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The conventional classical energy current auto-correlation function has been extended into a quantum
mechanical version and then approximated by the linearized semiclassical initial value representa-
tion approach. Comparison of the thermal conductivity to simulation results shows that about 15%
quantum correction to the classical molecular dynamics results for liquid neon are quantitatively
predicted. For liquid para-hydrogen the quantum effects are sufficiently large that the linearized
semiclassical approach is only 20% accurate, while for both liquid He4 and He3 the thermal con-
ductivity disagrees by a factor of 2, although exchange effects appear to play a minor role. © 2011
American Institute of Physics. [doi:10.1063/1.3639107]

I. INTRODUCTION

This work is motivated by trying to understand how the
energy generated by the fusion reaction is propagated. The
critical property required for this process is knowing the ther-
mal conductivity of a plasma of protons and electrons. The
fusion reaction, as it takes place at the center of the sun or in a
capsule at the National Ignition Facility at Livermore, is under
nearly classical conditions since the temperature is so high.
Thus, the first approximation for the thermal conductivity is to
use the energy current autocorrelation generated from classi-
cal molecular dynamics (MD) trajectories with some quantum
mechanical cross sections to avoid the coulomb singularities.
However, one would like to know how large the quantum cor-
rections to the classical values are; particularly, also at lower
temperatures as the plasma cools down. For that purpose the
semiclassical (SC) theory1, 2 is a natural application. Further-
more, one can utilize the classical trajectories.

The simplest (and most approximate) version of the SC
initial value representations3 (SC-IVRs) is its “linearized”
approximation (LSC-IVR).4–6 LSC-IVR can not, for exam-
ple, describe true quantum coherence effects in time corre-
lation functions, but it does describe a number of aspects of
the dynamics very well.5, 7–17 For example, the LSC-IVR has
been shown to describe reactive current correlation functions
for chemical reaction rates quite well, including strong tun-
neling regimes4, 5, 8 and correlation functions5, 9, 11–21 in sys-
tems with enough degrees of freedom for quantum re-phasing
to be unimportant. (We also note that the forward-backward
semiclassical dynamics approximation of Makri et al.22–27 is
very similar to it.) Non-linearized versions of semi-classical
theory28 would be more accurate, but are computationally
harder to implement.

The purpose of the paper is to present the atom-
istic/molecular level description of the thermal conductivity

a)Author to whom correspondence should be addressed: Electronic mail:
millerwh@berkeley.edu.

of low temperature liquids to investigate how low temperature
quantum dynamical effects can be quantitatively accounted
for by this version of the semi-classical theory. Section II first
summaries the relation between thermal correlation functions
of the system and experimental observables for dynamical
properties and extends the classical version29–31 of the energy
current auto-correlation function into quantum mechanics.
Then Sec. III briefly reviews the LSC-IVR methodology and
gives the explicit LSC-IVR formulation for the energy current
auto-correlation function investigated in the present study.
Section IV presents the LSC-IVR simulation results and com-
pares them to those given by classical MD and also to experi-
mental data. Concluding remarks are given in Sec. V.

II. THERMAL CONDUCTIVITY AND ENERGY
CURRENT AUTO-CORRELATION FUNCTION

Most dynamical properties can be expressed in terms of
time correlation functions30–32, which are of the form

CAB (t) = 1

Z
Tr
(
ÂβeiĤ t/¯B̂e−iĤ t/¯

)
. (1)

Here, Z = Tr[e−βĤ ] is the partition function, β = 1/kBT

is the inverse temperature, Ĥ is the (time-independent)
Hamiltonian of the system, and Â and B̂ are operators rel-
evant to the specific property of interest. In this paper, we
use the Kubo-transformed correlation function33, i.e., Â

β

Kubo

= 1
β

∫ β

0 dλe−(β−λ)Ĥ Âe−λĤ in Eq. (1), as a matter of conve-
nience, as before.5, 11, 13

The thermal conductivity, λ, measures the rate of
heat/energy flow through the system at a given temperature
T . It is defined by Fourier’s law of heat conduction:

ρmcv
∂T

∂t
= λ∇2T , (2)

where cv is the specific heat and ρm is the mass density.
Equation (2) is an empirical law based on observation. Based
on the “local thermodynamic equilibrium” approximation and
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the hydrodynamic equations,34 one can show that the thermal
conductivity can be expressed in terms of the energy current
auto-correlation function.29–31, 34–36 This definition of the en-
ergy current in classical mechanics30 will now be extended
into a Hermitian operator of the quantum mechanical correla-
tion function, as follows.

