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The dynamical properties of liquid water play an important role in many processes in nature. In this
paper, we focus on the infrared (IR) absorption spectrum of liquid water based on the linearized semi-
classical initial value representation (LSC-IVR) with the local Gaussian approximation (LGA) [J. Liu
and W. H. Miller, J. Chem. Phys. 131, 074113 (2009)] and an ab initio based, flexible, polarizable
Thole-type model (TTM3-F) [G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506
(2008)]. Although the LSC-IVR (LGA) gives the exact result for the isolated three-dimensional
shifted harmonic stretching model, it yields a blueshifted peak position for the more realistic anhar-
monic stretching potential. By using the short-time information of the LSC-IVR correlation function;
however, it is shown how one can obtain more accurate results for the position of the stretching peak.
Due to the physical decay in the condensed phase system, the LSC-IVR (LGA) is a good and prac-
tical approximate quantum approach for the IR spectrum of liquid water. The present results offer
valuable insight into future attempts to improve the accuracy of the TTM3-F potential or other ab
initio-based models in reproducing the IR spectrum of liquid water. © 2011 American Institute of
Physics. [doi:10.1063/1.3670960]

I. INTRODUCTION

Real-time quantum dynamics simulations of large molec-
ular systems present a challenge to theoretical physics and
chemistry. The most accurate treatment is of course a com-
plete solution of the time-dependent Schrödinger equation or
of the real-time path integral (which is impractical to apply
for large systems), while classical molecular dynamics (MD)
fails to capture quantum effects. Semiclassical (SC) theory1, 2

stands between these two limits: it utilizes classical trajecto-
ries as “input,” and thus contains classical dynamics, and in-
corporates quantum mechanics approximately, i.e., within the
SC approximation. The SC approximation actually contains
all quantum effects at least qualitatively, and in molecular sys-
tems the description is usually quite quantitative. Various ini-
tial value representations (IVRs) of SC theory (primarily to
calculate time correlation functions3, 4) can provide practical
tools for including quantum effects in large systems.

The simplest (and most approximate) version of the
SC-IVR is its “linearized” approximation (LSC-IVR).5–7

The LSC-IVR cannot describe true quantum coherence ef-
fects in time correlation functions—more accurate SC-IVR

a)Author to whom correspondence should be addressed. Electronic mail:
millerwh@berkeley.edu.

approaches4 are needed for this—but it does describe a num-
ber of aspects of the dynamics very well.7–21 For instance, the
LSC-IVR has been shown to describe reactive flux correla-
tion functions for chemical reaction rates quite well, including
strong tunneling regimes,5, 7, 22 and correlation functions10–21

in systems with enough degrees of freedom for quantum re-
phasing to be unimportant. More recently, Liu and Miller have
proposed a local Gaussian approximation (LGA) for treating
imaginary frequencies7 with the LSC-IVR, which provides
a practical tool to study quantum effects in large/complex
molecular systems whose interactions are often too difficult
to be parameterized by Gaussians or polynomials and where
ab initio dynamics is called for.

The LSC-IVR/classical Wigner model gives the exact
quantum correlation function in the short time5, 23 (t → 0),
classical (¯→ 0), and high-temperature (β → 0) limits and
for harmonic potentials16, 24–27 (even for nonlinear operators,
i.e., nonlinear functions of the position or momentum oper-
ators). The LSC-IVR has the drawback that the distribution
generated for the operator Âβ is not invariant with time for
the case Â = 1 (that is, Âβ = e−βĤ , the Boltzmann opera-
tor itself) for anharmonic systems, which can be a serious
problem if the long-time behavior of the correlation func-
tion is important.13, 24–30 The failure to conserve the quantum

0021-9606/2011/135(24)/244503/14/$30.00 © 2011 American Institute of Physics135, 244503-1

http://dx.doi.org/10.1063/1.3670960
http://dx.doi.org/10.1063/1.3670960
http://dx.doi.org/10.1063/1.3670960
http://dx.doi.org/10.1063/1.3670960
mailto: millerwh@berkeley.edu


244503-2 Liu et al. J. Chem. Phys. 135, 244503 (2011)

canonical distribution very likely makes a significant contri-
bution to the unphysical decay (i.e., overdamping) intrinsic in
the LSC-IVR correlation function, which becomes progres-
sively worse for longer times.13, 24–27, 30, 31 As a part of the ef-
fects due to the failure of the LSC-IVR to conserve the quan-
tum canonical distribution, the artificial energy flow exists
from intramolecular to intermolecular modes for such a sys-
tem as liquid water, as observed by Poulsen and Rossky [e.g.,
see the note (Ref. 36) of Ref. 32] and by Liu and Miller.15

Haberson and Manolopoulos further studied the artificial flow
(in more detail) and linked it with another notation—so-called
zero-point energy leakage,30 which they argued that could be
the main source of error for quantities that involve long-time
behaviors for liquid water. (Also see Appendix A.)

Since the infrared (IR) spectrum of the large molecu-
lar system is often connected to ultrafast dynamics [i.e., the
physical time scale of the dipole-derivative correlation func-
tion (whose Fourier transform at finite frequencies leads to
the IR spectrum) is relatively short—about several hundred
femtoseconds], the intrinsic unphysical decay of the LSC-
IVR correlation function, as discussed above, will be greatly
compensated by the inherent physical decay in the system.
We note this is actually the main reason why the LSC-IVR
is a good approximate quantum approach for study of the
IR spectrum.15, 30 The purpose of this paper is to present a
further systematic investigation as an extension of our ear-
lier work.15 We focus on the IR absorption spectrum. Sec-
tion II first briefly reviews the LSC-IVR (LGA) methodol-
ogy for time correlation functions, and Sec. III then gives
the explicit formulation for the dipole-derivative correlation
function for the IR spectrum (for which the dipole or dipole-
derivative operator can be a nonlinear operator). Section IV
tests the LSC-IVR for the vibrational IR spectrum of the iso-
lated OH molecule and then studies the IR spectrum of liquid
water with the ab initio based flexible, polarizable TTM3-F
model33 at the ambient condition (300 K), followed by fur-
ther discussions. Section V summarizes and concludes.

II. SIMULATION METHODOLOGY

A. Linearized semiclassical initial value
representation for the correlation function

Most dynamical properties can be expressed in terms of
thermal time correlation functions,34 which are of the form

CAB(t) = 1

Z
Tr(ÂβeiĤ t/¯B̂e−iĤ t/¯), (1)

where Â
β

std = e−βĤ Â for the standard version of the correla-
tion function, or Â

β
sym = e−βĤ/2Âe−βĤ/2 for the symmetrized

version,35 or Â
β

Kubo = 1
β

∫ β

0 dλe−(β−λ)Ĥ Âe−λĤ for the Kubo-
transformed version.36 These three versions are related to
one another by the following identities between their Fourier
transforms:

β¯ω

1 − e−β¯ω
IKubo
AB (ω) = I std

AB (ω) = eβ¯ω/2I
sym

AB (ω), (2)

where IAB(ω) = ∫ ∞
−∞ dt e−iωtCAB(t), etc. Here,

Z = Tr[e−βĤ ] (β = 1/kBT ) is the partition function

and Ĥ is the (time-independent) Hamiltonian of the system,
and Â and B̂ are operators relevant to the specific property of
interest.

