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A simple model for the treatment of imaginary frequencies in chemical
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A simple model is presented for treating local imaginary frequencies that are important in the study
of quantum effects in chemical reactions and various dynamical processes in molecular liquids. It
significantly extends the range of accuracy of conventional local harmonic approximations �LHAs�
used in the linearized semiclassical initial value representation/classical Wigner approximation for
real time correlation functions. The key idea is realizing that a local Gaussian approximation �LGA�
for the momentum distribution �from the Wigner function involving the Boltzmann operator� can be
a good approximation even when a LHA for the potential energy surface fails. The model is applied
here to two examples where imaginary frequencies play a significant role: the chemical reaction rate
for a linear model of the H+H2 reaction and an analogous asymmetric barrier—a case where the
imaginary frequency of the barrier dominates the process—and for momentum autocorrelation
functions in liquid para-hydrogen at two thermal state points �25 and 14 K under nearly zero
external pressure�. We also generalize the LGA model to the Feynman–Kleinert approximation.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3202438�

I. INTRODUCTION

A variety of “local harmonic” approximations �LHAs�—
e.g., a local quadratic expansion in various regions of a po-
tential energy surface �PES�—are often used in describing
dynamical processes in complex molecular systems. In re-
gions of negative curvature of the PES this leads to local
imaginary frequencies that can cause problems, sometimes
even leading to completely unphysical behavior. Imaginary
frequencies obviously play an important role in the dynamics
of chemical reactions—especially tunneling effects for light
atoms and low temperature—because the transition state re-
gion, the essential character of which is an imaginary fre-
quency, is so central to the process, but they can also play a
significant role in the dynamics of molecular liquids. In the
study of the vibrational energy relaxation in molecular liq-
uids, for example, imaginary frequencies present a theoreti-
cal challenge for methods such as the instantaneous normal-
mode approximation.1–3 Local imaginary frequencies are
abundant for relevant regions of the PES even for liquid
water at room temperature.4,5

In this paper, we focus on the problem of imaginary
frequencies as they arise when using the linearized approxi-
mation to the semiclassical �SC� initial value representation
�IVR�, the LSC-IVR �Refs. 6–16� or classical Wigner model,
for time correlation functions, specifically the flux correla-
tion functions relevant for chemical reaction rates,17–19 and
various correlation functions for molecular liquids. The LSC-
IVR/classical Wigner model �see Sec. II for a summary� is
the simplest �though most approximate� version of the gen-
eral SC-IVR methodology for adding quantum effects to

classical molecular dynamics �MD� simulations of complex
molecular systems, and though it cannot describe true quan-
tum coherence effects, it does describe some quantum effects
quite well, e.g., zero point energy and tunneling effects.
Implementation of the LSC-IVR, however, requires one non-
trivial step �beyond classical MD itself�, namely, evaluation
of the Wigner function involving the Boltzmann operator of
the molecular system �see Sec. II�. It is this step that has
required some types of local quadratic approximation—an
explicit quadratic expansion of the PES about various
positions,6,15 a variational harmonic reference,16,20 or a ther-
mal Gaussian approximation9 �TGA�—in order to evaluate
this Wigner function for large molecular systems. For situa-
tions where real frequencies dominate, these approximations
have been seen to give quite good results, essentially as good
as if the Wigner function was evaluated exactly. Imaginary
frequencies, however, cause these approximations for the
Wigner function to fail if the temperature is too low. For
example, with regard to tunneling corrections to rate con-
stants, the LSC-IVR describes the tunneling correction for a
standard one-dimensional �1D� model of a H atom transfer
reaction quite well for temperatures down to 200 K if the
Wigner function is evaluated exactly �which is easy to do for
a 1D problem�, but it fails for temperatures below �700 K
if the Wigner function is evaluated by the various LHAs
noted above—because the problem is dominated by local
imaginary frequencies associated with the potential barrier.
More than ten years have passed since the first application of
the LSC-IVR to reactive flux correlation functions, and thus
reaction rates,6 and it has not yet become a practical tool for
describing quantum dynamical effects in chemical reactions
�in the deep tunneling regime� of large molecular systemsa�Electronic mail: millerwh@berkeley.edu.
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due largely to the breakdown of these various harmonic
approximations6,9,15,16 caused by local imaginary frequen-
cies.

The purpose of this paper is to present a simple model
for solving this problem of imaginary frequencies in the
LSC-IVR. Section II A first briefly reviews the LSC-IVR
formulation of time correlation functions, and then Sec. II B
presents a detailed analysis of the local momentum distribu-
tion given by the LSC-IVR for a typical 1D barrier model,
demonstrating that a local Gaussian approximation �LGA� is
reasonable for capturing the most important region of the
local momentum distribution even when various LHAs
�Refs. 6, 9, 15, and 16� fail. It is then shown how a simple
modification of the LHA proposed by Shi and Geva15 leads
to a LGA that provides a good approximation even for
imaginary frequencies at quite low temperature. Section II C
further generalizes this LGA to multidimensional systems.
Two types of applications of the LSC-IVR with the LGA are
presented in Sec. III: Section III A gives the LSC-IVR
�LGA� approximation for the flux-side correlation function,
Secs. III B and III C then study a 1D barrier crossing model
for the hydrogen exchange reaction H+H2 and an analogous
asymmetric barrier, showing that the LSC-IVR with the LGA
behaves well far into the deep tunneling regime; Sec. III D
describes the application of the LSC-IVR with the LGA to
liquid para-hydrogen and compares the results with those
obtained using other trajectory-based methods which were
shown in our previous work.13 Section IV summarizes and
concludes. �In Appendix A, we also show how a similar
LGA can be obtained from a simple modification of the
Feynman–Kleinert approximation16,20–22 �FKA�.� With the
LGA, which extends LHAs for the Wigner function to be
able to handle regions of imaginary frequencies even at low
temperature, the LSC-IVR is now applicable to essentially
any molecular system for which ordinary classical MD simu-
lations are possible, providing a useful description of the
quantum effects �other than true coherence� therein.

II. THEORY AND METHODOLOGY

A. Linearized semiclassical initial value representation

Most quantities of interest in the dynamics of complex
systems can be expressed in terms of thermal time autocor-
relation functions,23 which are of the form

�Â�0�B̂�t�� =
CAB�t�

Z
=

1

Z
Tr�Â�eiĤt/�B̂e−iĤt/�� , �2.1�

where Â�=e−�ĤÂ for the standard version of the correlation

function, or Âsym
� =e−�Ĥ/2Âe−�Ĥ/2 for the symmetrized

version,18 or ÂKubo
� = �1 /���0

�d�e−��−��ĤÂe−�Ĥ for the Kubo-

transformed version.24 Here Z=Tr�e−�Ĥ� ��=1 /kBT� is the

partition function and Ĥ the �time-independent� Hamiltonian

of the system, and Â and B̂ are operators relevant to the
specific property of interest.

The SC-IVR approximates the forward �backward� time

evolution operator e−iĤt/� �eiĤt/�� by a phase space average
over the initial conditions of forward �backward� classical
trajectories.25–28 By making the approximation that the domi-

nant contribution to the phase space averages comes from
forward and backward trajectories that are infinitesimally
close to one another and then linearizing the difference be-
tween the forward and backward actions �and other quanti-
ties in the integrand�, Wang and co-workers6,7 �see also Ref.
14� obtained the LSC-IVR, or classical Wigner model for the
correlation function in Eq. �2.1�,

CAB
LSC-IVR�t� = �2���−N	 dx0	 dp0Aw

��x0,p0�Bw�xt,pt� ,

�2.2�

where Aw
� and Bw are the Wigner functions29 corresponding

to these operators,

Ow�x,p� =	 d�x�x − �x/2
Ô
x + �x/2�eipT�x/� �2.3�

for any operator Ô. Here N is the number of degrees of
freedom in the system, and �x0 ,p0� is the set of initial con-
ditions �i.e., coordinates and momenta� for a classical trajec-
tory, �xt�x0 ,p0� ,pt�x0 ,p0�� being the phase point at time t
along this trajectory.

The classical Wigner model is an old idea,29–32 but it is
informative to realize that it is contained within the SC-IVR
approach, as a specific approximation to it,6,7 so that more
accurate implementations of SC-IVR methods will lead to
more accurate treatments. It should also be noted that there
are other approximate routes which lead to the classical
Wigner model for correlation functions �other than simply
postulating it�; e.g., Pollak and Liao constructed a quantum
transition state theory �QTST� using the parabolic approxi-
mation for the dynamics in Eq. �2.2� for the flux-side corre-
lation function,33 and Shi and Geva34 derived Eq. �2.2� by
linearizing forward and backward paths in a Feynman path
integral representation of the forward and backward propa-
gators, as did Poulsen et al.16 independently somewhat later.
Moreover, Liu and Miller10 recently showed that the exact
quantum time correlation function can be expressed in the
same form as Eq. �2.2�, with an associated dynamics in the
single phase space, and it was furthermore demonstrated that
the LSC-IVR is its classical limit ��→0�, high temperature
limit ��→0�, and harmonic limit.