Suppose that the system consists of N particles and only
pair-wise interactions are involved, i.e., the Hamiltonian is

Ĥ =
N∑

j=1

p̂2
j

2mj

+ 1

2

N∑
j=1

N∑
k=1
k �=j

V̂ (rjk). (3)

The thermal conductivity λ of the one-component system can
be obtained from the energy current autocorrelation function

λ = 1

3V kBT 2

∫ ∞

0
〈Ŝ(0) · Ŝ(t)〉dt, (4)

where V is the volume of the system.29–31, 34–36 The energy
current of the system is defined as

Ŝ = d

dt
Ĝ ≡ ˆ̇G, (5)

where

Ĝ = 1

2

N∑
j=1

⎡
⎢⎣r̂j

⎛
⎜⎝ p̂2

j

2mj

+ 1

2

N∑
k=1
j �=k

V̂ (rjk)

⎞
⎟⎠

+

⎛
⎜⎝ p̂2

j

2mj

+ 1

2

N∑
k=1
j �=k

V̂ (rjk)

⎞
⎟⎠ r̂j

⎤
⎥⎦ . (6)

As discussed in Appendix A, one can rigorously prove that
the Hermitian operator of Eq. (5) can be expressed in quantum
mechanics as

Ŝ = 1

i¯
[Ĝ, Ĥ ]

=
N∑

j=1

1

2

(
p̂j

mj

p̂2
j

2mj

+ p̂2
j

2mj

p̂j

mj

)

+ 1

4

N∑
j=1

N∑
k=1
k �=j

(
p̂j

mj

V̂ (rkj ) + V̂ (rkj )
p̂j

mj

)

− 1

4

N∑
j=1

N∑
k=1
k �=j

{
r̂kj

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]

+
[

∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]
r̂kj

}
. (7)

The classical correspondence of operator Ŝ is simply given by

Scl =
N∑

j=1

pj

mj

p2
j

2mj

+ 1

2

N∑
j=1

N∑
k=1
k �=j

pj

mj

V (rkj )

− 1

2

N∑
j=1

N∑
k=1
k �=j

rkj

∂V (rkj )

∂rkj

· pj

mj

. (8)

In principle, one can also express the thermal conductiv-
ity by the Einstein-Kubo-Helfand37, 38 relation. However, this
approach is ambiguous for finite systems subject to peri-
odic boundary conditions.39 Hence, we use the Green-Kubo
approach36, 37, 40 as represented by Eq. (4).

It is sometimes useful to directly compare the integral of
the autocorrelation function,

1

3N

∫ ∞

0
〈Ŝ(0) · Ŝ(t)〉dt = λkBT 2

ρ
, (9)

to experiments,41 rather than the thermal conductivity itself.
Here, ρ = N/V is the number density. The energy current
(Eq. (7)) is not a single particle quantity but represents a
collective property for all the molecules/particles of the sys-
tem [similar to the collective dipole (or dipole-derivative)
auto-correlation function for the infrared spectrum of liq-
uid water17, 42]. The time-dependence of the auto-correlation
function for the thermal conductivity can help gain insight
into the nature on how heat/energy is transported as a col-
lective behavior and its integral compared to the experiment
provides a good test for the methodology on the description
of quantum effects in dynamical properties.

III. SIMULATION METHODOLOGY

A. Linearized semiclassical initial
value representation

The SC-IVR approximates the forward (backward) time
evolution operator e−iĤ t/¯ (eiĤ t/¯) by a phase space aver-
age over the initial conditions of forward (backward) classical
trajectories.1, 28 By making the approximation that the domi-
nant contribution to the phase space averages comes from for-
ward and backward trajectories that are infinitesimally close
to one another, and then linearizing the difference between the
forward and backward actions (and other quantities in the in-
tegrand), Wang, Sun, and Miller4, 7 (see also Ref. 14) obtained
the LSC-IVR, or classical Wigner model for the correlation
function in Eq. (1),

CLSC−IVR
AB (t) = Z−1

(
2π¯

)−3N

∫
dx0

×
∫

dp0A
β
w (x0, p0) Bw (xt , pt ) , (10)

where Aβ
w and Bw are the Wigner functions43 corresponding

to these operators,

Ow (x, p) =
∫

d�x

〈
x − �x

2

∣∣∣∣ Ô
∣∣∣∣x + �x

2

〉
ei pT �x/¯,

(11)
for any operator Ô. Here, (x0, p0) is the set of ini-
tial coordinates and momenta for a classical trajectory,
(xt (x0, p0) , pt (x0, p0)) being the phase point at time t along
this trajectory.