The SC-IVR approximates the forward (backward) time
evolution operator e−iĤ t/¯ (eiĤ t/¯) by a phase space aver-
age over the initial conditions of forward (backward) clas-
sical trajectories.1, 3, 4, 37 By making the approximation that
the dominant contribution to the phase space averages comes
from forward and backward trajectories that are infinitesi-
mally close to one another, and then linearizing the differ-
ence between the forward and backward actions (and other
quantities in the integrand), Miller and co-workers5, 8 (see also
Ref. 38) obtained the LSC-IVR, or classical Wigner model for
the correlation function in Eq. (1),

CLSC−IVR
AB (t) = Z−1(2π¯)−3N

∫
dx0

×
∫

dp0A
β
w(x0, p0)Bw(xt , pt ), (3)

where Aβ
w and Bw are the Wigner functions39, 40 corresponding

to these operators

Ow(x, p) =
∫

d�x 〈x − �x/2| Ô |x + �x/2〉 ei pT �x/¯

(4)
for any operator Ô. Here, N is the number of particles in the
system, and (x0, p0) is the set of initial conditions (i.e., co-
ordinates and momenta) for a classical trajectory, (xt(x0, p0),
pt(x0, p0)) being the phase point at time t along this trajectory.

The classical Wigner model is an old idea,39, 41–43 but it
is informative to realize that it is contained within the gen-
eral SC-IVR formulation, namely, as a specific approximation
to it;5, 8 more accurate implementations of the SC-IVR ap-
proach would be expected to lead to a more accurate descrip-
tion. It should also be noted that there are other approximate
routes6, 21, 24, 26, 44 which lead to the classical Wigner model
for correlation functions (other than simply postulating it).
Moreover, Liu and Miller24, 26 have recently shown that the
exact quantum time correlation function can be expressed in
the same form as Eq. (3), with an associated dynamics in the
single phase space, and it was furthermore demonstrated that
the LSC-IVR is its classical limit (¯→ 0), high temperature
limit (β → 0), and harmonic limit (even for correlation func-
tions involving nonlinear operators). Note all these approxi-
mate routes also indicate that the LSC-IVR is the short-time
approximation (t → 0) to the quantum correlation function.
This has been well demonstrated by the maximum entropy
analytical continuation test for condensed phase systems.14

B. Local Gaussian approximation

Calculation of the Wigner function for operator B̂ in
Eq. (3) is usually straightforward; in fact, B̂ is often a func-
tion only of coordinates or only of momenta, in which case its
Wigner function is simply the classical function itself. Calcu-
lating the Wigner function for operator Âβ , however, involves
the Boltzmann operator with the total Hamiltonian of the
complete system, so that carrying out the multidimensional
Fourier transform to obtain it is non-trivial. Furthermore, it is
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necessary to do this in order to obtain the distribution of initial
conditions of momenta p0 for the real-time trajectories. To ac-
complish this task, several approximations5, 11, 16, 21 have been
introduced for the LSC-IVR. More recently, Liu and Miller
have proposed a LGA that improves on all these approxima-
tions for treating imaginary frequencies,7 and this is what we
have used for the study of liquid water in this paper. Below we
briefly summarize the version of LGA developed based on the
local harmonic approximation of Shi and Geva.16

As in the standard normal-mode analysis, mass-weighted
Hessian matrix elements are given by

Hkl = 1√
mkml

∂2V

∂xk∂xl

, (5)

where mk represent the mass of the kth degree of freedom with
3N the total number of degrees of freedom. The Hamiltonian
around x can be expanded to 2nd order as

H (x + �x) ≈ 1

2
pT M−1p + V (x) +

(
∂V

∂x

)T

�x

+ 1

2
�xT H�x. (6)

The eigenvalues of the mass-weighted Hessian matrix
produce normal-mode frequencies {ωk}, i.e.,

TT H T = λ (7)

with λ a diagonal matrix with the elements { (ωk)2} and T an
orthogonal matrix. If M is the diagonal “mass matrix” with
elements {mk}, then the mass-weighted normal mode coordi-
nates and momenta (X, P) are given in terms of the Cartesian
variables (x, p) by

X = TT M1/2x, (8)

P = TT M−1/2p, (9)

and

�X = TT M1/2�x. (10)

Equation (6) can be expressed as

H (x + �x) ≡ H (X + �X) ≈ 1

2
PT P + V (X) + �XT F

+ 1

2
�XT λ�X (11)

with F as the force in the mass-weighted normal mode coor-
dinates

F = TT M−1/2

(
∂V

∂x

)
. (12)

By virtue of the fact that〈
x − �x

2

∣∣ e−βĤ
∣∣x + �x

2

〉
〈x| e−βĤ |x〉 = exp

[
−mQ (u)

2¯2β
(�x)2

]
(13)

for the one-dimensional (1d) harmonic case which was im-
plemented in LHA by Shi and Geva,16 it is straightforward to

show the Wigner function of the Boltzmann operator e−βĤ is
given by

P eq

W (x, P) = 〈x|e−βĤ |x〉
3N∏
k=1

×
[(

β

2πQ(uk)

)1/2

exp

[
−β

(Pk)2

2Q(uk)

]]
, (14)

where uk = β¯ωk, Pk is the kth component of the mass-
weighted normal-mode momentum P (in Eq. (9)) and the
quantum correction factor with the LGA ansatz proposed by
Liu and Miller7 for both real and imaginary frequencies is
given by

Q(u)=
{ u/2

tanh(u/2) for real u

= 1
Q(ui )

= tanh(ui/2)
ui/2 for imaginary u (u = iui)

.

(15)

In terms of the phase space variables (x, p), Eq. (14) thus
becomes

P eq, LGA(x, p) = 〈x|e−βĤ |x〉
(

β

2π

)3N/2

|det(M−1
therm(x))|1/2

× exp

[
−β

2
pT M−1

thermp
]

(16)

with the thermal mass matrix Mtherm given by

M−1
therm(x) = M−1/2TQ(u)−1TT M−1/2 (17)

and the diagonal matrix Q(u) = {Q(uk)}.
The explicit form of the LSC-IVR correlation function

(Eq. (1)) with the LGA is thus given by

CLSC−IVR
AB (t) = 1

Z

∫
dx0〈x0|e−βĤ |x0〉

∫
dP0

N∏
k=1

×
[(

β

2πQ(uk)

)1/2

exp

[
−β

(P0,k)2

2Q(uk)

]]

×fA(x0, p0)B(xt , pt ), (18)

where

fA(x0, p0) =
∫

d�x

〈
x0 − �x

2

∣∣ Âβ
∣∣x0 + �x

2

〉
〈x0| e−βĤ |x0〉

ei�xT ·p0/¯

/

∫
d�x

〈
x0 − �x

2

∣∣ e−βĤ
∣∣x0 + �x

2

〉
〈x0| e−βĤ |x0〉

ei�xT ·p0/¯

(19)

is a function depending on the operator Âβ . The procedure for
implementing the LSC-IVR (LGA) is described in Ref. 7.