The LSC-IVR can treat both linear and nonlinear opera-
tors in a consistent way,12 can be applied to nonequilibrium
as well as the above equilibrium correlation functions, and
can also be used to describe electronically nonadiabatic dy-
namics, i.e., processes involving transitions between several
PESs. These merits of the LSC-IVR make it a versatile tool
to study a variety of quantum mechanical effects in chemical
dynamics of large molecular systems.

B. Local Gaussian approximation

Calculation of the Wigner function for operator B̂ in Eq.

�2.2� is usually straightforward; in fact, B̂ is often a function
only of coordinates or only of momenta, in which case its
Wigner functions is simply the classical function itself. Cal-

culating the Wigner function for operator Â�, however, in-
volves the Boltzmann operator with the total Hamiltonian of
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the complete system, so that carrying out the multidimen-
sional Fourier transform to obtain it is far from trivial. Fur-
thermore, it is necessary to do this in order to obtain the
distribution of initial conditions of momenta p0 for the real
time trajectories. To accomplish this task, Wang et al. made a
harmonic approximation for the Boltzmann operator matrix
elements about the saddle point �transition state� on the po-
tential surface in the first applications of the LSC-IVR to
reactive flux correlation functions, and thus chemical reac-
tion rates.6 Later, Shi and Geva developed a more general
LHA,15 and Poulsen et al. implemented the FKA16—a varia-
tionally optimized LHA derived by Feynman and Kleinert22

and Giachetti and Tognetti.21 All these LHAs work well so
long as the temperature is not too low in regions where local
frequencies � are imaginary �i.e., regions of negative curva-
ture of the potential surface�; they fail when the imaginary
frequency and temperature are such that ��
�
��, and so
are obviously not good for problems dominated by potential
barriers at low temperature. Recently Liu and Miller used the
TGA �Ref. 35� to construct the Wigner function for operator

Â� in the LSC-IVR,9–13 and though it avoids the imaginary
frequency problem inherent in the former LHAs,9,10 it cannot
capture the bifurcation character of off-diagonal coordinate
matrix elements of the Boltzmann operator around the top of
the barrier �see below� and thus can also not provide an
accurate treatment in situations dominated by imaginary fre-
quencies and low temperature.

When used to calculate the Wigner function for operator

Â� in Eq. �2.2�, all of the above LHAs �LHA,15 FKA,16 and
TGA �Ref. 9�� lead to a local Gaussian distribution for the
initial momentum p0, a very useful result for the LSC-IVR
since it is essentially the same form as classical mechanics.
The failure of these LHAs for locally imaginary frequencies,
however, would seem also to invalidate this Gaussian form
for the momentum distribution, but one of the important
points of this paper is that this is not the case; i.e., we will
show that a LGA for the momentum distribution can still be
a good approximation even when locally imaginary frequen-
cies cause a LHA for the Boltzmann operator to fail.

To illustrate this, we consider the following 1D Eckart
barrier potential:

V�x� = V0 sech2�ax� , �2.4�

with parameters �V0=0.425 ev, a=1.3624 a.u., and the
mass m=1061 a.u.� chosen to mimic the H+H2 reaction and
which has been extensively studied as a model potential in
the literature.8,36–40 Figure 1 shows the potential and its cur-
vature V��x�. In the regime around the top of the barrier,
V��x��0, i.e., the local frequency is imaginary. At the top of
the barrier, the imaginary frequency is �b=a�2V0 /m
�1622 cm−1, so the LHA breaks down for temperatures be-
low Tb 733 K �i.e., where ���b=��. We consider below
two temperatures, one above Tb �T=1000 K� and another
considerably below �T=200 K�.

To illustrate the typical behavior of the Wigner function
at high and low temperatures, for definiteness we take opera-

tor Â=1, so that operator Â� is the Boltzmann operator itself,
and its Wigner function P�x , p�,

P�x,p� =	 d�x�x −
�x

2
�e−�Ĥ�x +

�x

2
�eip�x/�, �2.5�

is the equilibrium phase space distribution function. Figures

2�a� and 2�b� first show the quantity �−�x /2
e−�Ĥ
�x /2� for
x=0 �the top of the barrier�, the Fourier transform of which
gives the momentum distribution for the high �1000 K� and
low �200 K� temperatures, respectively; the corresponding
normalized momentum distributions, P�0, p� /P�0,0�, are
shown in Figs. 2�c� and 2�d�. For the high temperature case,
Fig. 2�a� shows the integrand to be an approximately Gauss-
ian function of �x, so that its Fourier transform gives a mo-
mentum distribution �see Fig. 2�c�� that is an approximately
Gaussian function of p. For the lower temperature �200 K�,
however, Fig. 2�b� shows that the integrand bifurcates �remi-
niscent of quantum instanton behavior38�, and its Fourier
transform gives the momentum distribution shown in Fig.
2�d�. Though none of the above LHAs �LHA, FKA, or TGA�
can describe this low temperature behavior fully correctly,
we do note that the momentum distribution in Fig. 2�d� is
Gaussian-like for small values of 
p
. The dashed curves in
Figs. 2�c� and 2�d� show Gaussian approximations �obtained
by the LGA described below�: the LGA is in almost perfect
agreement with the correct momentum distribution for the
high temperature case �Fig. 2�c��, and for the low tempera-
ture it agrees well for small p but does miss the negative
regions of the distribution for larger values of 
p
. Note also
that the Gaussian-like peak about p=0 is much narrower for
the low temperature case �Fig. 2�d�� than for the high tem-
perature �Fig. 2�c��.

FIG. 1. �a� Eckart barrier �given by Eq. �2.4��. �b� Second derivative of the
Eckart barrier.
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These observations suggest that a Gaussian approxima-
tion for the momentum distribution can be a useful approxi-
mation for both high and low temperatures even in the
present case dominated by a potential barrier �and thus a
local imaginary frequency�. This suggestion is given even
firmer support by noting that the Wigner distribution is in
general an even function of momentum p, and furthermore
that p=0 is always a global maximum of P�x , p� for any
fixed x. �This latter property follows from the fact that since

the Boltzmann matrix elements �x−�x /2
e−�Ĥ
x+�x /2� are
always positive, one has

�x − �x/2
e−�Ĥ
x + �x/2� 	 �x − �x/2
e−�Ĥ
x + �x/2�eip�x/�

for all values of p.� Thus even in the regime of large imagi-
nary frequencies at low temperature, the dominant contribu-
tion is from small momenta, so that a LGA may still be a
useful approximation for the local momentum distribution
even when conventional LHAs fail.

We obtain the LGA for the momentum distribution by
modifying the local LHA of Shi and Geva,15 which first fac-
tors out the diagonal matrix element of the operator �which
can be evaluated accurately by path integral techniques41,42

or sometimes via the TGA �Refs. 35 and 43–45��,

P�x,p� = �x
e−�Ĥ
x�	 d�x
�x −

�x

2
�e−�Ĥ�x +

�x

2
�

�x
e−�Ĥ
x�
eip�x/�,

�2.6�

and then makes the LHA for the ratio of off-diagonal to
diagonal matrix elements in the integrand,

�x −
�x

2
�e−�Ĥ�x +

�x

2
�

�x
e−�Ĥ
x�

 exp�−
m�

4�
coth����/2��x2� , �2.7�

where � is the local frequency,

� � ��x� = �V��x�/m �2.8�

�Eq. �2.7� is obviously exact for harmonic systems, in which
case the frequency is constant.� With the LHA of Eq. �2.7�,
the Fourier integral in Eq. �2.6� is easily evaluated to give the
LHA for the Wigner distribution function

FIG. 2. Off-diagonal elements �−�x /2
exp�−�Ĥ�
�x /2� at the top of the Eckart barrier x=0 for the Eckart barrier at �a� T=1000 K and �b� T=200 K. The

Fourier transform of �−�x /2
exp�−�Ĥ�
�x /2� produces the local momentum distribution P�x=0, p�. �c� Normalized local momentum distribution P�x
=0, p� /P�x=0, p=0� at T=1000 K. �Solid line: Exact results. Dotted-dashed line: LGA results.� �d� Same as �c� but at a lower temperature T=200 K.
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P�x,p�  �x
e−�Ĥ
x�� �

2m�Q�u��
1/2

exp�− �
p2

2m

1

Q�u�� ,

�2.9�

where we have defined the quantum correction factor Q�u� as

Q�u� =
u/2

tanh�u/2�
�2.10�

in terms of the usual dimensionless parameter u,

u = ��� . �2.11�

In the high temperature limit �→0, the classical limit �
→0, and the free particle limit �→0, the parameter u→0,
so that the quantum correction factor Q�u�→1, and Eq. �2.9�
gives the classical momentum distribution in these limits.

