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The maximum entropy analytic continuation �MEAC� method is used to extend the range of
accuracy of the linearized semiclassical initial value representation �LSC-IVR�/classical Wigner
approximation for real time correlation functions. LSC-IVR provides a very effective “prior” for the
MEAC procedure since it is very good for short times, exact for all time and temperature for
harmonic potentials �even for correlation functions of nonlinear operators�, and becomes exact in the
classical high temperature limit. This combined MEAC+LSC / IVR approach is applied here to two
highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid
para-hydrogen at two thermal state points �25 and 14 K under nearly zero external pressure�. The
former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR
for correlation functions of both linear and nonlinear operators, and especially at low temperature
where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is
seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction
at the lower temperature �T=14 K�. Comparisons are also made as to how the MEAC procedure is
able to provide corrections for other trajectory-based dynamical approximations when used as
priors. © 2008 American Institute of Physics. �DOI: 10.1063/1.2981065�

I. INTRODUCTION

Since classical molecular dynamics �MD� simulation
methods are the only generally applicable approach for de-
scribing the dynamics of large molecular systems, we have
been pursuing the use of various initial value representations
�IVRs� �Refs. 1–18� of semiclassical �SC� theory19,20 to add
quantum effects to classical MD simulations of time correla-
tion functions. The SC-IVR provides a way for generating

the quantum time evolution operator �propagator� e−iĤt/� by
computing an ensemble of classical trajectories, much as is
done in standard classical MD simulations. As is well known
from SC developments in the early 1970s,1,19–22 such ap-
proaches actually contain all quantum effects at least quali-
tatively, and in molecular systems the description is usually
quite quantitative �see reviews2–5,8,15,23,24 and some recent
applications25–47�.

The simplest �and most approximate� version of
the SC-IVR is its “linearized” approximation
�LSC-IVR�,6,25,26,35,48–53 which leads to the classical Wigner
model54–57 for time correlation functions �and which also
leads to a quantum transition state theory when the parabolic
approximation is used for the dynamics in the flux-side cor-
relation function58�; see Sec. II C for a summary of the LSC-
IVR. The classical Wigner model is an old idea, but it is
important to realize that it is contained within the SC-IVR
approach, as a well-defined approximation to it.48,49 There
are other ways6,53,59 to derive the classical Wigner model �or
one may simply postulate it�, and we also note that the

“forward-backward semiclassical dynamics” �FBSD� ap-
proximations of Makri and co-workers25,29–31,60–71 are very
similar to it. The LSC-IVR/classical Wigner model cannot
describe true quantum coherence effects in time correlation
functions—more accurate SC-IVR approaches, such as the
Fourier transform forward-backward IVR �FB-IVR�
approach,23,72 or the still more accurate generalized FB-IVR
�Ref. 73� and exact FB-IVR �Ref. 5� of Miller et al., are
needed for this—but it does describe some aspects of the
quantum dynamics very well.25–27,35–39,50,51,74–76 For ex-
ample, the LSC-IVR has been shown to describe the strong
tunneling regime51 in reactive flux autocorrelation functions
�which determine chemical reaction rates� quite well, and
also velocity autocorrelation functions,25,26,75,76 force auto-
correlation functions,26,35–39 and incoherent dynamic
structures27 in systems with enough degrees of freedom for
quantum rephasing to be unimportant.

The purpose of this paper is to describe the use of the
maximum entropy analytic continuation �MEAC�
procedure77–93 to extend the accuracy of LSC-IVR time cor-
relation functions. Recently Habershon et al.93 showed that
the ring polymer MD �RPMD� model94–101 provides a good
“prior” for the MEAC, better than the conventional flat prior.
LSC-IVR, RPMD, and the centroid MD �Refs. 102–113�
�CMD� are all approximate ways for adding some quantum
effects to classical MD simulations, though none of them
incorporate “true” quantum coherence effects. Since the
LSC-IVR approximation is more accurate in some aspects
than RPMD and CMD �e.g., it is exact for harmonic systems
for nonlinear, as well as linear operators, also see Refs. 27a�Electronic mail: miller@cchem.berkeley.edu.
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and 114�, it should thus provide an even more useful prior
for the MEAC methodology �the accuracy of which depends
on having as good a prior as possible�. Since the LSC-IVR
itself becomes accurate in the high temperature and the har-
monic limits �for both linear and nonlinear operators�, the
combination MEAC+LSC / IVR will obviously be good in
both of these limits, and it should provide some improve-
ment over the LSC-IVR description of strongly anharmonic
systems and for lower temperatures. In addition, since the
LSC-IVR includes some �approximate� real time dynamical
information, the MEAC+LSC / IVR may be a good choice
for systems involving a separation of time scales, where the
MEAC with a featureless flat prior does not perform
well.115,116

Section II briefly reviews the analytic relation between
real time and imaginary time correlation functions,117 the
MEAC procedure77–93 to utilize this relation efficiently, and
the LSC-IVR methodology.6,25,26,35,48–53 Section III then pre-
sents several applications to demonstrate how the MEAC
+LSC / IVR approach performs: Section III A demonstrates
how the LSC-IVR prior is superior to the conventional flat
prior in the harmonic limit and the high temperature regime;
Sec. III B shows how the MEAC procedure improves the
LSC-IVR for a strongly anharmonic one-dimensional model
at very low temperature; finally, Sec. III C describes the ap-
plication of MEAC+LSC / IVR to a complex system �liquid
para-hydrogen� and compares the results with those using
priors from other trajectory-based methods �RPMD, CMD,
purely classical dynamics itself� with their MEAC correc-
tions. Section IV summarizes and concludes.