III. INFRARED SPECTRUM AND DIPOLE-DERIVATIVE
CORRELATION FUNCTION

The experimental IR spectrum is given in terms of two
frequency-dependent properties—the Beer-Lambert absorp-
tion constant α(ω) and the refractive index n(ω). According to
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the Fermi Golden Rule of time-dependent perturbation theory
in quantum mechanics, these quantities are directly related to
the dipole-derivative absorption line shape15, 45 IKubo

μ̇μ̇ (ω) by

n(ω)α(ω) = βπ

3cV ε0
IKubo
μ̇μ̇ (ω), (20)

where IKubo
μ̇μ̇ (ω) is the Fourier transform of the (Kubo-

transformed) collective dipole-derivative auto-correlation
function

IKubo
μ̇μ̇ (ω) = 1

2π

∫ ∞

−∞
dt e−iωt 〈 ˆ̇μ(0) · ˆ̇μ(t)〉Kubo

≡ 1

2π

∫ ∞

−∞
dt e−iωtCKubo

μ̇μ̇ (t). (21)

Here, ˆ̇μ is the (collective) dipole-derivative operator (the
change of the total dipole moment over time). By virtue of
Eq. (2), one can also express Eq. (20) in terms of the real part
of the standard correlation function

n(ω)α(ω) = (1 − e−β¯ω)

3cV ε0¯ω(1 + e−β¯ω)

×
∫ ∞

−∞
dt e−iωtRe[〈 ˆ̇μ(0) · ˆ̇μ(t)〉std ]. (22)

Below we show the explicit LSC-IVR (LGA) formula-
tions [Eq. (18)] of the (collective) dipole-derivative correla-
tion functions. By virtue of the relation

ˆ̇A
β

Kubo = i

β¯
[Â, e−βĤ ], (23)

one expands the total dipole moment (which can be a nonlin-
ear function) to the 2nd order

μ(x + �x)=μ(x) + ∂μ

∂x
· �x + 1

2
�xT · ∂2μ

∂x2
· �x + o(�x3)

(24)
and obtains

fA(x0, p0)B(xt , pt )≈
[(

∂μ

∂x0

)T

· M−1/2TQ−1 · P0

]
· μ̇(xt , pt )

=
[(

∂μ

∂x0

)T

· M−1
therm(x0) · p0

]
· μ̇(xt , pt )

(25)
for 〈 ˆ̇μ(0) · ˆ̇μ(t)〉Kubo. Similarly, one has

Re
[
fA(x0, p0)B(xt , pt )

] ≈ μ̇(x0, p0) · μ̇(xt , pt ) (26)

for the real part of
〈
ˆ̇μ(0) · ˆ̇μ(t)

〉
std

. Note that Eq. (25) has the
accuracy to order o(�x3) and Eq. (26) to order o(�x2), while
the dipole or dipole-derivative operator is a nonlinear function
of positions and momenta.

We note, in addition to the q-SPC/fw model,15 the LSC-
IVR/classical Wigner model has earlier been applied to a sim-
pler water model for which only single atom velocity cor-
relation functions were calculated.46 (The entire imaginary
frequency region was not treated consistently though, as dis-
cussed in Ref. 7.)

IV. RESULTS AND DISCUSSIONS

A. Simulation details

We first consider two simple point charge models of
the 2-atom molecule OH. One is the three-dimensional (3d)
shifted Morse potential

V (r) = De[1 − exp[−α(|r| − req)]]2 (27)

with the parameters (for the OH stretch47) De

= 116.09 kcal/mol, α = 2.287 Å−1, and req = 0.9419 Å.
Here, |r| is the distance between the H-atom and O-atom.
The charges on the two atoms are ±1.1128 e and the masses
are mH = 1837 a.u. and mO = 16 × 1823 a.u. The other is the
3d shifted harmonic potential

V (r) = 1

2
meω

2
e (|r| − req)2. (28)

Here, ωe = 3886.56 cm−1 is the frequency around the mini-
mum of the Morse potential, that is,

1

2
meω

2
e = Deα

2, (29)

with the reduced mass me = mHmO/(mH + mO).
The two 3d models are used to test the accuracy of

the LSC-IVR IR vibrational spectrum where exact results
are available. Here, we use Eq. (18) [LSC-IVR (LGA)]
to calculate the dipole-derivative correlation functions, with
〈x0|e−βĤ |x0〉/Z in Eq. (18) evaluated by the bisection
method48 of the path integral Monte Carlo (PIMC). NP = 128
path integral beads are used for T = 300 K, while NP = 256
for T = 100 K. After the system is equilibrated by PIMC, an
initial configuration x0 (from a randomly selected path inte-
gral bead) is produced every 10NP PIMC steps. The Gaussian
distribution for the mass-weighted normal-mode momentum
P0 in Eq. (14) is used to randomly generate the initial Carte-
sian momentum p0 = M1/2TP0 to run a classical trajectory
from (x0, p0) for evaluating the quantities fA(x0, p0)B(xt, pt).
The time step of the classical trajectory is ∼0.05 fs and the
velocity Verlet algorithm is used. About 50 000 such classical
trajectories are used in order to obtain well-converged results
for the correlation functions at long time. (Several hundred
trajectories are enough for relatively short time. When using
first several periods of the dipole-derivative correlation func-
tion to evaluate the peak position of the O–H stretching mode,
the time step is decreased to ∼0.005 fs in order to achieve
∼1 cm−1 accuracy.) We note that the normal mode frequen-
cies for overall translation and rotation of the complete molec-
ular system are very small (|ωk| ∼ 0) and well separated from
the high-frequency vibrational region of interest; one thus
simply set the initial normal-mode momenta {P0, k} for these
normal-modes to zero. Alternatively, one can adopt the pro-
cedure in the literature49 for the rotational correction.

For the simulation of liquid water, we employ the TTM3-
F—the ab initio based flexible, polarizable Thole-type model
for water clusters and liquid water of Fanourgakis and Xanth-
eas, which is previously described in Ref. 33. It approx-
imates the dipole moment and the Born-Oppenheimer po-
tential energy surface based on the parameterization which
reproduces the binding energies and harmonic vibrational
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spectra of small water clusters up to (H2O)20 given by the sec-
ond order Møller-Plesset (MP2) electronic structure theory.
The TTM3-F model is able to produce good results for static
equilibrium structural properties of liquid water with path in-
tegral molecular dynamics (PIMD) simulations.50–54 More re-
cently, it has been shown that the TTM3-F model reproduces
the measured anisotropy and works reasonably well in the li-
brational regime.54 One also sees that the dipole-derivative
operator is a nonlinear function of the atomic coordinates in
the polarizable model.