In regions where the local frequency � in Eq. �2.8� is
imaginary �i.e., V��x0��0�, the parameter u becomes imagi-
nary �i.e., u= iui where ui=��
�
�, so that the quantum cor-
rection factor of Eq. �2.10� becomes

Q�u� � Q�iui� =
ui/2

tan�ui/2�
. �2.12�

Figure 3 shows this quantum correction factor Q�u� as the
solid line for both real and imaginary frequencies �on the
positive and negative u axes, respectively�, and one sees the
breakdown of the LHA in the imaginary frequency regime
when ui�� �since Q�u��0�. This is due to the failure of the
LHA �Eq. �2.7�� to describe the bifurcation structure shown
in Fig. 2�b�. One simple ad hoc procedure to deal with this
regime ui�� has been simply to set Q�u�=0 �which also
means that the momentum p0=0 since the momentum distri-
bution in Eq. �2.9� becomes an infinitely sharp Gaussian, i.e.,
a delta function�.

As has been discussed above �regarding the low tem-
perature example shown in Figs. 2�b� and 2�d��, however, a
LGA for the momentum distribution is reasonable even for
large imaginary frequencies at low temperatures �i.e., even
when ui	��, and the Gaussian does become narrower in this
limit �see Fig. 2�d�� but not infinitely narrow. This suggests

that the quantum correction factor shown in Fig. 3 should
decrease smoothly toward zero as ui becomes greater than �,
as shown by the dashed curve in Fig. 3. There are obviously
many ad hoc choices one can make to modify the quantum
correction factor in the imaginary frequency regime to be-
have in this manner, though one reasonable requirement is
that it should agree with the harmonic result �Eq. �2.12�� for
small u, i.e.,

Q�u�  1 + u2/12 + O�u4� �2.13�

for u real and imaginary. The form that we have found to be
both simple, obey Eq. �2.13�, and give a good description is
the following:

Q�u� = �
u/2

tanh�u/2�
for real u

1

Q�ui�
=

tanh�ui/2�
ui/2

for imaginary u �u = iui� ,�
�2.14�

which is plotted as the dashed line in Fig. 3.
The LGA for the momentum distributions in Figs. 2�c�

and 2�d� were obtained this way, i.e., via Eq. �2.9� with Q�u�
given by Eq. �2.14�. Not surprisingly, the LGA is extremely
accurate for the high temperature case shown in Fig. 2�c�,
and for the low temperature �Fig. 2�d�� it gives an excellent
description of the main peak about p=0, only missing the
oscillatory wings for larger values of 
p
. Results below will
show that the LGA is indeed best for higher temperature, but
that it is usefully accurate even at quite low temperature for
problems dominated by imaginary frequencies. Finally, we
also note that this modification of the LHA can be imple-
mented with other LHAs such as the FKA �which is dis-
cussed in Appendix A�.

C. Generalization to multidimensional systems

It is straightforward to generalized the above LGA to
multidimensional systems. Here we show the general formu-
lation of the LGA for multidimensional systems based on the
LHA of Shi and Geva.15

As in the standard normal-mode analysis, mass-weighted
Hessian matrix elements are given by

Hkl =
1

�mkml

�2V

�xk � xl
, �2.15�

where mk represent the mass of the kth degree of freedom.
The eigenvalues of the mass-weighted Hessian matrix pro-
duce normal-mode frequencies ��k�, i.e.,

TTHT = � �2.16�

with � a diagonal matrix with the elements ���k�2� and T an
orthogonal matrix. If M is the diagonal “mass matrix” with
elements �mk�, then the mass-weighted normal-mode coordi-
nates and momenta �X0 ,P0� are given in terms of the Carte-
sian variables �x0 ,p0� by

X0 = TTM1/2x0 �2.17�

and

FIG. 3. Quantum correction factor Q�u=����. As in the conventional way,
imaginary frequencies i
�
 are shown as −
�
 on the negative axis �i.e., iui

shown as −ui�. Solid line: LHA. Dashed line: LGA. Note that the imaginary
frequency for ui=��
�
	� is where the LHA breaks down.
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P0 = TTM−1/2p0 �2.18�

and the LHA of Eq. �2.7� becomes

�x0 −
�x

2
�e−�Ĥ�x0 +

�x

2
�

�x0
e−�Ĥ
x0�

 exp�− �
k=1

N
�k

4�
coth�uk

2
���Xk�2� , �2.19�

where

�X = TTM1/2�x . �2.20�

We note that ��k� , �uk� ,T , . . ., are functions of x0.
The Fourier transform of Eq. �2.19� then gives the

Wigner function of Â� as

Aw
��x0,p0� = �2���N�x0
e−�Ĥ
x0��

k=1

N �� �

2�Q�uk��
1/2


exp�− �
�P0,k�2

2Q�uk��� fA�x0,p0� , �2.21�

where uk=���k, P0,k is the kth component of the mass-
weighted normal-mode momentum P0 �in Eq. �2.18��, and

fA�x0,p0� =	 d�x
�x0 −

�x

2
�Â��x0 +

�x

2
�

�x0
e−�Ĥ
x0�
ei�xT·p0/�/	 d�x

�x0 −
�x

2
�e−�Ĥ�x0 +

�x

2
�

�x0
e−�Ĥ
x0�
ei�xT·p0/� �2.22�

is a function depending on the operator Â�. For example,

when Â�=e−�Ĥx̂, one has

fA�x0,p0� = x0 +
i��

2
M−1/2TQ�u�−1P0, �2.23�

where Q�u� is the diagonal quantum correction factor matrix
with the elements �Qk �Q�uk��.

In order to obtain fA�x0 ,p0� �and Aw
��x0 ,p0�� for general

operators Â �or Â�� in both real and imaginary local �normal-
mode� frequency regimes, it is necessary to adopt the LGA
ansatz: as the local frequency goes from real to imaginary,
i.e., �→ i
�
 or u→ iui, one makes the replacements

cosh�u� →
1

cosh�ui�
�2.24�

and

u

sinh�u�
→

sinh�ui�
ui

. �2.25�

�The form of quantum correction factors �Q�u�� in Eq. �2.14�
is obviously a consequence of the LGA ansatz.� Section III A
gives the explicit form for the Wigner function of the sym-

metrized flux operator Â�= F̂sys
� =e−�Ĥ/2F̂e−�Ĥ/2 and Sec. III C

for that of the Kubo-transformed momentum operator

Â� = p̂Kubo
� �

1

�
	

0

�

d�e−��−��Ĥp̂e−�Ĥ =
i

��
M�x,e−�Ĥ� .

The explicit form of LSC-IVR correlation function �Eq.
�2.2�� with the LGA is thus given by

CAB
LSC-IVR�t� =	 dx0�x0
e−�Ĥ
x0�	 dP0�

k=1

N �� �

2�Q�uk��
1/2


exp�− �
�P0,k�2

2Q�uk��� fA�x0,p0�B�xt,pt� . �2.26�

Since the correlation function is typically normalized by the
partition function, CAB

LSC-IVR�t� /Z, one may summarize the
specific procedure for carrying out the LSC-IVR calculation
with the LGA as follows:

�1� Use path integral Monte Carlo �PIMC� �Ref. 41� or
path integral molecular dynamics �PIMD� �Ref. 42� to
simulate the system at equilibrium.

�2� At specific intervals in the PIMC �or time steps in the
PIMD�, randomly select one path integral bead as the
initial configure x0 for the real time dynamics. Diago-
nalize the mass-weighted Hessian matrix of the poten-
tial surface to obtain the local normal-mode frequen-
cies.

�3� The LGA gives the Gaussian distribution for mass-
weighted normal-mode momenta
�k=1

N �� /2�Q�uk��1/2exp�−��P0,k�2 / �2Q�uk��� which is
used to sample initial Cartesian momenta p0

=M1/2TP0 for real time trajectories.
�4� Run real time classical trajectories from phase space

points �x0 ,p0� and estimate the property
fA�x0 ,p0�B�xt�x0 ,p0� ,pt�x0 ,p0�� for the corresponding
time correlation function.

�5� Repeat steps �2�–�4� and sum the property
fA�x0 ,p0�B�xt�x0 ,p0� ,pt�x0 ,p0�� for all real time clas-
sical trajectories until a converged result is obtained.

We also note here that sometimes other techniques such
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as the TGA can also be used to sample �x0
e−�Ĥ
x0� /Z effi-
ciently in step �1� and generate the initial configuration in
step �2�. It is worth emphasizing that no approximation for

the PES is made in step �1� �the evaluation of �x0
e−�Ĥ
x0��
and step �4� �the real time dynamics of trajectories�. In Sec.

III, we use the LGA for the Wigner transform of Â� in the
LSC-IVR to study two types of benchmark systems of which
imaginary frequencies play a significant role.

