt
= ∂Peq (xt , pt ; t)

∂xt

(
ẋt − peff

t

m

)

+∂Peq (xt , pt ; t)

∂pt

(
ṗt + ∂V (xt )

∂xt

)
. (B4)

[One can compare Eq. (48) to Eq. (B4).] If we define ṗ
= −V ′(x) to be the relation between the position and
momentum which is independent of the density distribution
function but dependent of the system, then the equations of
motion from Eq. (B4) are

ẋt = peff
t (xt , pt )

m

ṗt = −∂V (xt )

∂xt
.

(B5)
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For the thermal equilibrium system, the density distribu-
tion function is stationary, i.e., Eq. (42), which presents a way
to calculate the effective momentum peff, i.e.,

∂Peq

∂x

peff(x, p)

m
= ∂Peq

∂p
V ′(x). (B6)

One can verify that the trajectory-based dynamics gov-
erned by the equations of motion Eq. (B5) with the effec-
tive momentum given by Eq. (B6) (e.g., in the Wigner phase
space) approaches classical dynamics in the classical, high
temperature, and harmonic limits. These dynamics, therefore,
comprise another category in ELD. However, Eq. (B6) is not
as convenient as Eq. (46) for use in the multidimensional sys-
tem due to the following reason: the effective force in Eq. (46)
is always uniquely defined in the multidimensional system as
long as the partial distribution function [Peq (xt , pt ) with the
fixed position xt ] is a Gaussian, but the effective momentum
peff (xt , pt ) in Eq. (B6) is not. There are infinitely many pos-
sible effective momenta for Eq. (B6) in the multidimensional
case, although one might choose one according to some addi-
tional criterion.

The ELD trajectory-based dynamics in the phase space
formulation of quantum mechanics is generated in the spirit
of Liouville’s theorem in classical mechanics. Following the
procedure in Sec. IV, it is straightforward to construct other
families of trajectory-based dynamics in the phase space for-
mulation of quantum mechanics in the spirit of the phase
space continuity equation or Hamilton’s equations of motion
in classical mechanics as we will discuss in a subsequent pa-
per. [For example, we will reformulate and generalize our re-
cent work19 related to Refs. 60–62 into another approach for
generating a family of trajectory-based dynamics, which can
conserve the canonical distribution in the phase space formu-
lation of quantum mechanics.]

APPENDIX C: DETERMINANT OF THE JACOBIAN
MATRIX IN THE TRAJECTORY-BASED DYNAMICS

It can be shown that the trajectory-based dynamics [i.e.,
Eq. (49)] proposed in Sec. IV does not, in general, conserve
the volume element of the phase space. Note the Jacobian ma-
trix of the transformation [generated from the dynamics (Eq.
(49)] as

J (t) = ∂ (xt , pt )

∂ (x0, p0)
≡ ∂υ t

∂υ0
(C1)

and its inverse as

J (t)−1 = ∂ (x0, p0)

∂ (xt , pt )
≡ ∂υ0

∂υ t
. (C2)

The equations of motion in the non-Hamiltonian dynam-
ics [i.e., Eq. (49)] are not time explicit, so the time derivative

of the Jacobian matrix is

d

dt
J (t) ≡ ∂υ̇ t

∂υ0
. (C3)

The determinant of a matrix satisfies

det (J (t)) = exp [Tr [ln J (t)]] . (C4)

Its time derivative is then given by

d

dt
det (J (t)) = det (J (t)) Tr

[
J (t)−1 d

dt
J (t)

]
. (C5)

In the second term of the RHS of Eq. (C5), we use the
chain rule to obtain

Tr

[
J (t)−1 d

dt
J (t)

]
=

∑
i, j

∂υ i
0

∂υ
j

t

∂υ̇
j

t

∂υ i
0

=
∑
i, j,k

∂υ i
0

∂υ
j

t

∂υ̇
j

t

∂υk
t

∂υk
t

∂υ i
0

.

(C6)

The summation over i in Eq. (C6) leads to

Tr

[
J (t)−1 d

dt
J (t)

]
=

∑
j,k

δ jk
∂υ̇

j
t

∂υk
t

= ∇t · υ̇ t . (C7)

Equation (C5) then becomes

d

dt
det (J (t)) = (∇t · υ̇ t ) det (J (t)) . (C8)

The integration over time for Eq. (C8) gives

det (J (t)) = exp

[∫ t

0
∇t · υ̇ t dt

]
, (C9)

for which we use the initial condition that the Jacobian matrix
is an identity matrix at time t = 0, i.e.,

J (0) = 1. (C10)

We note that Eqs. (C1)–(C10) apply to any trajectory-
based dynamics in the phase space.

For the trajectory-based dynamics [i.e., Eq. (49)], one has

∇t · υ̇ t = − ∂2

∂pt∂xt
Veff (xt , pt ) . (C11)

Equation (C9) shows that the determinant of the Jacobian
matrix is always positive and in general variant with time.
That is, the volume element of the phase space is usually not
conserved along the trajectories.

If the effective force −(∂Veff(xt , pt )/∂xt ) ≡ −(∂Veff(xt )
/∂xt ) is independent of the momentum pt (i.e., only a func-
tion of the position xt ) and well defined in the phase space,
Eq. (C9) leads to

det (J (t)) = 1, (C12)

i.e., the volume element of the phase space is conserved dur-
ing the dynamics. Classical mechanics can be viewed as a
special case. The classical force −V ′(x) does not depend on
the momentum, so classical dynamics satisfies Eq. (C12). The
harmonic oscillator is another example.
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APPENDIX D: EXPECTATION VALUE OR ENSEMBLE
AVERAGE IN THE TRAJECTORY-BASED DYNAMICS

Consider the kind of trajectory-based dynamics that sat-
isfies dρ/dt = 0 in the Lagrangian picture. As discussed in
Appendix C, the size of the volume element of the phase space
can change as the trajectory propagates. It might be compli-
cated to obtain the form for the expectation value of a dynamic
property in the Lagrangian picture when non-Hamiltonian dy-
namics is involved. We provide a simple approach in the Eu-
lerian viewpoint to accomplish the task.