The LSC-IVR simulation was carried out at T
= 300 K with the liquid density ρ l = 0.997 g × cm−3 for a
system of 125 water molecules in a box with periodic bound-
ary conditions applied using the minimum image convention.
The short-range intermolecular interactions were truncated
at an atom-atom distance of ∼7.8 Å, while the long-range
electrostatic interactions were treated using Ewald summa-
tion. The normal-mode PIMD in the presence of an Ander-
sen thermostat55 was performed with NP = 32 beads for the
canonical ensemble. The initial position of the classical tra-
jectory was obtained by randomly selecting one of the path
integral beads every 1 ps in the imaginary time propagation
of the PIMD. About 60 000 such trajectories were used for
the correlation functions. (We note that 3000 trajectories are
enough to obtain well-converged results for dipole-derivative
correlation functions up to 0.1 ps.) Each classical trajectory
in the LSC-IVR was propagated up to 2 ps. For the real-time
dynamics in the LSC-IVR, the velocity-Verlet algorithm was
employed with a time step of �t = 0.1 fs. The small time step
guarantees the accuracy of the quantity μ̇(t) by using the finite
difference (μ(t + �t) − μ(t − �t))/2�t along the real-time
trajectory.

Similarly, the classical correlation functions were ob-
tained by propagating 240 classical MD trajectories from in-
dependent initial conditions sampled from the classical equi-
librium system. Every trajectory was propagated up to 100 ps.
Time average was also employed for computing the correla-
tion functions along the MD trajectory.

B. Results and discussions

1. Isolated OH molecule

As pointed out by Liu and Miller in Ref. 15, although
the shifted 3d harmonic oscillator (Eq. (28)) is a nonlinear
system, it is effectively a linear model when the total angu-
lar momentum is set to zero (that is, rotation correction). The
LSC-IVR is well known to be exact for fully harmonic po-
tentials. One can also use the classical correlation function
as the Kubo-transformed version in Eqs. (20) and (21) to ob-
tain the correct vibrational frequency ωe for the shifted 3d
harmonic oscillator. As shown in Fig. 1, both LSC-IVR and
classical MD approaches do not suffer the intrinsic problems
(such as the “curvature problem” or “artificial frequencies or
resonances”) of other approaches described in Ref. 56.

For real molecular systems, however, the O–H stretch is
typically quite anharmonic. For instance, the harmonic ap-
proximation (3886.56 cm−1) is significantly blueshifted (by
186 cm−1) from the exact result (3700.55 cm−1) for the char-

FIG. 1. The IR spectrum of the shifted 3D harmonic potential for the OH
molecule. [The same scale for Panels (a) and (b).]

acteristic 3d shifted Morse model (Eq. (27)). Table I and
Fig. 2(c) show that the classical results are blueshifted and
that they are sensitive to the temperature. The lower the tem-
perature is, the closer to the harmonic approximation and the
more blueshifted is the classical result. (Also see, such as,
Ref. 49 for ab initio MD simulation results.) It is straightfor-
ward to understand this well-known blueshift of the classical
stretching frequency for the real molecular system: since the
classical approach contains no zero-point energy, the system

TABLE I. Peak positions of the O–H stretching mode at different
temperatures.

ωOH (cm−1)

T (K) LSC-IVR Classical Exact Harmonic approx.

300 3782 3864 3700.55 3886.56
200 3783 3871
100 3783 3878
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FIG. 2. The IR spectrum of the 3D Morse potential for the OH molecule.
(a) Comparison of the LSC-IVR spectrum based on the Kubo-transformed
dipole-derivative correlation function to that based on the standard version for
T = 100 K. (b) Comparison of the LSC-IVR results at different temperatures.
(c) Comparison of the classical results at different temperatures.

oscillates around the harmonic region of the minimum of
the well and has little access to the anharmonic region. [A
schematic representation is given in Fig. 3(a).] As the tem-
perature increases, the more anharmonic region of the sys-
tem becomes accessible, but because of the high stretch-
ing frequency it is only fully explored at temperature more
than 15 ∼ 20 times of room temperature (300 K). In con-
trast, because the LSC-IVR contains zero-point energy ef-
fects, the trajectories are able to access a much wider an-
harmonic regime [Fig. 3(b)] and thus the LSC-IVR provides
a significant improvement over the classical approximation
(by as much as 100 cm−1). Table I and Fig. 2(b) show that

FIG. 3. Schematic representation of the simulation for the Morse potential.
Red line illustrates the Morse potential while Blue line shows its harmonic
approximation at the minimum of the well. (a) Classical MD trajectories con-
tain no zero-point energy so the regime that the system can reach is controlled
by the energy level on the order of kBT. They oscillate around the minimum
of the well and predict almost results very close to the harmonic frequency,
which are doomed to be blueshifted from the quantum results. (b) Trajecto-
ries in the LSC-IVR contain zero-point energy so the region that the system
can access is much broader, accounting for the majority of anharmonicity of
the potential surface. Because the zero-point energy is much larger than kBT,
the LSC-IVR result is insensitive to the change of the temperature.

the LSC-IVR result for the O–H stretch frequency is insen-
sitive to the temperature as the exact result should be, i.e.,
by virtue of the large amount of the zero-point energy of
the high-frequency stretching vibration, the change of tem-
perature has little effects on the LSC-IVR for the isolated
OH molecule. That is, the initial phase space distribution
in the LSC-IVR varies little as the temperature varies. (For
instance, the peak position of the LSC-IVR at 1000 K is
∼3783 cm−1, same as those for 100–300 K listed in Table I.)
This indicates that the LSC-IVR does not have the intrinsic
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FIG. 4. Normalized dipole-derivative correlation functions CKubo
μ̇μ̇ (t)/CKubo

μ̇μ̇ (0) for the 3D Morse potential for T = 100 K.

problems of other approaches and does not introduce artifi-
cial shifts due to the change of the temperature, which will be
very important for the study of the environment effects on the
frequency shift in the complex molecular system. [Also see
Appendix B.]

However, the LSC-IVR still has a ∼80 cm−1 blueshift
from the exact result due to the unphysical decay inher-
ent in the LSC-IVR correlation function for the anharmonic
system.24–27 (Note both the Kubo-transform and standard ver-
sions yield almost the same spectrum as shown in Fig. 2(a).)
Apparently, no zero-point energy leakage occurs in the iso-
lated OH molecule, but the LSC-IVR correlation function still
demonstrates an unphysical decay that leads a considerable
error (∼80 cm−1 blueshift) for the peak position of the O–H
stretch. Such an unphysical decay is intrinsic in the LSC-IVR
correlation function and leads to the source of error, whether
or not so-called zero-point energy leakage exists.