III. APPLICATIONS

A. Thermal reaction rate from the flux-side correlation
function

The thermal reaction rate coefficient can be obtained
from the long time limit of the flux-side correlation
function18

k�T� =
1

Qr�T�
lim
t→�

Cfs�t� , �3.1�

where Qr�T� is the reactant partition function �per unit vol-
ume in the case for a bimolecular reaction18�. Here we use
the symmetrized version of the flux-side correlation
function18

Cfs
sys�t� = Tr�e−�Ĥ/2F̂e−�Ĥ/2eiĤt/�ĥe−iĤt/�� , �3.2�

where the step function operator ĥ=h�s�x̂�� projects onto the
product side of a dividing surface at s�x̂�=0, with the corre-
sponding flux operator defined as

F̂ = i
� �Ĥ, ĥ� = 1

2 ���s�x̂��p̂TM−1ns + ns
TM−1p̂��s�x̂��� ,

�3.3�

where the vector ns=�s /�x, which is perpendicular to the
dividing surface. In terms of the normal-mode momentum

operator P̂ �i.e., Eq. �2.18��, Eq. �3.3� becomes

F̂ = 1
2 ���s�x̂��ns

TM−1/2TP̂ + P̂TTTM−1/2ns��s�x̂��� . �3.4�

To evaluate the LSC-IVR approximation �i.e., Eq. �2.2��
for the flux-side correlation function in Eq. �3.2�, we utilize
the LGA �of Secs. II B and II C� to obtain the Wigner func-

tion of the operator F̂�=e−�Ĥ/2F̂e−�Ĥ/2. First, the LGA gives
the following ratio of matrix elements as

�x0 −
�x

2
�e−�Ĥ/2F̂e−�Ĥ/2�x0 +

�x

2
�

�x0
e−�Ĥ/2
x���s�x���x
e−�Ĥ/2
x0�

 − ins
TM−1/2TGF�X


exp�− �
k=1

N
�k

4�
coth�uk

2
���Xk�2� , �3.5�

where GF is a diagonal matrix with elements �gF
�j�

=� j /2 sinh�uj /2��, so that the Wigner function of F̂�, i.e.,

Fw
��x0,p0� � 	

−�

�

d�x�x0 −
�x

2
�e−�Ĥ/2F̂e−�Ĥ/2�x0

+
�x

2
�eip0

T·�x/�, �3.6�

becomes

Fw
��x0,p0�  �2���N det�TTM−1/2�


	 dx�x0
e−�Ĥ/2
x���s�x���x
e−�Ĥ/2
x0�


�
k=1

N �� �

2�Q�uk��
1/2

exp�− �
�P0,k�2

2Q�uk���

ns

TM−1/2T�F�u�P0. �3.7�

Here �F�u� is the diagonal matrix with elements �F�uk��,
where

F�u� = �
1

cosh�u/2�
for real u

1

F�ui�
= cosh�ui/2� for imaginary u = iui,�

�3.8�

which follows the ansatz of the LGA �i.e., Eqs. �2.24� and
�2.25�� in the imaginary frequency regime. Since both x and
x0 are involved in Eq. �3.5�, it is better to diagonalize the
Hessian matrix V���x+x0� /2� rather than V��x0� to obtain
the orthogonal matrix T and �� j

2�. The final expression for
the LSC-IVR formulation of Cfs

sys�t� with the LGA is

Cfs
sys�t�  	 dx0	 dP0	 dx�x0
e−�Ĥ/2
x���s�x��


�x
e−�Ĥ/2
x0��
k=1

N �� �

2�Q�uk��
1/2


exp�− �
�P0,k�2

2Q�uk���ns
TM−1/2T�F�u�


P0h�s�xt�x0,p0��� , �3.9�

with p0=M1/2TP0. If we define the constrained partition
function

Q† = Tr�e−�Ĥ/2��s�x̂��e−�Ĥ/2� =	 dx�x
e−�Ĥ
x���s�x�� ,

�3.10�

then the numerical evaluation of Cfs
sys�t� /Q† follows the same

procedure described in Sec. II C except that the middle bead
of the path integral is fixed �or constrained� at the dividing
surface s�x�=0. Another independent path integral evalua-
tion for the ratio of the partition functions Q† /Qr is then
necessary in order to obtain the thermal rate constant as
shown in Eq. �3.1�.
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B. Thermal reaction rate for the 1D Eckart barrier for
H+H2

For the Eckart barrier �i.e., Eq. �2.4�� corresponding to
the 1D model for the H+H2 reaction with the dividing sur-
face �or more accurately, the dividing point in this 1D case�
located at s=xs, Eq. �3.9� becomes

Cfs
sys�t�  	 dx0	 dp0�x0
e−�Ĥ/2
xs��xs
e−�Ĥ/2
x0�


� �

2�m

1

Q�u��
1/2

exp�− �
p0

2

2m

1

Q�u��



p0

m
F�u�h�xt�x0,p0�� . �3.11�

For this symmetrical reaction, we choose xs=0, i.e., the top
of the barrier, in the conventional way.

First we check the width parameter of the local momen-
tum distribution at the top of the barrier x=0 in the LSC-IVR
approximation for the correlation function Cfs�t�. The LGA
gives

� =
2m

�
Q�u� �3.12�

while the exact width parameter is given by Eq. �B7� �see
more discussion in Appendix B�. Figure 4 shows the com-
parison of the LGA, LHA, and exact results for the width
parameter from high temperature �T=3000 K� to low tem-
perature �T=150 K�, clearly demonstrating that the LGA
gives a good description of the width parameter of the mo-
mentum distribution in the imaginary frequency regime.
Even in the imaginary frequency regime, ui��, where the
LHA �i.e., the conventional parabolic approximation� has
been believed to be reasonable, the LGA still demonstrates a
significant improvement over the LHA.

The reactant partition function �per unit volume� for this
1D case is

Qr�T� = � m

2���2�1/2
�3.13�

and the chemical reaction rate constant within the LSC-IVR
�LGA� is then obtained from Eq. �3.1� with Eqs. �3.11� and
�3.13�. Figure 5�a� shows an Arrhenius plot of the rate con-
stant over a wide temperature range, which is seen to be in
good agreement with the exact quantum results even at low
temperatures.

The tunneling correction factor, defined in the usual way
as the ratio of the calculated rate to the purely classical value,
i.e.,

��T� =
k�T�

kcl�T�
= 2���e�V0 lim

t→�
Cfs�t� , �3.14�

is shown in Fig. 5�b� for the exact quantum mechanics �QM�
rate, and the LSC-IVR rates with the exact Wigner function
for the Boltzmannized flux operator �results obtained
previously8�, the present LGA for the Wigner function, and
the Wigner function given by the LHA. Figure 5�c� further
shows the relative error of the LSC-IVR results with the
LGA for the Wigner function and with the exact Wigner
function. One sees that the present LGA for the Wigner func-
tion gives results as good as with the exact Wigner function,
which is extremely important since it is not feasible to cal-
culate the Wigner function exactly for large dimensional sys-
tems. The LGA is also seen to give much better results for
the tunneling correction than the LHA as soon as the tem-
perature is below the critical temperature Tb 733 K �where
the LHA results deviate from exact results by several orders
of magnitude�. The LGA is thus a significant improvement,
giving useful results even when the tunneling correction fac-
tor is as large as 106. �For example, at T=150 K, the exact
tunneling factor is �106, and the LSC-IVR �LGA� is correct
to within a factor of 2.�

C. Thermal reaction rate for the asymmetric Eckart
barrier

The second model system considered is the asymmetric
Eckart barrier,

V�x� = �V0 sech2��x� − V0/�1 + exp�− 2�x�� , �3.15�

where the parameters V0 and � and the mass m are the same
as for the symmetric case in Eq. �2.4� for the H+H2 reaction,
with the asymmetry parameter �= �3+2�2� /4 chosen to give
a ratio of 1:2 between the barrier heights with respect to the
left and right asymptotic regions. �The barrier height for the
reactant is V0, the same as that in the symmetric case in Eq.
�2.4�.�

Figure 6 shows the potential and its curvature V��x�, as a
comparison to Fig. 1. At the top of the barrier �x�=
−ln 2 /4�=−0.1272 a.u.�, the imaginary frequency is �b

1901 cm−1 and the corresponding temperature for ���b

=� is around Tb 870 K, about 140 K higher than that for
the analogous symmetric barrier. The largest local imaginary
frequency of the barrier lies near x=0, which is about �m

1966 cm−1 and for which T900 K where ���m=�.

FIG. 4. Gaussian width parameters of the local momentum distribution gen-

erated from the Fourier transform of �−�x /2
exp�−�Ĥ /2�F̂ exp�
−�Ĥ /2�
�x /2�. Imaginary frequencies are plotted on the negative axis.
Solid line: Exact results. Solid circles: LGA results. Dashed line with hollow
squares: LHA results. Note that ��
�
	� for the imaginary frequency is
where the LHA breaks down.
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The asymmetric Eckart barrier is therefore a more demand-
ing case to test the LSC-IVR �LGA� methodology.