The classical Wigner model is an old idea,43–46 but
it is informative to realize that it is contained within the
general SC-IVR formulation, namely, as a specific approx-
imation to it;4, 7more accurate implementations of the SC-
IVR approach would be expected to lead to a more accu-
rate description. It should also be noted that there are other
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approximate routes6, 10, 47, 48 which lead to the classical
Wigner model for correlation functions other than simply pos-
tulating it (see more discussion in Ref. 5). Moreover, two
of us10, 49 have recently shown that the exact quantum time
correlation function can be expressed in the same form as
Eq. (10), with an associated dynamics in the single phase
space, and it was furthermore demonstrated that the LSC-IVR
correctly leads to the classical limit (¯→ 0), high tempera-
ture limit (β → 0), and harmonic limit.

B. Explicit formulations

Calculation of the Wigner function for operator B̂ in
Eq. (10) is usually straightforward; in fact, B̂ is often a func-
tion only of coordinates or only of momenta, in which case
its Wigner function is simply the classical function itself. It
is further shown in Appendix B that the Wigner function for
such an operator as the energy current operator Ŝ is the same
as the classical formula. That is,

SW ≡ [Ŝ]W =
N∑

j=1

pj

mj

p2
j

2mj

+ 1

2

N∑
j=1

N∑
k=1
k �=j

pj

mj

V (rkj )

− 1

2

N∑
j=1

N∑
k=1
k �=j

rkj

∂V (rkj )

∂rkj

· pj

mj

. (12)

Calculating the Wigner function for operator Âβ , however, in-
volves the Boltzmann operator with the total Hamiltonian of
the entire system, so that carrying out the multidimensional
Fourier transform to obtain it is far from trivial. To accom-
plish this task, the local Gaussian approximation5 and sev-
eral other approximations4, 9, 14, 48 have been introduced. Here,
such a further simplifying approximation is introduced to ob-
tain the Wigner function for the operator ŜKubo (Âβ), because
the energy current operator Ŝ (Eq. (7)) is a very complex func-
tion of both x̂ and p̂.

By virtue of our recent work (i.e., Eq. (18) and Eqs. (62)–
(70) of Ref. 50), one can express the Wigner function for the
Boltzmann operator e−βĤ as

1

Z
[e−βĤ ]W (x, p) ≈ 1

Z

(
β

2π

)3N/2

det (M)−1 e− β

2 pT M−1pPc (x) ,

(13)
with the (diagonal) mass matrix, M, the centroid variable

xc = 1

P
(x1 + x2 + · · · + xP ) , (14)

and the centroid density

Pc (x) = lim
P→∞

(
P

2πβ¯2

)3NP/2

|M|P/2
∫

dx1 · · ·
∫

dxP δ (x − xc)

× exp

{
− P

2β¯2
[(x1 − x2)T M(x1 − x2) + · · ·

+ (xP − x1)T M(xP − x1)]

}

× exp

{
− β

P
[V (x1) + · · · + V (xP )]

}
, (15)

which yields the partition function

Z =
∫

dx Pc (x) . (16)

Here, P is the number of path integral beads.
Similarly, one can approximately express the Wigner

function for operator ŜKubo as

[ŜKubo]W (x, p) ≈
(

β

2π

)3N/2

det (M)−1 e− β

2 pT M−1p

× Pc (x) SW (x, p) . (17)

By virtue of Eq. (10), the explicit form of the LSC-IVR ap-
proximation to 〈Ŝ(0) · Ŝ(t)〉Kubo is thus given by

〈Ŝ(0) · Ŝ(t)〉LSC−IVR
Kubo ≈ 1

Z

∫
dx0

∫
dp0

(
β

2π

)3N/2

× det (M)−1 e− β

2 pT
0 M−1p0Pc (x0)

× SW (x0, p0) · SW (xt , pt ) . (18)

[Also see the note in Ref. 51.]
For comparison, the classical energy current correlation

function is simply given by 〈Scl (x0, p0) · Scl (xt , pt )〉 with
the bracket representing the classical canonical ensemble
average.29

IV. RESULTS AND DISCUSSIONS

A. Simulation details

Given the interaction between particles of the system,
both classical MD and LSC-IVR are able to provide the mi-
croscopic simulation for macroscopic dynamical properties,
without any additional fitting parameters or models. In this
paper, we focus on the thermal conductivity of liquids con-
sisted of light molecules (neon, para-hydrogen, He4 or He3)
in a range of temperature, where quantum effects are expected
to be non-negligible and experiments are available.