One can improve matters by taking advantage of the fact
that the LSC-IVR is a faithful short-time approximation to

quantum dynamics. Thus, if one uses only the first two pe-
riods of the LSC-IVR dipole-derivative correlation function
[cf. Fig. 4], one obtains almost the exact O–H stretching fre-
quency (3698 cm−1). As seen from Table II, the more periods
that one uses, the more blueshifted the result becomes. Alter-
natively, one can add a damping Gaussian factor in Eqs. (21)
or (22) to control the length of time to be used to calculate the
spectrum, i.e.,

I (ω) ≈ 1

2π

∫ ∞

−∞
dt e−iωt 〈 ˆ̇μ(0) · ˆ̇μ(t)〉 exp

[
− t2

2σ 2

]
.

(30)

Here, the width of the Gaussian σ is given by the half time
thalf based on the relation

exp

[
− t2

half

2σ 2

]
= 1

2
. (31)
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TABLE II. Peak positions of the O–H stretching mode estimated by
different periods of the LSC-IVR correlation function (same for 100 K
and 300 K).

Number of periods ωOH (cm−1)

2 3698
4 3723
6 3739
8 3752
All 3783

(This approach is more useful because it does not require that
the time step of the real-time propagation be very small and
because one can deal with multi-frequencies.) Using only the
short-time part of the correlation function does broaden the
peak but gives a much more accurate position of the peak.
Table III demonstrates that the shorter the half time thalf is
employed, the more accurate the result the LSC-IVR yields.
One sees that the LSC-IVR can produce nearly exact results
(±5 cm−1) for the high-frequency stretch in either approach
by using the correlation function data mainly in first one or
two periods. In contrast, classical MD (and other approximate
quantum dynamical methods) does not have this merit. We
also note the LSC-IVR results in both Tables II and III are
insensitive to the change of the temperature for the isolated
molecule. One can extend the second approach to study the vi-
brational IR spectrum for more complex gas phase molecules
or clusters (i.e., combined with ab initio calculations for the
interactions). (One will need to use the parameter thalf no
shorter than the first period of the bending motion to obtain
a good estimate of the peak position of the stretching vibra-
tion for the nonlinear molecule.)

We also note that the characteristic 3d shifted Morse po-
tential (Eq. (27)) could be a standard model for investigating
accuracy of any other approximate quantum methods.

2. Liquid water

We now focus on the LSC-IVR simulation of the ab ini-
tio based TTM3-F model for studying quantum dynamical
effects in liquid water in ambient condition (T = 300 K),
where the O–H stretch is no longer isolated but interacts with
one another in hydrogen-bond networks of the bulk system.

TABLE III. Peak positions of the O–H stretching mode estimated with the
Gaussian damping function with different thalf parameters (same for 100 K
and 300 K).

thalf (ps) ωOH (cm−1)

0.010 3705
0.020 3712
0.040 3727
0.060 3739
0.080 3749
0.100 3756
0.120 3761
∞ 3783

FIG. 5. The normalized local normal frequency distribution of liquid water
at T = 300 K using the TTM3-F model. (Note ¯β ∼ 208.5 cm−1.)

Figure 5 shows the density distribution of local normal-mode
frequencies of typical quantum configurations generated by
PIMD for the TTM3-F model at T = 300 K. One sees that
even at room temperature, more than 14% of local frequen-
cies are imaginary, with more than 6% in the “deep tunnel-
ing” imaginary frequency regime that have ui = β¯|ωi| ≥ π .
The LGA is able to deal with the entire imaginary fre-
quency regime in the LSC-IVR. The quantum result in Fig. 5
also exhibits that a large amount of high-frequency stretch-
ing vibrations in liquid water are more than 15 times of ther-
mal activation energy (β¯ω ≥ 15). As a comparison, Fig. 5
also shows the density distribution of local normal-mode
frequencies of typical classical configurations generated by
classical MD. Only about 0.7% of classical local frequen-
cies access the “deep tunneling” imaginary frequency regime
(ui = β¯|ωi| > π ). The quantum and classical results are
close to each other in the low frequency band arising from
the hindered motions (u ≤ 2 or ω ≤ 400 cm−1). Significant
quantum effects appear again from the high-frequency region
for the librational motion to the intermediate regime between
the librational and bending bands. This arises from the in-
crease of the frequency of the librational motion caused by
the elongation of intramolecular OH bond (in PIMD configu-
rations). The classical density of bending frequencies (u ∼ 8)
is slightly higher than the quantum result. Note that the in-
tensity of the quantum density is much higher than the clas-
sical result in the intermediate region between the bending
and stretching bands (u ∼ 8.5−12), which implies quantum
effects exist in this region. One also sees that the quantum
density of O–H stretching frequencies is widely spread, while
the classical result is much narrower and blueshifted.

Figure 6 shows the comparison of the LSC-IVR dipole-
derivative correlation function to the classical one for
T = 300 K. The LSC-IVR and classical results are rather sim-
ilar, except that the LSC-IVR predicts a more rapid decay of
the amplitude and longer oscillation periods of the correla-
tion function than is seen in the classical MD simulation. One
also sees that the correlation function in Fig. 6 almost de-
cays to zero within 100 fs. In contrast, the dipole-derivative
correlation function of our earlier LSC-IVR application15 to
the q-SPC/fw water model57 demonstrates a broad recurrence
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FIG. 6. Normalized dipole-derivative correlation functions CKubo
μ̇μ̇ (t)/CKubo

μ̇μ̇ (0) for liquid water at T = 300 K using the TTM3-F model.

between 200 and 600 fs, modulated by high-frequency O–
H stretching vibrations. This is because that intramolecular
O–H stretch is modeled by a 3d shifted harmonic oscillator
in the q-SPC/fw model, which gives two distinct peaks for
the symmetric and asymmentric O–H stretching modes. Any
such recurrence will be absent, yielding a single broad O–H
stretching band in the IR absorption spectrum (Fig. 7), while
the intramolecular O–H stretch is described by a more realis-
tic anharmonic function in the TTM3-F water model. This is
consistent with the simulations of the qTIP4P-F water model
in Ref. 30.

Figure 7 shows the simulated IR absorption spectrum in
comparison to experiment. We first focus our discussion on
the high-frequency O–H stretching band. The classical spec-
trum (Fig. 7(a)) exhibits a much larger intensity of the O–H
stretching band than the experiment data. This is different
from the classical result reported in the original paper on the
TTM3-F model,33 because the intensity of the O–H stretching
band is sensitive to the time interval of the correlation func-
tion data.15 Our earlier calculation33 employed an interval that
was too large (2.5 fs) in the correlation function to obtain a
converged classical IR spectrum. Such a discrepancy in the
classical IR spectrum was not pointed out until we carried out
the simulations in the present manuscript, albeit the classical
results have been shown or compared in places of the litera-
ture on the applications of the TTM3-F model.52, 53, 58 Disre-
garding the intensity of the O–H stretching band, one sees the
peak position of the classical result agrees well with experi-
ment (∼3390 cm−1).