II. THEORY AND METHODOLOGY

A. Analytic continuation between real time and
imaginary time autocorrelation functions

Most quantities of interest in the dynamics of complex
systems can be expressed in terms of thermal time autocor-
relation functions;118 the standard version of which is

C�t� = �Â�0�Â†�t�� = Tr�Â�eiĤt/�Â†e−iĤt/�� , �1�

where Â�=e−�ĤÂ /Z. Here Ĥ is the �time-independent�
Hamiltonian for the system, which for large molecular sys-
tems is usually expressed in terms of its Cartesian coordi-
nates and momenta

Ĥ = 1
2 p̂TM−1p̂ + V�x̂� , �2�

where M is the �diagonal� mass matrix, �p̂ , x̂� are the mo-
mentum and coordinate operators, respectively, Z

=Tr e−�Ĥ��=1 /kBT� is the partition function, and Â is the

operator relevant to the specific property of interest, with Â†

as its Hermitian conjugate. Its spectrum

C� ��� = �
−�

�

dte−i�tC�t� or C�t� =
1

2�
�

−�

�

dtei�tC� ���

�3�

is often experimentally measurable. It is easy to show �e.g.,

by working on the basis of eigenstates of Ĥ� the non-

negativity of C� ��� �C� ����0� and the detailed balance rela-
tion

C� �− �� = e−���C� ��� . �4�

From the work of Baym and Mermin,117 C�t+ i��� is
analytic within the strip 0���� in the complex plane. As a
consequence, the correlation function C�i��� on the imagi-
nary time axis contains the same physical information as and
can, in principle, determine C�t+ i��� within the strip 0��
�� by way of analytic continuation. The relation between
the spectrum �Eq. �3�� and the imaginary time correlation
function C�i��� is given by

C�i��� =
1

2�
�

−�

�

d�e−���C� ��� . �5�

By virtue of the detailed balance, i.e., Eq. �4�, one has

C�i��� = �
0

�

d�K��,��C� ��� , �6�

where

K��,�� =
1

2�
�e−��� + e−��−����� , �7�

which is a numerically well-behaved function of � for any �
�0�����. Based on Eq. �5�, similar relations between the
imaginary time autocorrelation function and other
versions119,120 of real time correlation function can be ob-
tained, which are discussed in the Appendix.

B. MEAC

Even for large systems, the imaginary time correlation
function C�i��� can usually be calculated accurately by path
integral techniques121,122 �with statistical noise�. Techniques
of numerical analytic continuation from the imaginary time
autocorrelation function to the real time one include the Padé
approximant scheme123,124 and some procedures125,161–163 to
solve the intrinsically unstable inverse problem of the inte-
gral equation �Eq. �6��. Here we use the widely used MEAC
method77–93,126 based on the Bayesian approach.127,128 Fol-
lowed is a brief summary of the MEAC procedure, while
more details are described in the above literature.

In the numerical version of Eq. �6�, the frequency axis is
discretized on a grid �� j , j=1, . . . ,N	 with Aj =C� �� j�	� j,
where 	� j is the size of each grid spacing, and the imaginary
time autocorrelation function Ck=C�i��k� is known on a dis-
crete set of points ��k ,k=1, . . . ,M	, with N usually being
much larger than M. Equation �6� can then be expressed as

C = KA , �8�

where A and C are vectors with components Aj and Ck,
respectively, and K is the rectangular kernel matrix with el-
ements Kkj =K��k ,� j� in Eq. �7�.

Since the imaginary time data �Ck	 for general systems
obtained from path integral calculations typically contain in-
evitable statistical error, it is in general not best to seek a
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direct solution for �Ck	 in Eq. �8�, e.g., by minimizing the
standard mean squared deviation of the imaginary time data


2�A� = �C − KA�TT−1�C − KA� , �9�

where T is the covariance matrix

Tik =
1

Nm�Nm + 1�
l=1

Nm

��Ci� − Ci
�l����Ck� − Ck

�l�� �10�

with Nm being the number of statistically independent “mea-
surements” from the path integral simulation and �Ck� denot-
ing the average value of the measurements for Ck=C�i��k�.
Instead, the MEAC method seeks a solution to the integral
equation �Eq. �8�� which maximizes the function