We use the most recent ab initio based potential energy
surface52 for the interaction between neon atoms. The triple
point temperature of liquid neon is T = 24.556 K and the
critical point temperature is T = 44.4 K. Because the mass of
neon is relatively heavy, one expects that quantum effects in
liquid neon are not prominent if the temperature is not low.
So, we compare the thermal conductivity of liquid neon at two
state points along the saturated line near its triple point53, 54

T = 28 K, ρm= 1189 kgm−3 , psat = 1.321 bars, and T

= 26 K, ρm= 1224 kgm−3, psat = 0.7184 bar with the
experimental data.53

The interaction between molecules in liquid para-
hydrogen is well described by the Silvera-Goldman model.55

Liquid para-hydrogen has previously served as a bench-
mark system to test LSC-IVR (Refs. 5, 11, and 12) and
its maximum entropy analytical continuation correction.5, 13

The triple point temperature of para-hydrogen is 13.8 K
and the critical temperature is Tc ≈ 33.1 K. As given in
Refs. 5, 11–13, 56, and 57, we investigate the four state
points under nearly zero external pressure, T = 25 K, υ

= 31.7 cm3mol−1, T = 20 K, υ = 28.1 cm3mol−1, T = 17 K,
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TABLE I. The thermal conductivity of liquid para-hydrogen (see more sim-
ulation data in Fig. 3).

λ (Js−1m−1K−1)

ρm Experiment
T (K) (kg/m3) LSC-IVR Classical (Ref. 59)

16.942 74.556 0.0918 ± 0.0042 0.1801 ± 0.0075 0.0942
19.522 71.799 . . . . . . 0.0983
22.001 69.066 0.0842 ± 0.0032 0.1600 ± 0.0057 0.1019
24.990 64.916 0.0817 ± 0.0034 0.1476 ± 0.0069 0.1013
30.026 56.361 0.0742 ± 0.0027 0.1239 ± 0.0035 0.0915
33.001 45.900 . . . . . . 0.0840

υ = 26.9 cm3mol−1, and T = 14 K, υ = 25.6 cm3mol−1.
(υ = 1/ρ is the molar volume.) In addition, we study three
more state points along the saturation line,58 T = 30 K, ρm

= 53.9112 kgm−3, T = 27 K, ρm = 60.9628 kgm−3, and
T = 22 K, ρm = 68.7600 kgm−3. The measurements by
Roder and Diller59 appear to be most accurate60 (with about
7.79% average deviation60), which provide six state points (as
shown in Fig. 3 and Table I) close to those in our simulations.

Liquid He4 and liquid He3 are described by the HFD-B2
potential given by Aziz et al.61 The critical point temperature
of liquid He4 is 5.2 K and the superfluid λ-transition-point
temperature is 2.17 K; the critical point temperature of liquid
He3 is 3.31 K. We consider two state points at the saturated
vapor pressure62 at T = 3 and 4 K of liquid He4 and one near
the saturated vapor pressure63, 64 at T = 3 K of liquid He3.
The thermal de Broglie wavelengths (	 = h/

√
2πmkBT ) in

normal liquid He4 at T = 4 and 3 K are about 4.35 Å and
5.02 Å, respectively. They are slightly larger than the aver-
age distance ρ−1/3 between particles of the two state points
(3.73 Å and 3.62 Å, respectively). Similarly, the thermal
de Broglie wavelength in normal liquid He3 at T = 3 K is
about 5.80 Å while the average distance of the state point is
4.27 Å. Since the two length scales are comparable, one ex-
pects quantum exchange will exist but not have an enormous
effect on the properties of these normal liquid state points. So
quantum exchange is ignored in the LSC-IVR simulations.

The bisection method65 of the path integral Monte Carlo
(PIMC) is implemented to obtain the quantum equilibrium
structures of the molecular liquids. The simulation is carried
out with a total of 216 molecules in a box with the periodic
boundary condition. P = 8 beads are used for liquid neon
at 26–28 K, P = 32 beads are used for the state point of
liquid para-hydrogen at 25–30 K, P = 64 beads for that at
14–22 K, and P = 128 beads for liquid He4 at 3–4 K, and
liquid He3 at 3 K. After systems are equilibrated by PIMC,
an initial configuration is produced every 2P + 1 PIMC steps
and the Gaussian distribution in Eq. (18) is used to randomly
generate the initial momenta to run a classical trajectory for
evaluating the quantity SW (x0, p0) · SW (xt , pt ). The time step
of the classical trajectory is ∼1.2 fs and the velocity Verlet al-
gorithm is used in the classical propagation up to 2.5 ps for
liquid neon and liquid para-hydrogen and up to 14 ps for nor-
mal liquid helium. Sum the property SW (x0, p0) · SW (xt , pt )
for all real time classical trajectories to obtain a well con-
verged result for the Kubo-transformed energy current auto-

correlation function. About 2.4 × 105 such classical trajecto-
ries are used for liquid neon and for liquid para-hydrogen,
while about 2.4 × 106 such classical trajectories for liquid
He4 and liquid He3. For comparison, we also run classical
simulations for such liquid systems. Because some classical
systems at low temperature fall into the meta-stable amor-
phous solid regime occasionally, Monte Carlo (MC) is used to
equilibrate the classical systems to sample initial conditions.
We then run short time classical trajectories from those ini-
tial conditions and sum the property Scl (x0, p0) · Scl (xt , pt )
to evaluate the energy current correlation function, in a simi-
lar way as for LSC-IVR. About 2.4 × 105 such classical tra-
jectories are used for each system. 20 blocks are used in each
simulation to obtain the error bar.