For general systems, classical dynamics does not con-
serve the Wigner distribution of the Boltzmann operator

e−�Ĥ. This inevitably affects the very long time behavior of
the LSC-IVR,10,12 though the LSC-IVR formulation of quan-
tum correlation functions is a fairly consistent methodology
for both linear and nonlinear operators for relatively short
times �which is often true for time scales of most correlation
functions in condensed phase systems�.10,12,46 Since the
chemical reaction rate is the long time limit of the flux-side
correlation function �in Eq. �3.1��, one expects that the LSC-
IVR result for the reaction rate should depend on the choice

of the dividing surface in the operator F̂�, which was also
briefly noted in a case by Shao et al.47 Figure 7 shows how
the tunneling correction factor ��T� �in Eq. �3.14�� changes
with the position of the dividing surface at three different
temperatures �1000, 500, and 300 K�. When the dividing
surface lies all the way in the left �or right� asymptotic region
�i.e., in the free particle region�, the LSC-IVR gives the same
rate as the classical result in this 1D case �i.e., ��T�→1 or
log���→0�. This is because in free particle limit, the Wigner
distribution Fw

��x , p� approaches �p /m�exp�−�V�xs�
−��p2 /2m��, the same as the classical result. When the di-
viding surface lies in the asymptotic region, the time scale to
obtain Eq. �3.1� is very large �i.e., actually largest among all
possible choices of the dividing surface�. As a short time
approximation to the quantum correlation function, the LSC-
IVR does a poor job with the dividing surface in the
asymptotic region. As the dividing surface is moving from
the left �or right� asymptotic region toward around the top of

FIG. 5. �a� An Arrhenius plot of the thermal rate constant for the 1D Eckart
barrier. Solid line: Exact quantum results. Dotted line with solid circles:
LSC-IVR results using the LGA. Dashed line: Classical results. Hollow
squares: LSC-IVR results using the LHA. �b� Tunneling correction factors
for the 1D Eckart barrier. Solid line: Exact quantum results. Solid circles:
LSC-IVR results with the LGA. Hollow squares: LSC-IVR results with the
LHA. Solid triangles: LSC-IVR results with the exact Wigner function
�from Ref. 8�. �c� Relative errors of tunneling correction factors or thermal
rate constants. Solid line with solid circles: LSC-IVR results with the LGA.
Dotted line with hollow triangles: LSC-IVR results with the exact Wigner
function �from Ref. 8�. �Since most LSC-IVR results with the LHA deviate
from the exact results by a few orders as shown in �a� and �b�, their relative
errors are not demonstrated here.�

FIG. 6. �a� Asymmetric Eckart barrier �given by Eq. �3.15��. �b� Second
derivative of the asymmetric Eckart barrier.
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the barrier, the time scale to obtain Eq. �3.1� is shorter; the
LSC-IVR estimate of the chemical reaction rate first in-
creases until it reaches a maximum and then decreases such
that there is always a minimum near the top of the barrier
�x�=−0.1272 a.u.�. This minimum is at x�−0.31 a.u. for
1000 and for 500 K and at x�−0.45 a.u. for 300 K. The
position of the minimum is always shifted to the left of the
top of the barrier, the side for which the asymptotic region of
the potential is higher. This suggests using this local mini-
mum of the rate constant with respect to location of the di-
viding surface to estimate the chemical reaction rate for a

given temperature. �For the symmetric barrier in Sec. III B,
the conventional location at the top of the barrier gives the
local minimum value for the rate and thus naturally satisfies
this criterion.�

Further support for this choice for the dividing surface
comes from consideration of transition state theory �TST�.
For example, using a similar QTST approximation proposed
by Voth et al.,36 one obtains a similar QTST rate expression,

kQTST�T� =
1

2
�
ẋ
�cl

Q†

Qr
, �3.16�

where 1
2 �
ẋ
�cl is a purely classical estimate of the reactive

flux at the transition state, which for the current 1D case is

1

2
�
ẋ
�cl = � 1

2�m�
�1/2

. �3.17�

We note that the transition state partition function Q† as de-
fined in Eq. �3.10� is obtained with one bead constrained on
the dividing surface s�x�=0 rather than the centroid of the
beads in Ref. 36. �One can show that Eq. �3.16� can be de-
rived from Eq. �3.11� by taking the classical limit for the flux
at the transition state �i.e., u→0 or Q�u�→1 and all p�0
are assumed to be reactive�; i.e., this QTST rate is the tran-
sition state limit of the LSC-IVR rate.� Since the “best” di-
viding surface for TST is the one which minimizes the rate
�and thus requires the shortest time scale of the correlation
function Cfs�t��, it is reasonable to expect that it is also the
optimum location of the dividing surface for the LSC-IVR
approximation. Figure 8 shows how the QTST and the LSC-
IVR rates vary with the position of the dividing surface, and
one does indeed see that their local minima occur at essen-
tially the same location. One also sees that the LSC-IVR
varies much less with the choice of the dividing surface than
the QTST due to the dynamical correction it has for recross-
ing effects. In order to make the rate calculation especially
practical for multidimensional systems, one can thus adopt
the strategy of first determining the optimum dividing sur-
face for the QTST model and then using it in a subsequent
LSC-IVR �LGA� calculation �to obtain the dynamical correc-
tion�.

Figure 9 shows a comparison of the tunneling correction
factor given by the present LSC-IVR �LGA� to the exact
quantum results for this asymmetric Eckart barrier. As for the
symmetric case of Sec. III B, the LSC-IVR �LGA� is seen to
give good results even for tunneling factors �106 �e.g., to
better than a factor of 2 when the correct value is �107–108

at 150 K�.

D. Liquid para-hydrogen

Liquid para-hydrogen is usually described by the
Silvera–Goldman model48 in the literature. It is far from the
harmonic system. Liquid para-hydrogen has served as a
benchmark system to test many approximate quantum dy-
namic methods, e.g., the maximum entropy analytic continu-
ation �MEAC� with the flat prior,49 quantum mode-coupling
theory,50,51 forward-backward semiclassical dynamics,52

complex time path integral with the pair-product
approximation,53 ring polymer molecular dynamics �RPMD�

FIG. 7. Tunneling correction factors for the 1D asymmetric Eckart barrier
with respect to different dividing surfaces. �a� Temperature T=1000 K. �b�
Temperature T=500 K. �c� Temperature T=300 K.
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�Refs. 54–56� and its MEAC correction,57 centroid molecu-
lar dynamics �CMD�,55,56,58,59 and Feynman–Kleinert linear
path integral �FK-LPI�.60 Recently we have calculated the
Kubo-transformed momentum autocorrelation function using
the LSC-IVR with the TGA for liquid para-hydrogen at two
state points T=25 K and �=31.7 cm3 mol−1 and T=14 K
and �=25.6 cm3 mol−1 under nearly zero extent pressure.
We have also further used the LSC-IVR with the TGA as a
prior to obtain its MEAC correction and compare with vari-

ous priors. Details of these simulations are described in our
previous papers.11,13 Here we revisit the simulation of the
Kubo-transformed momentum autocorrelation function of
liquid para-hydrogen using the LSC-IVR �LGA�, including
its use as a prior for the MEAC and its comparison with
other priors listed in our previous paper.13

Using Eq. �B2� in Appendix B of Ref. 9, i.e.,

Â� = p̂Kubo
� �

1

�
	

0

�

d�e−��−��Ĥp̂e−�Ĥ =
i

��
M�x,e−�Ĥ� ,

and Eqs. �2.23�–�2.26� in Sec. II C, we have the expression
of the average Kubo-transformed momentum correlation
function,

�p�0�p�t��LSC-IVR
Kubo

2mkBNp


1

kBNpZ
	 dx0�x0
e−�Ĥ
x0�


	 dP0 �
k=1

N=3Np � �

2�Q�uk��
1/2

exp�− �
�P0,k�2

2Q�uk��



1

2kB
pt

T�x0,p0�M−1/2TQ�u�−1P0, �3.18�

FIG. 8. Comparison between LSC-IVR �LGA� and its QTST counterpart for
tunneling correction factors for the 1D asymmetric Eckart barrier with re-
spect to different dividing surfaces. �a� Temperature T=1000 K. �b� Tem-
perature T=500 K. �c� Temperature T=300 K.

FIG. 9. �a� Tunneling correction factors for the 1D asymmetric Eckart bar-
rier at different temperatures. Solid line: Exact quantum results. Solid
circles: LSC-IVR results with the LGA. �b� Relative errors of tunneling
correction factors or thermal rate constants.
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where Np is the number of molecules and kB the Boltzmann
constant. Using the transformation �Eq. �2.18�� between Car-
tesian momentum p0 and �mass-weighted� normal-mode mo-
mentum P0, one can verify that the LSC-IVR �LGA� �Eq.
�3.18�� gives the exact quantum mechanical result for t→0,

lim
t→0

�p�0�p�t��Kubo

2mkBNp
=

3

2
T , �3.19�

as does the LSC-IVR with the TGA.11 The LHA, however, is
expected to underestimate this quantity because it ignores
imaginary frequencies for which ui=��
�
	�.

Following our previous work on the imaginary time cor-
relation function,13 we implement the bisection method41 of
the PIMC to obtain the quantum equilibrium structures of
liquid hydrogen. The simulation is carried out with a total of
108 molecules in a box with the periodic boundary condi-
tion. Nb=32 beads are used for the state point at T=25 K
and Nb=64 beads for that at T=14 K. With the procedure
described in Sec. II C, we produce an initial configuration
every 2Nb+1 PIMC steps and apply the LGA to generate the
initial momenta to run a classical trajectory. The time step of
the classical trajectory is �2.5 fs and the velocity Verlet
algorithm is used in the classical propagation. About 86 400
such classical trajectories are used to obtain a fully con-
verged result for the Kubo-transformed momentum correla-
tion function.