Q�A;�� = �S�A� − 
2�A�/2, �11�

where the information entropy S�A� is defined as

S�A� = 

j=1

N �Aj − A° j − Aj ln
Aj

A° j
� �12�

with A° j =C�° �� j�	� j for a reasonable prior model for the

spectrum C�° ���; S�A� thus quantifies how the final solution
deviates from the prior model. The positive regularization
parameter � in Eq. �11� weighs the importance of the maxi-
mization of the information entropy S�A� over the minimi-
zation of the standard mean squared deviation 
2�A�, i.e., a
large value of � leads to a solution primarily determined by
the maximization of S�A�, which is close to the prior model,
while a small value of � gives a solution mostly determined
from the minimization of 
2�A�, which gives a close fit to
the imaginary time data �along with their statistical error�.

For a given value of �, maximizing Q�A ;�� is accom-
plished by a numerically robust algorithm due to Bryan129

that has been commonly used in the MEAC literature above.
Usually Q�A ;�� is maximized for a series of � values in
order to determine its best value. In this paper, we apply two
standard techniques used in the MEAC literature for the
choice of �. One is the classic maximum entropy �CME�
approach,130 in which � is chosen to satisfy the Skilling
equation

− 2�S�A� = 

i

�i

� + �i
 Ng, �13�

where ��i	 are the eigenvalues of the curvature matrix of 
2,

ij =
1

2
�Ai

�
2

�Ai � Aj

�Aj , �14�

Ng, defined by Eq. �13�, is often called the “number of good
data” or the number of effective independent measurements.
The CME gives the optimum spectrum that simultaneously
maximizes the posterior probabilities P�A �C� for A given C
and P�� �C� for � given C.

Another prescription for choosing � is the L-curve
method.131,132 In this procedure, after maximizing Q�A ;��
for a succession of � values, a plot of log�
2�A�� versus
log�−S�A�� is constructed, and the resulting curve usually
has a characteristic “L” shape. The horizontal leg of the L
curve represents a regime where any further deviation from

the prior model brings little further benefit for accurate fitting
of the imaginary time data. Therefore, the corner of the L
curve, where the curvature of the curve is at a maximum,
gives the optimum value of � that represents the best com-
promise between faithfully fitting the imaginary time data
and keeping as close as possible to the prior model. It was
pointed out by Krilov and Berne86 that if a flat �featureless�
prior �MEAC-flat� is used, then the CME technique for
choosing � is better for relatively sharp spectra, while the
L-curve method gives more reliable results for a broad spec-
tral distribution. In the applications described below, we
compare these two techniques for implementing the MEAC
using various priors, e.g., that afforded by the LSC-IVR.

C. Linearized semiclassical initial value representation

The SC-IVR approximates the forward �backward� time

evolution operator e−iĤt/� �eiĤt/�� by a phase space average
over the initial conditions of forward �backward� classical
trajectories.2,4,5,19 By making the �drastic but reasonable� ap-
proximation that the dominant contribution to the phase
space averages comes from forward and backward trajecto-
ries that are close to one another and then linearizing the
forward and backward actions of such trajectories, Miller
and co-workers48–50 obtained the linearized SC-IVR �LSC-
IVR�, or classical Wigner model for a general A-B correla-

tion function �i.e., replacing the operator Â† by B̂ in Eq. �1��,

CAB
LSC-IVR�t� = �2���−3Np� dx0� dp0Aw

��x0,p0�Bw�xt,pt� ,

�15�

where Aw
� and Bw are the Wigner functions54 corresponding

to these operators,

Ow�x,p� =� d�x�x − �x/2�Ô�x + �x/2�eipT�x/� �16�

for any operator Ô. Here Np is the number of particles in the
system, and �x0 ,p0� is the set of initial conditions �i.e., co-
ordinates and momenta� for a classical trajectory, with
�xt�x0 ,p0� ,pt�x0 ,p0�� being the phase point at time t along
that trajectory. �More recently, Liu and Miller6 showed that
the exact quantum time correlation function can be expressed
in the same form as Eq. �15�, with an associated dynamics in
the single phase space, and it was furthermore demonstrated
that the LSC-IVR is its classical limit ��→0�, high tempera-
ture limit ��→0�, and harmonic limit.� Our previous work27

has shown that the LSC-IVR is able to treat correlation func-
tions involving nonlinear, as well as linear operators in a
consistent fashion, so long as the time scale of the correlation
function is not too long, as is typically the case in condensed
phase systems. The LSC-IVR can be applied not only to
correlation functions at equilibrium but also to nonequilib-
rium correlation functions and even for time-dependent
Hamiltonian systems. These merits of the LSC-IVR make it
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a versatile tool to study quantum mechanical effects in
chemical dynamics of large molecular systems.