B. Results and discussions

While the classical average kinetic energy is only
〈p̂2/2mNkb〉 = 39.0K at the state point T = 26 K for
liquid neon, PIMC gives an over 25% larger value 50.41
± 0.15 K. One, thus, expects quantum effects in the thermal
conductivity to be also most noticeable near its triple point.
Figure 1 shows comparison of the LSC-IVR energy current
auto-correlation function to the classical one for liquid neon
at T = 26 K. Both LSC-IVR and classical results demon-
strate a monotonic decay, damping to zero after 1 ps. One
inevitably observes such monotonic decay of the energy cur-
rent auto-correlation in the pure liquid phase, irrespective of
the temperature or density of the system. One also sees from
Fig. 1 that the LSC-IVR energy current auto-correlation func-
tion shows a slightly slower relaxation than the classical one.
For example, the LSC-IVR and classical results yield 0.255
± 0.002 ps and 0.247 ± 0.002 ps, respectively, for the relax-
ation time τ at T = 26 K. The thermal fluctuations of the en-
ergy in quantum mechanics are smaller than that in classical
mechanics, (e.g., the specific heat cv in quantum mechanics
is smaller than that in classical mechanics), which makes the
relaxation time longer. The thermal conductivity λ and the re-

FIG. 1. The energy current autocorrelation functions 〈Ŝ(0) · Ŝ(t)〉/3 for
liquid neon at T = 25 K.
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TABLE II. The thermal conductivity of liquid neon.

T (K) ρm(kg/m3) LSC-IVR Classical Experiment (Ref. 53)

λ (Js−1m−1K−1) 28.0 1189 0.109 ± 0.005 0.128 ± 0.003 0.112
26.0 1224 0.115 ± 0.005 0.136 ± 0.002 0.117

λkBT 2/ρ (10−50 J2m2s−1) 28.0 1189 3.31 ± 0.17 3.89 ± 0.08 3.42
26.0 1224 2.94 ± 0.14 3.49 ± 0.06 2.99

lated property λkBT 2/ρ are given in Table II. Classical simu-
lations overestimate the thermal conductivity by ∼15%. LSC-
IVR is able to quantitatively account for the quantum effects
as shown by the agreement with the experimental data,53 and
its temperature dependence. [Also see the note in Ref. 66.]

Figure 2 shows the LSC-IVR and classical energy cur-
rent correlation functions of liquid para-hydrogen at the two
state points at 32 K and 14 K. Both the LSC-IVR and clas-
sical results show that the time scale of relaxation in the en-
ergy current auto-correlation function increases as the temper-

FIG. 2. The energy current autocorrelation functions 〈Ŝ(0) · Ŝ(t)〉/3 for
liquid para-hydrogen at T = 14–32 K.

ature decreased. For instance, LSC-IVR produces τ = 0.154
± 0.001 ps at 32 K and τ = 0.159 ± 0.001 ps at 14 K, while
classical MD yields τ = 0.100 ± 0.001 ps at 32 K and τ

= 0.112 ± 0.001 ps at 25 K, in agreement with the expec-
tation that the magnitude of the fluctuations increase as the
temperature increases. The difference between the LSC-IVR
and classical results for liquid para-hydrogen can be observed
to be more prominent than that for liquid neon. Figure 2
also demonstrates that the difference between the LSC-IVR
and classical results are more pronounced as the temperature

FIG. 3. (a) The thermal conductivity for liquid para-hydrogen at T = 14–32
K. (b) Related properties λkBT 2/ρ.
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decreases. As expected, quantum dynamical effects become
more prominent as the particle gets lighter and as the temper-
ature decreases. The thermal conductivity is plotted as a func-
tion of temperature in Fig. 3. Although the experimental data
do not suggest a simple relation between the thermal conduc-
tivity λ and the temperature T , they do show that the related
property λkBT 2/ρ increases monotonically as the tempera-
ture is raised, in agreement with both LSC-IVR and classical
simulations. Figure 3 shows that the LSC-IVR results signifi-
cantly improve over the classical results for the thermal con-
ductivity. While the classical simulations can deviate by as
much as a factor of 2, less than 20% discrepancy exists be-
tween the LSC-IVR results and the experimental data.