The O–H stretching band produced by the LSC-IVR has
a slightly higher intensity compared to experiment. Its peak
position (∼3285 cm−1) is redshifted from the classical re-
sult. Although the O–H stretch is in a much more complex
environment in liquid water, one expects the anharmonic-
ity of the O–H stretch to remain significant and the conclu-
sion on the isolated O–H molecule to still hold—i.e., the
classical O–H stretching band is expected to be blueshifted
from the quantum result. Note that the LSC-IVR is most
accurate for short time from its original derivations. Vari-

ous applications of the LSC-IVR method have also verified
the LSC-IVR correlation function is most reliable for times
on the order of the thermal time ¯β for condensed phase
systems.4, 13, 14 This implies ∼25.78 fs at 300 K, which covers
the first periods of the bending band. This suggests a value of
∼3275 cm−1 for the peak position of the O–H stretching band
of the quantum IR spectrum for the TTM3-F model while us-
ing the time scale of the thermal time (25.78 fs) as thalf for
the damping Gaussian approach [Eq. (30)]. Therefore, one ex-
pects classical MD to yield a ∼115 cm−1 blueshift from the
suggested quantum result for the peak position of the O–H
stretching band for the TTM3-F model, and the LSC-IVR re-
sult to yield a blueshift by only ∼10 cm−1 (from the suggested
quantum result). It is not surprising to see the blueshift of the
LSC-IVR O–H stretching band to be much smaller in liquid
water (∼10 cm−1) than in the isolated (OH) molecular sys-
tem (∼80 cm−1). The correlation function inevitably exhibits
a physical decay in the condensed phase system due to the
quenching effect by coupling among the various degrees of
freedom.4, 37, 59, 60 The accuracy of the LSC-IVR correlation
function thus depends on the competition between the phys-
ical decay inherent in the system and the unphysical decay
intrinsic in the methodology itself. Once the physical decay
dominates, the LSC-IVR produces reliable results.

In contrast, the centroid molecular dynamics (CMD)
spectrum53 (Fig. 7(c)) exhibits a slightly larger intensity of the
O–H stretching band compared to experiment. Its peak posi-
tion (∼3310 cm−1) is also redshifted (by ∼80 cm−1) from the
classical result but blueshifted (by ∼25 cm−1) from the LSC-
IVR result and (by ∼35 cm−1) from the suggested quantum
result. Although the CMD IR spectrum is always redshifted
from the exact result for the 3d shifted harmonic oscillator
due to the “curvature problem” as pointed out in Ref. 56, it is
possible that it can be blueshifted instead for the anharmonic
stretching vibrations. In addition to that the quantum result
should be blueshifted from the classical and harmonic approx-
imation results as we point out, Fig. 7 (for the TTM3-F model)
supports the statement of Ref. 61 that the blueshift due to the
“curvature problem” in the CMD high-frequency stretching
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FIG. 7. Comparison of simulated IR spectra using the TTM3-F model to the
experimental results.

vibration is much alleviated for liquid water in the ambient
condition (∼300 K). Note that the IR absorption spectrum
(same as Fig. 7(c)) given in Ref. 53 is different from that given
in Ref. 58. As we have discussed in Ref. 15, different levels
of approximation of the CMD model and the time steps in-
volved in updating the CMD trajectory thus affect the high-
frequency vibrational band. Although the CMD simulation in
Ref. 53 and that in Ref. 58 are all in principle partially adi-
abatic CMD, the former employs a much smaller time step
and sampling time interval (0.02 fs) which likely leads to a
better converged CMD IR spectrum. Figure 7 and the above
discussion clarify the arguments in the literature53, 56, 58, 61 and
suggest the quantum result for the peak position of the O–H
stretching band for the TTM3-F model.

The intensity and shape of the H–O–H bending band
is well reproduced by classical MD for the TTM3-F model
(Fig. 7(a)). Its peak position (∼1620 cm−1) is redshifted by

FIG. 8. Comparison of simulated IR spectra in the librational regime.

∼25 cm−1 from experiment (∼1645 cm−1). One expects the
quantum result for the peak position of the bending band for
the TTM3-F model to be redshifted as well from the classi-
cal result due to anharmonicity. Both the LSC-IVR and CMD
yield similarly good results with slightly smaller intensity
for the bending band. The peak position is further redshifted
from the classical result by ∼10 cm−1 for the LSC-IVR and
∼75 cm−1 for CMD. The LSC-IVR predicts the most satisfac-
tory agreement with experiment for the librational band (be-
low 1000 cm−1), the intermediate region (1000–1500 cm−1)
between the librational and bending bands, and that (2000–
2200 cm−1) between the bending and stretching bands for the
TTM3-F model. For instance, similar to the previous discus-
sion on the density of local frequencies (static property) in
Fig. 5, the LSC-IVR IR spectrum (dynamical property) sug-
gests that significant quantum effects exist in this interme-
diate region (1000–1500 cm−1 or u ≈ 4.8–7.2) and on the
ultrafast energy relaxation from the bending to the libration
motion.62, 63 In contrast, the CMD spectrum (for the TTM3-F
model) shows a narrower librational band which indicates the
absence of relatively high-frequency hindered rotations (800–
1000 cm−1). [See Figs. 7 and 8.] Fig. 7 also shows that both
the CMD and classical IR spectra show too lower intensities
in the two intermediate regions than experimental results. All
simulated (LSC-IVR, classical, and CMD) spectra exhibit the
shoulder at ∼200 cm−1 corresponding to the dipole-induced
dipole interaction,64, 65 but the shape is not well reproduced.

Besides the LSC-IVR and CMD, several mixed quantum-
classical (QC) approaches53, 66–68 have been developed for
studying the vibrational IR spectrum of such systems as the
O–D stretch of HOD in liquid H2O or the O–H stretch of
HOD in liquid D2O. In such QC approaches, the O–D (O–H)
Born-Oppenheimer potential energy curve is obtained by
stretching the OD (OH) bond while fixing the positions of
all other atoms for any configuration (from classical MD or
CMD), then the 1d potential surface is used to compute the vi-
brational frequency and the vibrational stretching band. The
mixed QC approaches ignore any response of the surround-
ing environment due to the change of the selected 1d system
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(the chosen O–D or O–H stretch), so the accuracy of the ap-
proaches decreases as the coupling between the selected 1d
system and its environment becomes stronger.5 (One can cer-
tainly extends the 1d stretching system to a larger one (e.g., a
local monomer69) to improve over the mixed QC approaches.)
In contrast, the LSC-IVR and CMD treat the whole system on
the same footing, so they are more appropriate to study the IR
absorption spectrum in pure liquid H2O. [One can compare
the LSC-IVR to the mixed QC approaches similar to the re-
cent work53 for studying the vibrational IR spectrum for HOD
in H2O or D2O with the TTM3-F water model. Further study
along these lines would be of interest.]