A shortcoming of the LSC-IVR treatment of equilibrium
correlation functions, however, is that the quantum mechani-
cal equilibrium distribution is not correctly conserved—i.e.,

for the case Â=1 the correlation function �i.e., the canonical

ensemble average of operator B̂� is not time independent.
The degree to which this affects the accuracy of the LSC-
IVR in practical applications is subtle since the LSC-IVR

quantizes Â� rather than the Boltzmann density operator

e−�Ĥ /Z. A previous investigation27 suggested that this incon-
sistency in the LSC-IVR correlation function may be most
noticeable at very long time for some systems at quite low
temperature.

The relation between the real time and imaginary time
correlation functions, i.e., Eq. �6�, provides a way to check
the behavior of the LSC-IVR. Furthermore, considering the
merits of the LSC-IVR, using it as the prior in the MEAC
approach should certainly be better than using a featureless
flat prior. We now investigate how the MEAC behaves using
the LSC-IVR prior �MEAC+LSC / IVR�.

III. RESULTS AND DISCUSSIONS

In all calculations below, we have used the bisection
method121 of the path integral Monte Carlo �PIMC� approach
to calculate the imaginary time correlation function C�i���.
The LSC-IVR results for real time correlation functions were
obtained with the thermal Gaussian approximation �TGA�
�Refs. 133–138� �TGA/LSC-IVR� that we have implemented
recently.6,25–27 The MEAC procedure for the standard version
of the correlation function uses only its real part for conve-
nience and involves Eqs. �A3� and �A4�, and that for the
Kubo-transformed version utilizes Eqs. �A9� and �A10�. The
flat prior for the standard version of the correlation function
is

C�° R��� = ��CR�t = 0�/�max, ��� � �max

0, otherwise
� �17�

and that for the Kubo-transform version is

C�° kubo��� = ��Ckubo�t = 0�/�max, ��� � �max

0, otherwise.
� �18�

Here �−�max,�max� is the range of the frequency that covers
all significant parts of the spectrum. Equation �17� or �18�
gives the correct initial value of the time correlation function
as a constraint.

A. Advantages of the LSC-IVR prior

The MEAC using the flat prior usually fails when the
spectrum has multiple maxima, and when the imaginary time
data are limited and noisy. The former usually happens when

the operator Â is a highly nonlinear operator, and the latter
occurs for high temperature �i.e., when ��→0�. The LSC-
IVR, on the other hand, treats nonlinear and linear operators
to an equivalent level of accuracy27 and naturally has the
correct �i.e., classical� limit for high temperature.

The elementary �but important� case of a harmonic
potential,

V�x� = 1
2m�2x2 �19�

provides a dramatic illustration of these features �where for
simplicity we take m=1, �=1, and �=1�. In this case the
LSC-IVR itself �i.e., without any MEAC correction� gives
exact results for the autocorrelation function for both nonlin-
ear and linear operators, for arbitrarily long time, and for any
temperature, so here we are interested in showing how the
MEAC procedure behaves if one uses the flat prior. Choos-

ing a highly nonlinear operator Â=exp�−5x̂2� and the inverse
temperature �=5,32 beads were used for the PIMC calcula-
tion of the imaginary time correlation function. Both the
CME and the L-curve techniques were used for the MEAC
with the flat prior spectrum, with the maximal frequency
�max=25 in Eq. �17�. Although Fig. 1 shows that the MEAC
with the flat prior fits the imaginary time data very well, the
real time correlation function which results from it is seen in
Fig. 2 to behave poorly—it only has reasonable agreement
with the exact result for times shorter than 0.1�� and fails to
capture the �classical� coherence that occurs on the thermal
time scale ��. Since the exact spectrum contains a set of
delta functions ��2j�� �j=0, �1, �2, . . .�, it is perhaps not
surprising that the MEAC with a prior that is not reasonably
close to the exact result will encounter severe problems. This
example reveals that the MEAC is not guaranteed to give the
result correct to the order of the thermal time ��, and that a
good prior is important for the MEAC procedure when the
operator involved in the correlation function is highly non-
linear. For near-harmonic potentials, the LSC-IVR does a
quite good job for all kinds of operators6,25 and thus probably
provides the best prior.

The next example is more challenging, a purely quartic
potential,

FIG. 1. �Color online� Imaginary time autocorrelation function
�exp�−5x�0�2�exp�−5x�i���2�� for the harmonic oscillator V�x�=0.5x2 with
the mass m=1 and �=1 at the inverse temperature �=5. Solid line: exact
results. Hollow cycles: the MEAC using the flat prior with the “L-curve”
technique �MEAC-flat-L�. Solid triangles: the MEAC using the flat prior
with the CME technique �MEAC-flat-CME�.
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V�x� = 1
4x4 �20�

with m=1 and �=1. Here, of course, the LSC-IVR is not
exact for this highly anharmonic potential. Figure 3 shows
that it is able to produce the first one or two oscillations in
the standard momentum and Kubo-transformed force auto-
correlation functions, but it dephases for longer time, being
unable to describe the purely quantum coherent oscillations
at longer time. �To capture these one would need to go to
more accurate levels of SC theory for the correlation
function,5,73 but we note that in many cases in complex sys-
tems one expects such long time coherent effects to be
quenched by coupling among the various degrees of
freedom.2,139,140� Nevertheless, Fig. 3 shows that the LSC-