FIG. 4. Classical energy current autocorrelation functions 〈Ŝ(0) · Ŝ(t)〉/3 (a)
for liquid He4 at T = 3 K, and (b) for liquid He3 at T = 3 K.

TABLE III. The thermal conductivity of liquid He4.

λ (10−2 Js−1m−1K−1) λkBT 2/ρ (10−52 J2m2s−1)

ρm Experiment Experiment
T (K) (kg/m3) LSC-IVR (Ref. 62) LSC-IVR (Ref. 62)

4.0 128.9745 3.96 ± 0.13 1.98 4.54 ± 0.15 2.27
3.0 141.2269 4.50 ± 0.24 1.74 2.65 ± 0.14 1.03

Note that the classical energy current auto-correlation
function of liquid para-hydrogen at T = 14 K becomes neg-
ative with a small value after 0.25 ps and stays negative, go-
ing to zero at about t = 1.5 ps. Such negative values implies
back scattering, a typical signature of amorphous solid,67, 68

FIG. 5. LSC-IVR energy current autocorrelation functions 〈Ŝ(0) · Ŝ(t)〉/3 (a)
for liquid He4 at T = 3 K and (b) for liquid He3 at T = 3 K.
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TABLE IV. The thermal conductivity of liquid He3.

λ (10−2 Js−1m−1K−1) λkBT 2/ρ (10−52 J2m2s−1)

T (K) ρm (kg/m3) LSC-IVR Experiment (Ref. 64) LSC-IVR Experiment (Ref. 64)

3.0 64.574 63 4.10 ± 0.20 1.69 3.96 ± 0.19 ∼1.63

because the heat energy carried by phonons are reflected back.
Classical simulation show that at lower temperatures, the liq-
uid systems fall into the metastable amorphous solid regime
and thereby gives a qualitatively wrong microscopic physical
picture. This is exactly what Fig. 4 demonstrates for the clas-
sical energy current auto-correlation functions of liquid He4

and of liquid He3 at 3 K. One sees that the correlation func-
tion reaches even pronounced negative value around 0.4 ps
followed by a long negative tail.

In contrast, Fig. 5 shows the LSC-IVR energy current
auto-correlation functions of the liquid helium systems. All
the correlation functions show a monotonic decay to zero,
a typical picture for heat transport in the liquid phase. The
substantial difference between the classical and LSC-IVR en-
ergy current auto-correlation functions is attributed to zero
point energy effects, which make the molecules in these low
temperature (3–4 K) systems much more mobile to stay in
the liquid state rather than the amorphous solid state. Quan-
tum effects are large, for instance, the average kinetic energy
〈p̂2/2mNkb〉 is ∼15.96 K for liquid He4 at T = 3 K, more than
three times of the classical result 4.5 K. The thermal conduc-
tivity λ and the related property λkBT 2/ρ of these systems are
listed in Tables III and IV. While classical MD totally misses
the correct physical picture [so it is meaningless to obtain the
integral of the correlation function], LSC-IVR is qualitatively
correct but overestimates the thermal conductivity by a fac-
tor of ∼2 in the normal liquid He4 or He3 systems. LSC-IVR
calculations also show λkBT 2/ρ decreases as the temperature
decreases for liquid He4, which agrees with the experimental
data. However, LSC-IVR suggests that the thermal conductiv-
ity increases as the temperature decreases, inconsistent with
the experimental data.

The discrepancy between LSC-IVR and experimental re-
sults appear not be due to quantum exchange. Although He4

particles are bosons and He3 atoms are fermions, the ratio of
the thermal conductivity of liquid He4 to that of liquid He3 at
the temperature 3 K is given by LSC-IVR ∼ 1.098 while the
experimental data gives the ratio λHe4/λHe3 ≈ 1.030. These
ratios close to one imply that quantum exchange effects are
not very important in the thermal conductivity in normal liq-
uid He4 and He3 even at 3 K.

The approximation of real time dynamics in LSC-IVR
instead is very likely the major source for the discrepancy.
Figure 5 demonstrates the relaxation times of the energy cur-
rent auto-correlation functions for liquid He4 and He3 are
much longer than those for liquid para-hydrogen and liquid
neon. LSC-IVR is a good short time approximation to quan-
tum dynamics and is less adequate for accurately describing
long time behavior of the correlation function.5, 10, 12, 26, 49, 50

More accurate SC-IVR approaches28 are needed for more
faithful description on long time quantum dynamical effects,

which involve more computational efforts. In addition, several
more approaches10, 13, 49, 50, 69 have been recently proposed to
improve over LSC-IVR at longer time and lower temperature
in a single phase space. It will be interesting to apply them to
study the thermal conductivity in the future.