Figure 10 shows the density of local normal-mode fre-
quencies of typical quantum configurations generated by the
PIMC at both state points, and one sees that a large portion
of imaginary frequencies exist in the liquid molecular sys-
tem. At T=25 K, 47.8% of local frequencies are imaginary
and 4.3% are in the imaginary frequency regime ui	�. For
the lower temperature of T=14 K, 39.3% of local frequen-
cies are imaginary and 16.7% are in the regime ui	�. One
might expect that the LHA would do reasonably well at T
=25 K since the LHA ignores only 4.3% of the local fre-
quencies, while it would do less well at T=14 K.

Figure 11 shows the results obtained for the Kubo-
transformed momentum correlation function using the LSC-
IVR with the LGA and with the LHA. As expected, the LHA
underestimates the Kubo-transformed momentum correlation
function �and thus underestimates the diffusion constant�.
For example, the zero time limit of Eq. �3.18� �i.e.,
�p�0� ·p�0��Kubo /2mkBNp� given by the LHA is around �36
and �17.5 K at T=25 K and T=14 K, respectively, while
both the exact and the LGA results are 37.5 and 21 K; i.e.,
the LHA becomes worse as the temperature decreases. Fig-
ure 11 also shows the LHA results obtained by ignoring all
imaginary frequencies �LHA2�, which are �40%–50%

FIG. 10. Normalized density of local frequencies from the path integral
calculations for the liquid para-H2 at the state points �a� T=25 K and �
=31.7 cm3 mol−1 and �b� T=14 K and �=25.6 cm3 mol−1. Dotted lines
indicate the imaginary frequency ��
�
=�. FIG. 11. Kubo-transformed momentum autocorrelation functions �divided

by 2mkB� based on the LSC-IVR formulation for the liquid para-H2 at the
state points �a� T=25 K and �=31.7 cm3 mol−1 and �b� T=14 K and �
=25.6 cm3 mol−1. Comparisons between the LHA and the LGA. LHA2 rep-
resents the LHA with only real frequencies.
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smaller. At T=25 K �Fig. 11�a��, the LHA2 shows a quali-
tative difference from the LGA, the correlation function
given by the LHA2 having a local minimum while that given
by the LGA decreases monotonically; the LHA is much
closer to the LGA, but some discrepancy still exists due to its
omission of 4.3% of the local frequencies. Figure 11�b� also
shows the more significant discrepancy between the LHA
and the LGA at T=14 K.

Unlike the 1D examples in Secs. III B and III C, we do
not have exact quantum dynamics results available for com-
parison for large molecular systems. As discussed before,13

however, the MEAC procedure provides a consistent way to
compare various approximate quantum dynamics methods.
�See Ref. 13 for more discussions of the MEAC with various
priors.� Here we apply the MEAC to the LSC-IVR �LGA�
and make comparisons to our previous results13 using the
same set of imaginary time data as before for comparisons
among different priors in the previous paper.13

First, we focus on the behavior of two approximate ver-
sions of the LSC-IVR—with the TGA �Refs. 9–13� and with
the LGA. �Both of these versions of the LSC-IVR give exact
results for harmonic systems.� For liquid para-hydrogen, Fig.
12 shows comparisons between the TGA �and its MEAC-

corrected version� and the LGA �and its MEAC-corrected
version�. For higher temperature �Fig. 12�a��, the TGA and
the LGA are in very good agreement with each other, and
one sees that the MEAC procedure provides essentially no
correction in either case, indicating that both the TGA and
the LGA give nearly the exact result with the LSC-IVR. The
lower temperature case �Fig. 12�b�� is more interesting. The
LGA result agrees very well with the TGA one until 0.2 ps
and then shows a deeper minimum around 0.25 ps. The
MEAC-corrected correlation functions are nearly the same
and are closer to the original LGA result, giving even more
confidence that the LGA is the better approximation. As
comparisons of the LSC-IVR �TGA� to other methods
�CMD, RPMD, and classical� have already been shown and
discussed in Figs. 11 and 12 of our previous paper,13 we
direct the readers to those two figures as a comparison with
Fig. 12 of the present paper.

Another quantitative comparison is given by the infor-
mation entropy which measures the overall adjustment from

TABLE I. Information entropies in the MEAC procedure for different priors
for liquid para-hydrogen at T=25 K and �=31.7 cm3 mol−1 and T=14 K
and �=25.6 cm3 mol−1 under nearly zero extent pressure.

State point Prior

Information
entropy S
�Å2 /ps2�

T=25 K and
�=31.7 cm3 mol−1 LSC-IVR �LGA� �0.077

LSC-IVR �TGA� �1.3a

RPMD �2.1a

CMD �2.1a

Classical �3.2a

Flat �1061.0a

T=14 K and
�=25.6 cm3 mol−1 LSC-IVR �LGA� �0.70

LSC-IVR �TGA� �2.1a

RPMD �1.7a

CMD �3.4a

Classical �3.9a

Flat �83.0a

aReference 13.

TABLE II. Diffusion contants for liquid para-hydrogen at T=25 K and �
=31.7 cm3 mol−1 under nearly zero extent pressure.

Np

Diffusion constant �Å2 /ps� at 25 K

Prior MEAC correction

Experiment 1.6a

LSC-IVR �LGA� 108 1.81 1.81
LSC-IVR �TGA� 108 1.81b 1.80c

RPMD 256 1.44d 1.77c

CMD 216 1.39e 1.70c

Classical 108 1.52c 1.87c

→� 0.56f
¯

Flat prior 108 ¯ 1.46c

aReference 65.
bReference 11.
cReference 13.

dReference 57.
eReference 59.
fReference 54.

FIG. 12. Kubo-transformed momentum autocorrelation functions �divided
by 2mkB� based on the LSC-IVR formulation for the liquid para-H2 at the
state points �a� T=25 K and �=31.7 cm3 mol−1 and �b� T=14 K and �
=25.6 cm3 mol−1. Comparisons between the TGA �and its MEAC-corrected
version� to the LGA �and its MEAC-corrected version�.
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the prior to the MEAC correction—the closer to zero the
information entropy, the more accurate is the method.13,57 As
shown in Table I, the LSC-IVR �LGA� is better than the
LSC-IVR �TGA� for both T=25 K and T=14 K, also per-
forming better than the CMD, RPMD, and classical approxi-
mations in the information entropy test.

Finally, we calculate the diffusion constant from the cor-
relation function, i.e.,

D =
1

3m2Np
	

0

�

dtCpp�t� , �3.20�

which are listed in Tables II and III for the various ap-
proaches. At higher temperature, the LSC-IVR �LGA� and its
MEAC correction give nearly the same results
��1.81 Å2 /ps� as the TGA and its MEAC correction. At the
lower temperature �T=14 K�, the LSC-IVR �LGA� gives
0.58 Å2 /ps while the LSC-IVR �TGA� produces
�0.63 Å2 /ps�, the LSC-IVR �LGA� result being somewhat
closer to the experimental result �0.4 Å2 /ps�. Their MEAC-
corrected values, however, are the same �0.47 Å2 /ps�.

IV. CONCLUSIONS

In this paper we have presented an analysis of the local
momentum distribution given by the Wigner function of the
Boltzmann operator for a typical barrier system �1D Eckart
barrier for the H+H2 chemical reaction�: although various
harmonic approximations break down in the strong imagi-
nary frequency regime �ui=��
�
	��, a local Gaussian dis-
tribution can nevertheless effectively capture the main fea-
ture of the local momentum distribution which is important
in the LSC-IVR. We then extended the LGA to treat all
imaginary frequencies by introducing a modification to the
LHA of Shi and Geva15 �and also the FKA implemented by
Poulsen et al.;16 see Appendix A�.

The LGA shows significant improvement over the LHA
in the entire imaginary frequency regime �see Figs. 4, 5, and
11�. Applications of the LSC-IVR �LGA� to calculate the
chemical reaction rate for the H+H2 chemical reaction and
that for an analogous asymmetric Eckart barrier demonstrate
that it gives good agreement with the exact quantum results

even in the deep tunneling regime; the LGA for Wigner func-
tion does as well as the exact Wigner function for this 1D
example. Further, we have demonstrated the ability of the
LSC-IVR �LGA� to calculate the Kubo-transformed momen-
tum correlation for a benchmark large system—liquid para-
hydrogen at two state points T=25 K and T=14 K, for
which we have earlier implemented the LSC-IVR �TGA�
approach10,12 and have systematically compared it with other
theoretical approaches.10,12,13 The information entropy test
�for the MEAC procedure�, as shown in Table I, which pro-
vides a measure to compare the accuracy of priors produced
by various approximate methods for quantum dynamics,
shows the LSC-IVR �LGA� to be a good approximation for
quantum time correlation functions.

The LSC-IVR �LGA� thus provides a practical method
for studying chemical reaction dynamics and other dynami-
cal processes semiquantitatively in condensed phase systems
where quantum mechanics play a significant role. It will be
interesting in future work to apply the LSC-IVR �LGA� to
study chemical reaction rates in complex systems, where
imaginary frequencies are crucial, vibrational energy relax-
ation in molecular liquids that contain abundant and impor-
tant imaginary frequencies and that also involves correlation
functions of highly nonlinear operators where the LSC-IVR
is still a good approximation,12,15,61 and nonadiabatic dy-
namic processes,7,62 where several PESs are involved and
where imaginary frequencies might be important.