IVR correlation functions are considerably better than the
ones given by the MEAC using a flat prior in Eqs. �17� and
�18�, respectively, with �max=8 at a relatively high tempera-
ture �=1. Eight beads were used for the PIMC calculation of
the imaginary time data. The MEAC works somewhat better
for the case of linear operators �Fig. 3�a�� compared to non-
linear ones �Fig. 3�b�� but not nearly so well as the uncor-
rected LSC-IVR. This again suggests that the LSC-IVR will
provide a much more effective prior for use in the MEAC
procedure, for both nonlinear and linear operators, and we
now describe this behavior for the quartic potential.

B. MEAC with the LSC-IVR prior

The exactness of the LSC-IVR in the harmonic limit, the
classical limit, and the high temperature limit, and the ability
to treat both linear and nonlinear operators well, suggests

FIG. 2. �Color online� Comparison of the LSC-IVR to the MEAC-flat for
the standard real time autocorrelation functions �exp�−5x�0�2�exp�−5x�t�2��
for the harmonic oscillator V�x�=0.5x2 with the mass m=1 and �=1 at the
inverse temperature �=5. Panel �b� shows a blowup of the curves shown in
�a�.

FIG. 3. �Color online� Comparison of the LSC-IVR to the MEAC-flat at a
relatively high temperature �=1 for the quartic potential V�x�=0.25x4 with
the mass m=1 and �=1: �a� Standard momentum autocorrelation function
�divided by 2 m� and �b� Kubo-transformed force autocorrelation function,
the force f�x�=−V��x�=−x3.
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that it should be very effective for use as a prior in the
MEAC procedure. Compared with the featureless flat prior, it
provides some �approximate� real time dynamical informa-
tion as input to the MEAC. The MEAC+LSC / IVR will thus
work well in the three limits described above �since the LSC-
IVR, the prior, does well all by itself� and should work better
than the original LSC-IVR for quite anharmonic systems in
the very low temperature regime by virtue of the constraint
from the MEAC procedure.

Since the LSC-IVR already does a good job for near-
harmonic potentials, we focus on the quartic potential of
Eq. �20� to provide a more meaningful test of the methodol-
ogy. High and low temperatures, �=1 and �=10, are con-
sidered, with 8 and 64 beads used respectively in the bisec-
tion method to compute the imaginary time correlation
functions. Both the standard momentum and the Kubo-
transformed force autocorrelation functions were computed
via the MEAC+LSC / IVR procedure. At high temperature,
�=1, the noticeably better fit of the imaginary time data due
to the MEAC procedure, as seen in Fig. 4, does NOT result
in a noticeable improvement in the real time LSC-IVR cor-
relation functions shown in Fig. 5. �Note that the LSC-IVR is
very good for t�5�� and the MEAC procedure does little to
help capture quantum coherence at times beyond 5��; this is
also true for other approximate quantum dynamic methods
that do not incorporate “true” quantum coherence effects.�
This is not surprising, however, for the analysis in the Ap-
pendix �and an earlier one in Ref. 93� numerically demon-
strates the well-known fact that the MEAC procedure does
little to improve the real time results for times much longer
than the thermal time ��. On the other hand, at low tempera-
ture, �=10, the more subtle improvement for the fit of the
imaginary time data, as shown in Fig. 6, significantly im-
proves LSC-IVR real time correlation functions, shown in
Fig. 7. This is, of course, due to the fact that the MEAC
procedure works better when the thermal time �� is larger,
for there is more statistically independent imaginary time
data. It is quite encouraging to see in Fig. 7 how much the
MEAC+LSC / IVR approach improves over the original
LSC-IVR correlation function in both the amplitude and the
frequency of the oscillations at low temperature. For this
strongly anharmonic potential, however, the MEAC
+LSC / IVR still has the dephasing behavior for times larger
than ��, which is more noticeable for the nonlinear operator
�Fig. 7�b��.

Since the spectrum of this one-dimensional model poten-
tial contains sharp peaks, the results in Fig. 7 agree with the
observation of Krilov and Berne86 that in this situation the
CME is indeed a better choice than the L-curve method, also
for the better LSC-IVR prior. These results also demonstrate
that the MEAC procedure works better for linear operators
than for nonlinear ones.