V. CONCLUSIONS

In this paper, we have applied the LSC-IVR method
to study quantum dynamical effects in the thermal conduc-
tivity in light molecular liquids. The conventional classical
version29–31 of the energy current auto-correlation function
has been extended into a quantum mechanical version and
then approximated by LSC-IVR with centroid coordinates—
an approximate semiclassical approach to account for quan-
tum dynamical effects. The good agreement between experi-
mental data and LSC-IVR simulations of the thermal conduc-
tivity for liquid neon shows that LSC-IVR is a good short time
approximation for treating quantum correlation functions, as
was demonstrated before. In molecular liquids with lighter
particles and lower temperatures, i.e., liquid para-hydrogen
and at even lower temperatures normal liquid He4 and He3,
this linearized semiclassical approach is progressively less ad-
equate, however, qualitatively, the related quantity λkBT 2/ρ

increases as the temperature increases, in agreement with the
experiment. One can also demonstrate that for the two iso-
topes of helium the exchange effects, which have been ig-
nored in our current study, are not quantitatively significant,
although they could have been included in the Feynman path
integral implementation of LSC-IVR. More advanced ver-
sions of SC-IVRs28 would no doubt lead to better agreement
with experiment, but require much computational effort. For
the moment, the LSC-IVR model employed here seems ad-
equate for the plasma fusion application, since quantum ef-
fects are expected to be small under fusion conditions. For
the plasma calculation the additional complication is that we
need to deal with a two-component system of vastly different
masses.
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APPENDIX A: EXPRESSION OF THE ENERGY
CURRENT OPERATOR Ŝ

Here, we derive the quantum mechanical energy current
operator Ŝ (i.e., Eq. (7)) from the definition of the operator Ĝ
(i.e., Eq. (6)).

From the following commutation relations:

[x̂j , p̂n] = i¯δjn, (A1)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ], (A2)

and

[f (x̂j ), p̂n] = i¯δjnf
′(x̂j ), (A3)

it is straightforward to show[
r̂j ,

p̂2
n

2mn

]
= i¯δjn

p̂n

2mn

(A4)

and

[p̂j , V̂ (rkn)] = −i¯δjk

∂V̂ (rkn)

∂rkn

+ i¯δjn

∂V̂ (rkn)

∂rkn

. (A5)

Here, r̂j and p̂j are the position and the momentum operators
of the jth particle, and mj is the mass of the jth particle. rjk is
the distance between the jth and kth particles with the vector
operator r̂jk = r̂j − r̂k . It is easy to further show[

N∑
j=1

r̂j

p̂2
j

2mj

,

N∑
n=1

p̂2
n

2mn

]
=

N∑
j=1

[
r̂j ,

N∑
n=1

p̂2
n

2mn

]
p̂2

j

2mj

= i¯

N∑
j=1

p̂j

mj

p̂2
j

2mj

(A6)

and

[
r̂j

1

2

N∑
k=1
k �=j

V̂ (rkj ),
N∑

n=1

p̂2
n

2mn

]
=
[

r̂j ,

N∑
n=1

p̂2
n

2mn

]
1

2

N∑
k=1
k �=j

V̂ (rkj ) + r̂j

N∑
n=1

[
1

2

N∑
k=1
k �=j

V̂ (rkj ),
p̂2

n

2mn

]

= i¯
1

2

p̂j

mj

N∑
k=1
k �=j

V̂ (rkj ) − i¯r̂j

1

2

N∑
k=1
k �=j

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]

+ i¯r̂j

1

2

N∑
n=1
n�=j

[
∂V̂

(
rnj

)
∂rnj

· p̂n

2mn

+ p̂n

2mn

· ∂V̂
(
rnj

)
∂rnj

]
. (A7)

Taking the summation over j on both sides of Eq. (A7), replacing n by k in the 3rd term of RHS and then switching k and j in
the same term, one obtains[

N∑
j=1

r̂j

1

2

N∑
k=1
k �=j

V̂ (rkj ),
N∑

n=1

p̂2
n

2mn

]
= 1

2
i¯

N∑
j=1

p̂j

mj

N∑
k=1
k �=j

V̂ (rkj ) − 1

2
i¯

N∑
j=1

N∑
k=1
k �=j

r̂j

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]

− 1

2
i¯

N∑
j=1

N∑
k=1
k �=j

r̂k

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]
. (A8)

Equations (A2) and (A5) also lead to[
N∑

j=1

r̂j

p2
j

2mj

,
1

2

N∑
k=1

N∑
n=1
n�=k

V̂ (rnk)

]
= −1

2
i¯

N∑
j=1

N∑
n=1
n�=j

r̂j

[
∂V̂ (rjn)