We note, as discussed before,12 the fact that classical
dynamics does not conserve the Wigner distribution of the

Boltzmann operator e−�Ĥ, and this affects the very long time
behavior of the LSC-IVR. This causes the LSC-IVR evalua-
tion of the reaction rate to depend somewhat on the choice of
the dividing surface, much like a kind of QTST model.
Though this is a shortcoming of the LSC-IVR approxima-
tion, we are able to use the QTST criterion proposed in Sec.
III C to obtain a practical procedure for choosing the opti-
mum dividing surface for the LSC-IVR flux-side correlation
function. Since the LGA enables one to obtain a good ap-
proximation of the Wigner distribution, it will be interesting
to see whether the modified dynamics that conserves the
Wigner distribution which we have proposed before10 will
remedy or alleviate this problem. It will also be interesting to
see how the MEAC correction improves the LSC-IVR prior
at low temperature for the reaction rate problem.

Finally, we point out that the modification introduced by
Eq. �2.14� �or Eqs. �2.24� and �2.25�� to deal with imaginary
frequencies may also find use in other applications
using local harmonic or instantaneous normal-mode
approximations.1–3 Further work along these lines would be
of interest.
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TABLE III. Diffusion contants for liquid para-hydrogen at T=14 K and �
=25.6 cm3 mol−1 under nearly zero extent pressure.

Np

Diffusion constant �Å2 /ps� at 14 K

Prior MEAC correction

Experiment 0.4a

LSC-IVR �LGA� 108 0.58 0.47
LSC-IVR �TGA� 108 0.63b 0.47c

RPMD 256 0.27d 0.36c

CMD 216 0.34e 0.37c

Classical 108 0.26c 0.34c

→� 0.02f
¯

Flat prior 108 ¯ 0.43c

aReference 65.
bReference 11.
cReference 13.

dReference 57.
eReference 59.
fReference 54.
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APPENDIX A: LGA BASED ON FKA

The FKA �Refs. 21 and 22� has been used by Cuccoli et
al.20 to calculate the Wigner density distribution in Eq. �2.5�
and later introduced by Poulsen et al. in the LSC-IVR/
classical Wigner model of time correlation functions16 �and
they called it the Feynman–Kleinert �FK�-LPI in Ref. 16�.

Here we use the notation of the quantum correction fac-
tor Q�u� in Eq. �2.10�,

Q�u = ����xc�� =
u/2

tanh�u/2�
, �A1�

where the effective local frequency ��xc� is obtained from
the curvature of the Gaussian-averaged potential Vs�xc�,

m�2�xc� = � �2

�xc
2�

�2�xc�
Vs�xc� , �A2�

Vs�xc� =	 dy��m�2�xc�
2�

�1/2


exp�− �
1

2
m�2�xc��y − xc�2�V�y� . �A3�

Vs�xc� can be viewed as the classical thermal average of the
potential function V�y� in the FK harmonic oscillator whose
equilibrium position is the centroid of the path in imaginary
time �xc= �1 /����0

��d�x���� and whose frequency is given by

�2�xc� =
�2�xc�
u/2

tanh�u/2�
− 1

. �A4�

Equations �A2�–�A4� need to be solved iteratively to obtain
��xc� and ��xc�.

Defining the effective �centroid� potential as

Veff�xc� = VS�xc� −
1

2�
� u/2

tanh�u/2�
− 1�

+
1

�
ln� sinh�u/2�

u/2 � , �A5�

the partition function is given by the FKA as20,22

ZFK =	 dxc� m

2��2�
�1/2

exp�− �Veff�xc�� . �A6�

Off-diagonal elements of the Boltzmann operator can also be
approximated by the FKA as20

�x0 −
�x

2
�e−�Ĥ�x0 +

�x

2
�

�
FKA	 dxc� m

2��2�
�1/2

exp�− �Veff�xc��


��m�2�xc�
2�

�1/2
exp�− �

1

2
m�2�xc��x0 − xc�2�


exp�−
m��xc�

4�
coth�u/2��x2� , �A7�

the Fourier transform of which gives the following expres-
sion of the Wigner density distribution16,20 �defined in Eq.
�2.5��:

P�x0,p0� =	 dxc exp�− �Veff�xc����m�2�xc�
2�Q�u� �1/2


exp�− �
1

2
m�2�xc��x0 − xc�2 − �

p0
2

2m

1

Q�u�� .

�A8�

Again, the quantum correction factor Q�u� reflects how the
local momentum distribution deviates from the classical mo-
mentum distribution.

In the imaginary frequency regime, as shown by Feyn-
man and Kleinert,22 the FKA is able to keep the imaginary
frequency and temperature in the regime

ui � ��
��xc�
 � 2� , �A9�

so that by virtue of analytic continuation, the frequency of
the FK harmonic oscillator

�2�xc� =

��xc�
2

1 −
ui/2

tan�ui/2�

�A10�

and the effective �centroid� potential

Veff�xc� = VS�xc� −
1

2�
� ui/2

tan�ui/2�
− 1� +

1

�
ln� sin�ui/2�

ui/2
�

�A11�

are always well defined. However, when the imaginary fre-
quency and temperature are such that

ui � ��
��xc�
 	 � �A12�

�i.e., large enough imaginary frequency and/or low enough
temperature�, the FKA for the off-diagonal element of the

Boltzmann operator �x−�x /2
e−�Ĥ
x+�x /2� �i.e., Eq. �A7��
fails for the same reasons as does the LHA discussed in Sec.
II B, i.e., because the quantum correction factor Q�u� be-
comes negative. As with other local harmonic-type approxi-
mations, the conventional procedure has been to discard such
frequencies, but our proposal is to modify the quantum cor-
rection factor as in Eq. �2.14� �see also the LGA ansatz—
Eqs. �2.24� and �2.25��, which we also suggest here for the
FKA. That is, the LGA based on the FKA �LGA-FKA� leads
to Eq. �A8� �the Wigner density distribution� with the quan-
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tum correction factor Q�u� �for the local momentum distri-
bution� given by

Q�u = ����xc��

= �
u/2

tanh�u/2�
for real u

1

Q�ui�
=

tanh�ui/2�
ui/2

for imaginary u = iui.�
�A13�

�Since the FK harmonic oscillator frequency ��xc� and the
effective potential Veff�xc� are always well defined for imagi-
nary frequencies ui� �0,2�� �see Eqs. �A10� and �A11��, no
modification is needed in the LGA-FKA.�

The LSC-IVR/classical Wigner model of time correla-
tion functions with the LGA-FKA is thus finally given by

CAB
LSC-IVR �

LGA-FKA	 dxc exp�− �Veff�xc��


��m�2�xc�
2�Q�u� �1/2� 1

2��
�	 dx0	 dp0


exp�− �
1

2
m�2�xc��x0 − xc�2

− �
p0

2

2m

1

Q�u�� fA
FKA�x0,p0�


B�xt�x0,p0�,pt�x0,p0�� , �A14�

where fA
FKA�x0 , p0� is a function depending on the operator

Â�. For instance, when Â�=e−�Ĥx̂, we have

fA
FKA�x0,p0� = x0 +

i��

2m

p0

Q�u�
. �A15�

The generalization to multidimensional systems is straight-
forward �i.e., based on the work on the FKA shown in Ap-
pendix C of Ref. 20 or Sec. IIC of Ref. 16�, similar to Sec.
II C in the present paper. We expect that the LGA will also
improve the behavior of the FKA in the application of the
LSC-IVR/classical Wigner formulation of quantum time cor-
relation functions when imaginary frequencies are important.
�That is, the LGA is expected to improve over the FKA for
reaction rate problems.�

A more accurate version could be

CAB
LSC-IVR �

LGA-FKA	 dxcQc
†�xc�	 dx0��m�2�xc�

2�
�1/2


exp�− �
1

2
m�2�xc��x0 − xc�2�


	 dp0� �

2m�Q�u��
1/2

exp�− �
p0

2

2m

1

Q�u��

fA

FKA�x0,p0�B�xt�x0,p0�,pt�x0,p0�� . �A16�

Here

Qc
†�xc� =� D�x������ 1

��
	

0

��

d�x��� − xc�e−S�x����/�

�with S�x���� as the action� is the constrained partition func-
tion with the centroid of the path fixed at xc. To get Eq.
�A16�, one replaces the FKA estimate for Qc

†�xc�, i.e.,
�m /2��2��1/2 exp�−�Veff�xc��, in Eq. �A14� by the exact one
which can be accurately evaluated by �normal-mode� path
integral techniques. For instance, for the ratio of the partition
functions Qc

†�xc=0� /Qr at the top of the Eckart barrier in Eq.
�2.4�, the exact value at 200 K is about 2.55
10−8 while the
FKA gives 1.08
10−8 �with more than 50% error�; the exact
value at 150 K is about 3.10
10−9 while the FKA only gives
3.47
10−10 �deviating by an order�. The FKA for Qc

†�xc�
�i.e., �m /2��2��1/2 exp�−�Veff�xc��� in Eq. �A14� or Eq.
�A6� could be poor for large enough imaginary frequency
and/or low enough temperature.