From the comparison of the spectra in Fig. 7, it is clear
that further improvements are needed to the potential of the
TTM3-F model33 in order to achieve a better agreement with
experiment (although it has been recently shown the TTM3-
F model33 works well in the librational regime54). The good
agreement between the peak position of the classical O–H
stretching band and experiment actually implies without am-
biguity that the TTM3-F model needs to be improved for ac-
curately describing the frequency shifts of hydrogen bonded
O–H stretching vibrations, because classical MD fails to ac-
count for the significant anharmonicity of the O–H stretch-
ing vibration and yields evitable blueshifted frequencies com-
pared to quantum results. As discussed in Refs. 53 and 58, it is
possible that the ab initio data calculated by the MP2 method
for constructing the model were not accurate enough—more
advanced electronic structure theory may be necessary. Even
if the ab initio data were accurate, the parameterization for re-
producing the harmonic vibrational spectra of water clusters
may also very likely be inadequate, because the anharmonic-
ity might not be well described. Another important factor is
that discrepancies inevitably exist between the interactions in
small water clusters and those in bulk water. It will be in-
teresting in the future to see how the parameterization of the
TTM3-F model changes with more ab initio data from larger
size water clusters or even systems with periodic boundary
conditions. (We note that there exist other ab initio-based
models69–71 for water clusters and liquid water. It might be
interesting to apply PIMD and the LSC-IVR/CMD/RPMD to
some of these models and compare the simulated properties
to those for the TTM3-F model.)

V. CONCLUSION REMARKS

The LSC-IVR is exact in the harmonic limit, regardless
of whether the operator is a linear or nonlinear function of
positions and momenta and independent of whether it is in the
low-frequency regime or involves high-frequency vibrations.
The LSC-IVR does not suffer the “curvature problem”56 or
“artificial frequencies and resonances.”56, 58, 72 It maintains all
aspects of the classical coherence and gives correct results for
the vibrational IR spectrum of such as the 3d shifted harmonic
potential.

However, the LSC-IVR correlation function exhibits in-
trinsic unphysical decay for the anharmonic molecular sys-
tem (which also exists in other trajectory-based approximate
quantum dynamics methods, see Appendix A). Such unphys-
ical decay in the LSC-IVR correlation function yields an

inevitable blueshift of the high-frequency vibration. For in-
stance, the blueshift is around ∼80 cm−1 in the present sim-
ulations of the 3d shifted Morse oscillator of the isolated OH
molecule. Nevertheless, by taking advantage of the short-time
data of the LSC-IVR correlation function, one can obtain ac-
curate results for the peak position of the vibrational IR spec-
trum of the isolated molecule or cluster. The LSC-IVR result
(for the peak position of the isolated O–H vibration) is in-
sensitive to the change of the temperature as the exact value
should be. This suggests that the LSC-IVR could be a reliable
method to study the temperature dependence for more com-
plex systems.

Because the inherent physical decay of the condensed
phase system compensates the intrinsic unphysical decay of
the LSC-IVR methodology, the blueshift problem in the an-
harmonic vibration is much alleviated in the large molecular
system. One expects ∼10 cm−1 for the blueshift of the LSC-
IVR O–H stretching band for the TTM3-F model for liquid
water at 300 K from the quantum result. The stronger the
couplings are, the more dominate the physical decay is and
the more accurate the LSC-IVR is, which is entirely consis-
tent with the previous investigation on a conventional con-
densed phase model (i.e., a simple system coupled with the
harmonic oscillators environment).73 The investigation of the
present manuscript supports the arguments in Refs. 15 and 30
that the LSC-IVR is a good approximate quantum approach
for study of the IR absorption spectrum.

Comparison of the simulated IR spectra for the TTM3-F
water model shows that the intensity of the O–H stretching
band given by classical MD is much higher than that by the
LSC-IVR or CMD. The peak position of the O–H stretching
band given by CMD is blueshifted from that by the LSC-IVR,
and the H–O–H bending band given by CMD is redshifted
from the LSC-IVR result. While the CMD librational band
indicates the absence of relatively high-frequency hindered
rotations (800–1000 cm−1) for the TTM3-F water model, the
LSC-IVR result implies that such motions still exist in liquid
water for the same model that agrees well with experiment. In
agreement with experiment and similar to the discussion on
the static density distribution of local frequencies (Fig. 5), the
LSC-IVR IR spectrum suggests significant quantum effects in
the intermediate region (1000–1500 cm−1) between the bend-
ing and librational bands and that (2000–2200 cm−1) between
the stretching and bending bands.

Liu and Miller have recently proposed several
approaches24–27, 74 which conserve the canonical distri-
bution in the phase space formulation of quantum mechanics
and improve over the LSC-IVR on the intrinsic unphysical
decay for the long-time behaviors. Such approaches in the
Wigner phase space representation reduce to the LSC-IVR in
the harmonic limit, so it is trivial to show that they give the
correct result for such as the isolated 3d harmonic vibrational
oscillator. It will be interesting to apply them to the ab
initio-based models for studying quantum dynamical effects
for water clusters and liquid water. (Also see Appendix A for
more discussion.)

Finally, we note that cautions need to be taken for using
the condensed phase model—a simple system coupled with a
harmonic bath environment75 (system+harmonic bath), while
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degrees of freedom for high-frequency stretching modes are
involved. As shown in the current simulations, the classi-
cal MD result of O–H stretching band has a large blueshift
(∼150–200 cm−1) because it fails to account for the large an-
harmonicity for obtaining the correct frequencies. The con-
ventional approach—employing the spectrum computed by
classical MD to obtain the harmonic bath variables for the
environment—will not be reasonable when such as O–H
stretches in the hydrogen bond network of liquid water play
an important role.
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APPENDIX A: DISCUSSION ON ZERO-POINT ENERGY
EFFECTS AND VARIOUS TRAJECTORY-BASED
APPROXIMATE QUANTUM DYNAMICS METHODS

Classical dynamics conserves the value of the classi-
cal time-independent Hamiltonian H(x, p). Given that initial
conditions are from the equilibrium distribution (such as the
canonical distribution e−βH(x, p)), classical dynamics also con-
servers the distribution. For example, a classical MD trajec-
tory simultaneously conserves the energy and the distribution
when the canonical ensemble approaches the microcanoni-
cal ensemble δ(E − Ĥ ) in the thermodynamic limit (i.e., the
number of particles N → ∞ and the volume of the system
V → ∞) for the ergodic system. Apparently, any fictitious
dynamics that conserves the equilibrium distribution but fails
to do so for the energy will cause artificial effects as long as
real-time dynamics is of concern.77

Quantum dynamics simultaneously preserves the values
both of the Hamiltonian Ĥ and of the Boltzmann operator
e−βĤ . Any trajectory-based approximate quantum dynam-
ics method that has been applied to condensed phase sys-
tems, however, conserves only one property in the mapping

phase space. The approaches based on conservation of differ-
ent properties are often not identical, except for the harmonic
system where quantum coherences reduce to classical coher-
ences. For instance, when the Wigner phase space represen-
tation of quantum mechanics is chosen, conservation of the
mapping Hamiltonian for energy (which is equivalent to the
classical Hamiltonian) yields the LSC-IVR/classical Wigner
model, while conservation of the mapping canonical distribu-
tion function generates the three families of trajectory-based
dynamics as proposed in the literature.24–27 As Liu and Miller
analyze in a forthcoming paper,74 the former conservation
leads to more accurate short-time dynamics, while the latter
favors long-time dynamical behaviors.