C. Application to liquid para-hydrogen

Although H2 is the lightest and thus most quantum-like
molecule, quantum effects due to exchange of identical mol-
ecules are negligible in its liquid phase. Liquid para-
hydrogen is well described by the Silvera–Goldman

model,141 an isotropic pair potential in which the para-
hydrogen molecule is treated as a sphere particle. �The
spherical approximation is known to be accurate because the
temperature of liquid para-hydrogen is much too low for any
rotational state other than J=0 to be populated.� Liquid para-
hydrogen has served as a benchmark system to test many
approximate quantum dynamic methods, e.g., the MEAC
with the flat prior,91,126 quantum mode-coupling theory
�QMCT�,142,143 the CMD,110,144,145 the RPMD �Refs. 98 and
145� and its MEAC correction,93 the FBSD,29 and the
LSC-IVR.26,74 Recently we have calculated the Kubo-
transformed momentum autocorrelation function using the

FIG. 4. �Color online� Comparison of imaginary time data transformed from
the corresponding real time autocorrelation functions based on the LSC-IVR
to those based on the MEAC+LSC / IVR for the quartic potential at the
inverse temperatures �=1: �a� The imaginary momentum autocorrelation
function �divided by 2 m� �p�0�p�i���� /2m and �b� the imaginary force
autocorrelation function �f�0�f�i����. Solid line: exact results. Hollow
cycles: the MEAC using the LSC-IVR prior with the “L-curve” technique
�MEAC-LSC/IVR-L�. Solid triangles: the MEAC using the LSC-IVR prior
with the CME technique �MEAC-LSC/IVR-CME�. Long-dashed line: the
LSC-IVR.
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TGA/LSC-IVR for liquid para-hydrogen at two state
points T=25 K,�=31.7 cm3 mol−1 and T=14 K,�
=25.6 cm3 mol−1; details of these simulations are described
in our previous work.26

The Kubo-transformed momentum autocorrelation func-
tion for this system thus serves as an excellent benchmark
also for testing how well the MEAC procedure extends the
accuracy of the LSC-IVR and also how it compares in this
regard to using other approximate quantum dynamics meth-
ods �RPMD and CMD�, and also classical dynamics itself, as
the prior. �Note that all these trajectory-based methods give
the exact initial value, i.e., Cpp

kubo�t=0�=3m /�, which is a
good starting point for comparison.� For the PIMC calcula-
tion of the imaginary time correlation functions below, 32
beads were used for the state point at T=25 K and 64 beads
for that at T=14 K. For the MEAC procedure, we used

�max�124 ps-1 in Eq. �18�. For the broad frequency spec-
trum of the correlation function for this system �see below�,
we observe that the L-curve technique produces smoother
and more reasonable results than the CME when the flat
prior is used �as mentioned in Ref. 86�, but interestingly
there is very little difference between these two ways of
choosing the regularization parameter � when the prior is
given by any trajectory-based method; thus we will simply
show the results based on the L-curve technique for the flat
prior and will not distinguish between the “MEAC-CME”
and “MEAC-L” for priors obtained from trajectory-based
methods.

First, we are able to check the accuracy of the various
priors themselves for pure imaginary time data by Fourier
transforming the real time correlation functions given by the
four trajectory-based methods �LSC-IVR, RPMD, CMD, and

FIG. 5. �Color online� Comparison of the standard momentum autocorrela-
tion function �divided by 2 m� �p�0�p�t�� /2m �panel �a�� and the Kubo-
transformed force autocorrelation function �f�0�f�t��Kubo �panel �b�� from the
LSC-IVR to those from the MEAC+LSC / IVR for the quartic potential at
the inverse temperature �=1.

FIG. 6. �Color online� Same as in Fig. 4, but at the inverse temperature �
=10.
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classical mechanics itself� to obtain the spectra, and then
using Eq. �A9� to obtain the imaginary time correlation func-
tion. Figure 8 shows the imaginary time correlation functions
for both state points: The exact �PIMC� result �solid circles�
is compared to the results for the four trajectory-based priors
that we consider. One sees that the TGA/LSC-IVR result is
in very good agreement with the exact imaginary time val-
ues, with the CMD �Ref. 110� further off and the RPMD
�Ref. 93� even more so, with the classical result deviating the
most. Thus even though both the CMD and the RPMD mod-
els conserve the Boltzmann distribution in extended phase
spaces, this property does not guarantee that they reflect the
true quantum dynamics better.

We note that in order to make fair and consistent com-

parisons, the MEAC results we report herein have been com-
puted for all priors with the imaginary time data in this pa-
per. Thus information entropies given in Table I, and the
diffusion constants for the MEAC+RPMD model listed in
Tables II and III, are not precisely the same as those reported
by Habershon et al.93 because the MEAC procedure is very
sensitive to different sets of imaginary time data with their
inherent statistical error. When we apply the MEAC proce-
dure for these priors, we find that the information entropies
as defined in Eq. �12� �with the optimal value of � for each
prior� lie in the order Sflat�Sclassical�SLSC-IVR,SRPMD,SCMD

�0 �as listed in Table I� at both state points, which is con-
sistent with observations of Habershon et al.93 Since the
more accurate the prior, the closer the information entropy is
to zero; this suggests that the approximate quantum dynamic
methods �LSC-IVR, RPMD, and CMD� indeed provide bet-

FIG. 7. �Color online� Same as in Fig. 5, but at the inverse temperature
�=10.