∂rjn

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rjn)

∂rjn

]

+ 1

2
i¯

N∑
j=1

N∑
k=1
k �=j

r̂j

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]
. (A9)

Replacing n by k in the 1st term produces[
N∑

j=1

r̂j

p2
j

2mj

,
1

2

N∑
k=1

N∑
n=1
n�=k

V̂ (rnk)

]
= i¯

N∑
j=1

N∑
k=1
k �=j

r̂j

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]
. (A10)
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It is trivial to show⎡
⎢⎣ N∑

j=1

r̂j

⎛
⎜⎝ p̂2

j

2mj

+ 1

2

N∑
k=1
j �=k

V̂ (rjk)

⎞
⎟⎠, Ĥ

⎤
⎥⎦ =

⎡
⎣ N∑

j=1

r̂j

p̂2
j

2mj

,

N∑
n=1

p̂2
n

2mn

⎤
⎦ +

⎡
⎢⎣ N∑

j=1

r̂j

p2
j

2mj

,
1

2

N∑
k=1

N∑
n=1
n�=k

V̂ (rnk)

⎤
⎥⎦

+

⎡
⎢⎣r̂j

1

2

N∑
k=1
k �=j

V̂ (rkj ),
N∑

n=1

p̂2
n

2mn

⎤
⎥⎦ , (A11)

which leads to⎡
⎢⎣ N∑

j=1

r̂j

⎛
⎜⎝ p̂2

j

2mj

+ 1

2

N∑
k=1
j �=k

V̂ (rjk)

⎞
⎟⎠, Ĥ

⎤
⎥⎦ = i¯

N∑
j=1

p̂j

mj

p̂2
j

2mj

+ 1

2
i¯

N∑
j=1

N∑
k=1
k �=j

p̂j

mj

V̂ (rkj )

− 1

2
i¯

N∑
j=1

N∑
k=1
k �=j

r̂kj

[
∂V̂ (rkj )

∂rkj

· p̂j

2mj

+ p̂j

2mj

· ∂V̂ (rkj )

∂rkj

]
, (A12)

by virtue of Eqs. (A6) and (A7), and (A10). Similarly, it is straightforward to show Eq. (7) is the expression of the energy current
operator Ĝ (i.e., Eq. (6)).

APPENDIX B: WIGNER FUNCTION FOR OPERATOR B̂

Considering operator B̂ = (f (x̂) h (p̂) g (x̂) + g (x̂) h (p̂) f (x̂))/2 with f, h, g real functions, one can express the Wigner
function for operator B̂ as

Bw (x, p) =
∫

d�x e
i
¯
p�x ×

〈
x − �x

2

∣∣∣∣ f (x̂) h (p̂) g (x̂) + g (x̂) h (p̂) f (x̂)

2

∣∣∣∣x + �x

2

〉
. (B1)

Inserting a complete set 1 ≡ ∫
dp |p〉 〈p| into the RHS of Eq. (B1) gives

Bw (x, p)=
∫

d�x

∫
dp̄ e

i
¯
p�xh (p̄)

〈
x − �x

2

∣∣∣∣ p̄〉 〈p̄
∣∣∣∣x + �x

2

〉 f

(
x − �x

2

)
g

(
x + �x

2

)
+ f

(
x + �x

2

)
g

(
x − �x

2

)
2

,

(B2)

which leads to

Bw (x, p) = 1

2π¯

∫
d�x

∫
dp̄ e

i
¯

(p−p̄)�xh (p̄)
f

(
x − �x

2

)
g

(
x + �x

2

)
+ f

(
x + �x

2

)
g

(
x − �x

2

)
2

. (B3)

Expanding the third term of the RHS of Eq. (B3) into a Tylor series of �x, one obtains

Bw (x, p) =
∫

dp̄ δ (p − p̄) h (p̄) f (x) g (x) + 1

2π¯

∫
d�x

∫
dp̄

∂2
(
e

i
¯

(p−p̄)�x
)

∂
(

i
¯
p̄
)2

×h (p̄)
f ′′ (x) g (x) + f (x) g′′ (x) − 2f ′ (x) g′ (x)

8
+ · · · . (B4)

It is then easy to show

Bw (x, p) = h (p) f (x) g (x) − ¯2h′′ (p)
f ′′ (x) g (x) + f (x) g′′ (x) − 2f ′ (x) g′ (x)

8
+ · · · , (B5)

after integrating by parts in the RHS of Eq. (B4). One, therefore, proves

Bw (x, p) = f (x) g (x) p, (B6)

for h (p̂) = p̂. That is, Bw (x, p) is simply the classical function itself. Although the proof is shown for 1-dim systems, it is
straightforward to extend it for multi-dimensional systems.
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