PIMD conserves the mapping canonical distribution in
the extended phase space.78, 79 For instance, one mapping op-
tion is e−βHn/NP with

Hn =
NP∑
j=1

[
p2

j

2m
+ 1

2
mω2

P (xj − xj+1)2 + V (xj )

]
(32)

subject to the cyclic boundary condition xNP +1 = x1,
where NP is the number of path integral beads and
ωP = NP /̄ β. The dynamics generated by the fictitious
Hamiltonian Eq. (32) yields an isomorphism to the thermo-
dynamics in the canonical ensemble of quantum mechan-
ics. RPMD by Manolopoulos et al. employs an ad hoc as-
sumption that the fictitious dynamics [generated by Eq. (32)]
in PIMD can be useful for obtaining the real-time dynam-
ics information.30, 32, 58, 80–83 Apparently, the mapping canon-
ical distribution is preserved with the dynamics in RPMD.
However, RPMD (and CMD) is incapable to give exact non-
linear correlation functions even for a one-dimensional har-
monic potential.7, 12, 13, 24, 26, 84 Due to “artificial frequencies
or resonances,”56, 58, 72 RPMD even fails to generate the cor-
rect linear correlation function for the shifted 3d harmonic
oscillator56 (Eq. (28)) which is effectively a linear model un-
der rotation correction.15 [As a comparison, the LSC-IVR
gives correct results for these systems.] More discussion on
RPMD, CMD, and the LSC-IVR and its improved versions
can be found in the literature.7, 12, 13, 24, 26, 30, 56, 85 Following the
discussion in the previous paragraph, it is not subtle at all for
one to see that RPMD does not conserve the true mapping
Hamiltonian for energy in the extended phase space, which is

H̃E = 1

NP

NP∑
j=1

[
p2

j

2m
− 1

2
mω2

P (xj − xj+1)2 + V (xj )

]
.

(33)

Subtle is how the failure of conservation of Eq. (33)
along the RPMD trajectory causes unphysical influences to
the short- and long-time behaviors of the RPMD model for
the real-time correlation function. Similar to the LSC-IVR
that preserves the mapping Hamiltonian for energy, one can
construct a model [i.e., ring polymer Hamiltonian dynam-
ics (RPHD)] for computing the real-time correlation function
by employing the dynamics generated by Eq. (33). RPHD
will give exact results in the classical and high temperature
limits and also for the correlation function involving linear
functions of position or momentum in the harmonic limit for
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one-dimensional systems, same as RPMD does. “Artificial
frequencies or resonances”56, 58, 72 in the high (real) frequency
regime might be much alleviated in RPHD because the artifi-
cial frequencies arising from the beads are imaginary instead.
On the other hand, as RPHD does not necessarily preserve the
mapping canonical distribution, it has the same drawback as
that of the LSC-IVR. It will be interesting to test such a RPHD
model and compare it with RPMD for some condensed phase
systems. Similarly, it is straightforward to extend the above
discussion to CMD. For example, CMD conserves the map-
ping canonical distribution but fails to conserves the mapping
Hamiltonian for energy.

We note that cautions should be taken while discussing
zero-point energy effects in liquid water. It is of no doubt
that energy exchange between the intramolecular and inter-
molecular modes occurs in real-time dynamics of liquid wa-
ter. While the zero-point energy of the intramolecular modes
and that of the intermolecular modes should be preserved on
ensemble average, the total (zero point) energy of the sys-
tem has to be “microscopically” conserved. As mentioned
in Ref. 15 and as discussed in more details in Ref. 30, the
LSC-IVR fails for the former and leads to the artificial en-
ergy flow from the intramolecular modes to the intermolec-
ular ones (i.e., zero-point energy leakage). [Apparently, the
zero-point energy leakage is a part of the effects caused by
the failure of the LSC-IVR—the mapping canonical distri-
bution is not conserved.] It will be interesting to investigate
its effects on the intrinsic unphysical decay of the LSC-IVR
correlation function in liquid water. On the other hand, in ad-
dition to the nonlinear operator problem7, 12, 13, 19, 24, 26, 30, 84–86

and the “curvature problem”56 or “artificial frequencies or
resonances,”56, 58, 72 CMD/RPMD fails in “microscopically”
preserving the true energy estimator along its trajectories and
cannot give a faithful description on the zero-point energy ef-
fects in liquid water either (although CMD/RPMD can give
the correct ensemble average value for the energy estimator
because the mapping canonical distribution is conserved). It
will also be of future interests to quantify how this affects the
simulation results for liquid water.

In summary, no current trajectory-based approximate
quantum dynamics methods exist to describe zero-point en-
ergy effects (and/or quantum decoherence) without any am-
biguity. [Ref. 87 suggests that zero-point energy effects could
actually involve quantum interference.] The challenging ques-
tion now is, whether it is possible to construct a kind of phase
space to generate trajectory-based dynamics that conserve
both the mapping Hamiltonian for energy and the mapping
canonical distribution?

APPENDIX B: ANOTHER POSSIBLE MICROSCOPIC
ORIGIN FOR ACCURACY OF THE LSC-IVR RESULT
FOR THE HIGH-FREQUENCY ANHARMONIC
STRETCH

With ¯ = 1, the eigen-energy level of the Morse
potential Eq. (27) is

E(n) =
(

n + 1

2

)
ωe −

(
n + 1

2

)2
ω2

e

4De

. (34)

The quantum transition frequency ω01 between the ground
and first excited state becomes

E(1) − E(0) = ωe − 2
ω2

e

4De

. (35)

The classical frequency with action-angle variables for the
Morse potential76 is

E′(n) = ωe − ω2
e

4De

(2n + 1). (36)

Note that E′(1/2) = ωe − 2(ω2
e/4De) is equal to the quan-

tum transition frequency. That is, when a classical trajectory
is propagated at the average of the initial and final action vari-
ables [an energy about half-way between the “ground” and
“first excited” state E′(0) and E′(1)], the classical frequency
matches the quantum transition frequency!

The linearized approximation in the LSC-IVR (Ref. 5)
makes the “sum and difference” transformation of the classi-
cal variables, so that the classical mechanics is run at the aver-
age of the initial and final variables. Although this is done for
convenience in Cartesian coordinates rather than action-angle
variables, it is roughly equivalent.
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