When the centroid is fixed at xc, the FKA suggests that
the probability distribution of the path integral beads is a
Gaussian function, i.e.,

f�x� = ��m�2�xc�/2��1/2 exp�− �m�2�xc��x − xc�2/2� . �A17�

Figure 13 shows the comparisons between Eq. �A17� and the
path integral result for the Eckart barrier in Eq. �2.4� with the
centroid xc fixed on the top of the barrier �xc=0�. �The total

FIG. 13. Probability distribution functions of path integral beads with the
centroid fixed at the top of the 1D Eckart barrier �xc=0�. �a� T=1000 K and
�b� T=200 K. Comparisons between the FKA and the PIMC.

074113-16 J. Liu and W. H. Miller J. Chem. Phys. 131, 074113 �2009�



number of beads for the PIMC is 256.� Although the FKA
�Eq. �A17�� works very well at the high temperature, it could
be also inadequate to give even a qualitative description for
large enough imaginary frequency and/or low enough tem-
perature.

Perhaps the most accurate version could be

CAB
LSC-IVR �

LGA-FKA	 dx0�x0
exp�− �Ĥ�
x0�� �

2m�Q�u��
1/2


	 dp0 exp�− �
p0

2

2m

1

Q�u��

fA

FKA�x0,p0�B�xt�x0,p0�,pt�x0,p0�� , �A18�

i.e., similar to the LGA based on the LHA in Sec. II B, leav-

ing �x0
exp�−�Ĥ�
x0� /Z to be evaluated accurately by path
integral techniques and using the LGA-FKA only for the

ratio �x0+�x /2
exp�−�Ĥ�
x0−�x /2� / �x0
exp�−�Ĥ�
x0� to
generate the local momentum distribution around the cen-
troid xc of the path integral beads on the fly.

We note that by carrying out the iteration procedure in
Eqs. �A2�–�A4�, the FKA can sometimes perform somewhat
better than the LHA in the imaginary frequency regime, be-
cause the module of the effective local imaginary frequency

��xc�
 may be smaller than that of the local imaginary fre-
quency in Eq. �2.8�. �For instance, at the top of the Eckart
barrier in Eq. �2.4�, the FKA for the Wigner function in Eq.
�2.5� breaks down for temperature below Tb 640 K while
the LHA does so for temperature below Tb 733 K. Ma and
Coker also showed a case that the FKA works somewhat
better than the LHA.63� It will be interesting to compare the
LGA-FKA �particularly Eq. �A18�� with the LGA-LHA in
Sec. II for use in the LSC-IVR. However, we also point out
that performing the Gaussian integral in Eq. �A3� is usually
the most time-consuming part for general multidimensional
systems because one has to evaluate the potential at many
different points �i.e., for different y in Eq. �A3�� in order to
complete the Gaussian integral for each iteration step at a
given position xc. We also note that Poulsen et al. recently
made some modification in the iteration procedure to im-
prove its efficiency;64 however, the necessary evaluation of
the potential �or the force� of large/complex systems for
many times in order to carry out the Gaussian integral re-
mains a bottleneck. If the potential V�y� of the system can be
represented by polynomials or Gaussian functions, Eq. �1.3�
can be evaluated analytically and the iteration can be effi-
cient to obtain ��xc�. However, for complex molecular sys-
tems where angle and dihedral interactions �or induced
dipole-dipole interactions� are important and accurate poly-
nomial or Gaussian fitting of potential surfaces is often very
difficult, the iteration procedure becomes computationally
demanding.

Nevertheless, it will certainly be interesting to test the
LGA-FKA in the LSC-IVR �i.e., Eq. �A14�, Eq. �A16�,or Eq.
�A18�� for those systems of which the interaction can be well
fitted by the polynomials or Gaussian functions.

APPENDIX B: GAUSSIAN WIDTH OF THE LOCAL
MOMENTUM DISTRIBUTION OF THE FLUX-
SIDE CORRELATION FUNCTION IN THE ONE-
DIMENSIONAL BARRIER

The LSC-IVR approximation for the flux-side correla-
tion function is

Cfs
LSC-IVR�t� =

1

2��
	 dx0	 dp0Fw

��x0,p0�h�xt� , �B1�

where

Fw
��x0,p0� =	 d�xeip0�x/��x0 − �x/2
F̂�
x0 + �x/2� .

�B2�

Substituting Eq. �B2� into Eq. �B1� and integrating by parts
with respect to p0 gives

Cfs
LSC-IVR�t� =

1

2��
	 dx0	 dp0	 d�xeip0�x/�



i�

�x
�x0 − �x/2
F̂�
x0 + �x/2���xt�

�xt

�p0
,

�B3�

and expanding the exponential for small p0 �note that odd
orders of �x vanish due to the symmetry�, i.e., eip0�x/� 1
− �p0

2�x2 /2�2�+o�p0
4�, then gives

Cfs
LSC-IVR�t� =

1

2��
	 dx0	 dp0��xt�

�xt

�p0


i�m−1�1 −
p0

2

2�2

m1

m−1
� , �B4�

where the moments are defined as

m−1 =	 d�x
1

�x
�x0 − �x/2
F̂�
x0 + �x/2� ,

�B5�

m1 =	 d�x�x�x0 − �x/2
F̂�
x0 + �x/2� .

�Note that both m−1 and m1 are pure imaginary�. A cumulant
resummation and integration by parts with respect to p0 gives
the final result

Cfs
LSC-IVR�t� =

1

2��
	 dx0	 dp0

im1

�
p0


exp�−
p0

2

2�2

m1

m−1
�h�xt� , �B6�

from which one identifies the exact Gaussian width param-
eter of the momentum distribution as

� =
2�2m−1

m1
. �B7�
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APPENDIX C: LSC-IVR „LGA… APPROXIMATION FOR
THE KUBO-TRANSFORMED VERSION OF FLUX-
SIDE CORRELATION FUNCTION

The evaluation of the rate constant equation �3.1� can
also be obtained from the Kubo-transformed version of flux-
side correlation function

Cfs
sys�t� = Tr�F̂Kubo

� eiĤt/�ĥe−iĤt/�� , �C1�

where

F̂Kubo
� =

1

�
	

0

�

d�e−��−��Ĥ/2F̂e−�Ĥ/2 =
i

��
�e−�Ĥ,h�s�x��� .

�C2�

The Wigner function of F̂Kubo
� is

FKubo
� �x0,p0�

=	 d�xeip0·�x/��x0 +
�x

2
�e−�Ĥ�x0 −

�x

2
�



i

��
�h�s�x0 +

�x

2
�� − h�s�x0 −

�x

2
��� . �C3�

Using the Fourier representation of the step function

h�s� =	 dps
eipss/�

2�i�ps − i��
�C4�

�with �→0+� and also Eq. �2.19�, expanding s�x0��x /2�
�s�x0�� ��s /�x0� ·�x /2, and then integrating over �x, one
obtains the LGA approximation for the Wigner function

FKubo
� �x0,p0� � �x0
e−�Ĥ
x0�

i

��
	 dps

eipss/�

2�i�ps − i���k
�� �

2�Q�uk�
��exp�−

�

2
�P0 +

ps

2
TTM−1/2 �s

�x0
�T


Q−1�P0 +
ps

2
TTM−1/2 �s

�x0
�� − exp�−

�

2
�P0 −

ps

2
TTM−1/2 �s

�x0
�T

Q−1�P0 −
ps

2
TTM−1/2 �s

�x0
��� , �C5�

which simplifies to

FKubo
� �x0,p0� � �x0
e−�Ĥ
x0��

k
�� �

2�Q�uk�
�exp�−

�

2
P0

TQ−1P0� ·
1

2���
	 dps

cos�pss/��
ps


exp�−
�

8
� �s

�x0
�T

M−1/2TQ−1TTM−1/2 �s

�x0
ps

2�2sinh��

2
�P0�TQ−1TTM−1/2 �s

�x0
ps� . �C6�

Finally, 1D integral over ps can be performed via the following integral formula �one can prove it by taking the derivative over
C and integrating back�:

I�C� � 	
−�

�

dps exp�− Aps
2�cos�Bps�sinh�Cps�/ps = � Im�erf�B + iC

�4A
�� , �C7�

to give the final expression of the Wigner function of F̂Kubo
� with the LGA

FKubo
� �x0,p0� � �x0
e−�Ĥ
x0��

k
�� �

2�Q�uk�
�


exp�−
�

2
P0

TQ−1P0� 1

��
Im�erf s�x0� +

i��

2
�P0�TQ−1TTM−1/2 �s

�x0

���

2
� �s

�x0
�T

M−1/2TQ−1TTM−1/2 �s

�x0
�1/2!" . �C8�

We do note, though, that this expression has an oscillatory
structure at low temperature and Eq. �C8� without additional
approximations for the error function does not appear to us
as numerically favorable as the symmetrized version of the

Boltzmannized flux operator e−�Ĥ/2F̂e−�Ĥ/2 used in Sec. III.
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