FIG. 8. �Color online� The imaginary momentum autocorrelation function
per particle �divided by m2� transformed from the corresponding Kubo-
transformed real time correlation function from different trajectory-based
approaches �LSC-IVR, RPMD, CMD, and classical dynamics� for liquid
para-H2 at two state points: �a� T=25 K, �=31.7 cm3 mol-1 and �b�
T=14 K; �=25.6 cm3 mol-1.
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ter priors, and even the classical prior is probably superior to
the featureless flat prior, especially so the higher the tem-
perature.

Figures 9 and 10 show the spectra �i.e., the Fourier trans-
form of the Kubo-transformed real time correlation function�
for the 25 and 14 K state points, respectively. First, Fig. 9�a�
shows the spectra given by the four trajectory-based dynam-
ics methods �LSC-IVR, RPMD, CMD, and classical�, which
serve as the priors for the MEAC procedure. Although quali-
tatively similar, one sees that there are significant variations.
Figure 9�b�, however, shows that once the MEAC procedure
is applied, all four methods give essentially same result ex-
cept for some differences at very low frequency. Also shown
in Fig. 9�b� is the result of using the flat prior, and it is seen
to differ significantly from those given by the MEAC using
priors that contain dynamical information.

The good agreement of the MEAC-corrected results in
Fig. 9�b� using the four different trajectory-based priors is
reassuring, but it is illuminating to look in more detail at the
MEAC correction for each case; Figs. 9�c�–9�f� thus show
the spectra given by the trajectory-based prior itself, com-
pared to the MEAC-corrected result, for each of the four
trajectory-based priors. The most important observation seen
here �cf. Fig. 9�c�� is that the MEAC procedure provides
essentially no correction to the LSC-IVR prior, giving even
greater confidence that it is close to the correct result. The
MEAC corrections for the other three trajectory-based priors
are seen ��Figs. 9�d�–9�f�� to be more significant, but obvi-
ously not so large in this case as to cause significant error
since all four MEAC-corrected results are in reasonably good
agreement �Fig. 9�b��. �This result could have perhaps been
anticipated from the results in Fig. 8�a�, namely, that the
LSC-IVR gives an imaginary time correlation function in
better agreement with the exact result than the other approxi-
mate dynamical methods.�

The lower temperature results shown in Fig. 10 are quite
a different story: Fig. 10�a� shows the spectra given by the
four trajectory-based priors, and the differences between
them are much greater than for the higher temperature case.
The four MEAC-corrected spectra �and also the MEAC re-
sult with a flat prior� are shown in Fig. 10�b� and though the
difference between them all has been greatly reduced by the
MEAC procedure, the differences are still quite noticeable.
Again, Figs. 10�c�–10�f� show the spectra given by each of
the priors, compared to the MEAC-corrected result, again
emphasizing the large correction made by the MEAC proce-
dure. It seems clear that the MEAC procedure definitely im-
proves the results for each of the four trajectory-based meth-
ods, but the corrections are so large that it is difficult to know
which of the MEAC-corrected results in Fig. 10�b� are more
accurate.

In Figs. 10�c�–10�f�, although the change in the position
of the maximum in the spectrum between the

TABLE I. Information entropies in the MEAC procedure for different priors
for liquid para-hydrogen at T=25 K, �=31.7 cm3 mol−1 and T
=14 K, �=25.6 cm3 mol−1 under nearly zero extent pressure.

State point Prior Information entropy
S �Å2 /ps2�

T=25 K, �=31.7 cm3 mol−1 TGA/LSC-IVRa −1.3
RPMD −2.1
CMD −2.1

Classical −3.2
Flat −1061.0

T=14 K; �=25.6 cm3 mol-1 TGA/LSC-IVRa −2.1
RPMD −1.7
CMD −3.4

Classical −3.9
Flat −83.0

aAfter this work was completed, we have found an approximation for the
Wigner function involving the Boltzmann operator that is more accurate
than the TGA; using it, the LSC-IVR gives an information entropy that is
closer to zero �i.e., better�. A complete description of this will be presented
in a forthcoming paper.

TABLE II. Diffusion constants for liquid para-hydrogen at T=25 K, �
=31.7 cm3 mol-1 under nearly zero extent pressure.

Diffusion constant �Å2 /ps� at 25 K
Np Prior MEAC correction

Expt.a 1.6
TGA/LSC-IVR 108b 1.81c 1.80
RPMD 256 1.44d 1.77 �1.78d�
CMD 216 1.39e 1.70
Classical 108 1.52 1.87

→� 0.56f
¯

Flat prior 108 ¯ 1.46 �1.47g�
aReference 146.
bWe also extend the system size to 216 molecules per box and the results are
nearly the same. However, how the diffusion constant goes in the thermal
dynamic limit �Np→�� for all MEAC corrections still needs further inves-
tigation.
cReference 26.
dReference 93.
eReference 110.
fReference 98.
gReference 91.