Suppose υ = (x, p)T represents a point in a fixed frame-
work of the coordinate system for the phase space. Define a
density distribution function ρ with the two conditions:

(1) The function ρ at the phase point υ at time t = 0 has the
value ρ (υ; 0).

(2) Some trajectory-based dynamics governs the evolution
of the function ρ. The function ρ along the trajectory
starting from the initial phase point υ is invariant with
time, i.e., dρ/dt = 0 or

ρ (υ t (υ; t) ; t) = ρ (υ; 0) . (D1)

Suppose υ ′ = (
x ′, p′)T

represents another point in the
same fixed framework of the coordinate system for the phase
space (i.e., Eulerian viewpoint). Then the value of the func-
tion ρ at the phase point υ ′ at time t is given by

ρ
(
υ ′; t

) =
∫

dυρ (υ t (υ; t) ; t) δ
(
υ ′ − υ t (υ; t)

)
=

∫
dυρ (υ; 0) δ

(
υ ′ − υ t (υ; t)

)
. (D2)

Note that Eq. (D2) holds for any trajectory-based dynam-
ics with dρ/dt = 0, irrespective of whether it is Hamiltonian
or non-Hamiltonian dynamics. If the equations of motion in
the trajectory-based dynamics are not time explicit, then one
has

ρ
(
υ ′; t

) =
∫

dυρ (υ; 0) δ
(
υ ′ − υ t (υ)

)
(D3)

according to Eq. (D2). By virtue of Eq. (5) and the fact that∫
dυ ′ρ

(
υ ′; t

) =
∫

dυ ′
∫

dυρ(υ; 0)δ(υ ′ − υ t (υ))

=
∫

dυρ (υ; 0) ≡ Z (D4)

is a constant, the expectation value or the ensemble average
for physical property B at time t is given by

〈B (t)〉 = 1

Z

∫
dυ ′ρ

(
υ ′; t

)
B̃(υ ′)

= 1

Z

∫
dυ ′

∫
dυρ (υ; 0) δ(υ ′ − υ t (υ))B̃(υ ′)

= 1

Z

∫
dυρ (υ; 0) B̃ (υ t (υ)) . (D5)

If one also defines υ0 = (x0, p0)T to represent any point
in the same coordinate system for the phase space, one can
exchange υ with υ0 in Eq. (D5) to obtain

〈B (t)〉 = 1

Z

∫
dυ0ρ (υ0; 0) B̃ (υ t (υ0)) . (D6)

According to Eq. (D1), the above equation can also be
expressed as

〈B (t)〉 = 1

Z

∫
dυ0ρ (υ t (υ0) ; t) B̃ (υ t (υ0))

= 1

Z

∫
dυ t

∣∣∣∣∂υ0

∂υ t

∣∣∣∣ ρ (υ t (υ0) ; t) B̃ (υ t (υ0)) . (D7)

Note that Eqs. (D5)–(D7) apply to all kinds of time-
implicit trajectory-based dynamics with dρ/dt = 0, which in-
clude classical dynamics and ELD discussed in the paper.

APPENDIX E: GENERALIZATION OF ELD
TO MULTIDIMENSIONAL SYSTEMS

Equations (46) and (49) give the ELD effective force
and the ELD equations of motion, respectively, for one-
dimensional systems. For multidimensional systems, the
equations of motion of ELD become

ẋt = M−1pt

ṗt = −∂V ELD
eff (xt , pt )

∂xt

(E1)

with the ELD effective force − ∂V ELD
eff (xt ,pt )

∂xt
given by

∂Peq (xt , pt )

∂pt
· ∂V ELD

eff (xt , pt )

∂xt
= ∂Peq (xt , pt )

∂xt
M−1pt . (E2)

Here (xt , pt ) is the phase point and M is the diagonal
“mass matrix.” According to the various approximations for
the canonical distribution Peq (xt , pt ) in the Wigner or Husimi
phase space mentioned in Ref. 22 and Paper II, Peq (xt , pt )
with any fixed position vector xt can often be (effectively)
approximated as a (local) Gaussian function of the momenta
pt for large molecular systems as shown in various exam-
ples in the literature15, 17–23, 63, 64 (which include multiwell
and imaginary frequency situations). The ELD effective force
−(∂V ELD

eff (xt , pt )/∂xt ) is thus always uniquely defined (and
can practically be evaluated) by Eq. (E2) even for large molec-
ular systems. [That is, the vector pt can be cancelled out on
both sides of Eq. (E2).] This guarantees the robustness of the
ELD dynamics regardless of the momentum dependence of
the ELD effective force, as we discussed in Sec. IV B. More
discussion and numerical examples for multidimensional sys-
tems will be shown in a subsequent paper.

When the canonical distribution Peq (xt , pt ) cannot be
(effectively) approximated as a (local) Gaussian function of
the momenta pt [e.g., the effective force may be ill-defined
at the phase points with (∂Peq(xt , pt )/∂pt ) = 0], further de-
velopment to extend the strategy in the current paper will be
necessary. We will discuss more about this point in the subse-
quent paper mentioned at the end of Appendix B.
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