TABLE III. Diffusion constants for liquid para-hydrogen at T=14 K; �
=25.6 cm3 mol−1 under nearly zero extent pressure.

Np Diffusion constant �Å2 /ps� at 14 K
Prior MEAC correction

Expt.a 0.4
TGA/LSC-IVR 108b 0.63c 0.47
RPMD 256 0.27d 0.36 �0.41d�
CMD 216 0.34e 0.37
Classical 108 0.26 0.34

→� 0.02f
¯

Flat prior 108 ¯ 0.43 �0.28g�
aReference 146.
bWe also extend the system size to 216 molecules per box and the results are
nearly the same. However, how the diffusion constant goes in the thermal
dynamic limit �Np→�� for all MEAC corrections still needs further inves-
tigation.
cReference 26.
dReference 93.
eReference 110.
fReference 98.
gReference 91.
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TGA/LSC-IVR and its MEAC correction looks more dra-
matic, the information entropies which measure the overall
adjustment of the spectra, Sclassical=−3.9�SCMD=−3.4

�STGA/LSC-IVR=−2.1�SRPMD=−1.7�A° 2 ps-2�, seem to sug-
gest that only the RPMD provides a better prior than the
TGA/LSC-IVR at lower temperature �T=14 K� for this
system �note that this case only involves linear operators�;
the corresponding real time correlation functions shown in
Figs. 12�c�–12�e� also suggest the TGA/LSC-IVR agrees
with its MEAC correction to longer time than any other prior
�RPMD, CMD, or classical� does. That the TGA/LSC-IVR
result at 14 K �Fig. 10�c�� does not behave as well as that at

25 K �Fig. 9�c�� may partly be due to the fact that the TGA
�Refs. 133–138� that we use to represent the Boltzmann
operator6,25–27 is a type of local harmonic approximation,
which is less accurate for obtaining the Wigner transform Aw

�

at lower temperature. �In fact, all other local harmonic
approximations35,53 encounter this problem. Recent work of
ours, still in progress, does show that a more accurate ap-
proximation than the TGA improves the LSC-IVR result and
gives an information entropy that is closer to zero than any
of the priors listed in Table I; this will be fully described in a
forthcoming paper.�

Turning now to the real time correlation functions them-

FIG. 9. �Color online� Spectra of Kubo-transformed momentum autocorrelation functions for the liquid para-H2 at the state point T=25 K, �
=31.7 cm3 mol-1. Comparison among different trajectory-based approaches �panel �a��, comparison among the MEAC results with different priors �panel �b��,
and comparisons of each prior to its MEAC correction �panels �c�–�f��.
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selves, Figs. 11 and 12 show the results for higher and lower
temperature cases, respectively, and they mirror the behavior
seen above for the spectra. First for higher temperature,
Fig. 11�a� shows the real time correlation functions �corre-
sponding to the spectra in Fig. 9�a�� from the four trajectory-
based methods themselves, and they show significant differ-
ences. However, the MEAC-corrected correlation functions
shown in Fig. 11�b� �corresponding to the spectra in
Fig. 9�b�� are in very good agreement with each other �ex-
cept for the result obtained using the flat prior that is also
shown in Fig. 9�b��. Figures 11�c�–11�e� show more detailed
comparisons, specifically the LSC-IVR �and its MEAC-
corrected version� compared to each of the other three

trajectory-based correlation functions �and their MEAC-
corrected versions�. Here one sees that the MEAC procedure
provides essentially no correction in the LSC-IVR case �just
as for the case of the spectra�, and that the primary region in
which the other three trajectory-based methods are in error
�before the MEAC correction� is a too rapid fall off at short
time.

The lower temperature case is again more challenging.
Figure 12�a� shows the real time correlation functions given
by the four trajectory-based methods: The RPMD and CMD
results agree well with each other, and also reasonably well
with the classical, all three having prominent minima at
�0.2–0.3 ps. The TGA/LSC-IVR correlation function, on

FIG. 10. �Color online� Same as in Fig. 9, but at the different state points: T=14 K; �=25.6 cm3 mol-1.
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the other hand, has only a very shallow minimum at this
time. Once corrected by the MEAC procedure, however,
Fig. 12�b� shows that all four results—and even a fifth one
corresponding to the flat prior—are in much better agree-
ment. However, there are noticeable differences between all
of the results in the region beyond the minimum. It is diffi-
cult at present to know which of these results is more accu-
rate in this regime; more accurate calculations for long time
will be required to clarify this.

As a final quantitative test, diffusion constants have been
computed from the real time correlation functions,

D =
1

3m2Np
�

0

�

dtCpp�t� =
1

6m2Np
C� pp�� = 0� �21�

at the two state points for the four trajectory-based dynami-
cal approximations, along with the MEAC results obtained
using these as the priors �and also that given by using the flat
prior�; these results are listed in Tables II and III. At both
temperatures the MEAC procedure considerably narrows the
spread in values given by the various dynamical methods,
the more so for the lower temperature, where variations of

FIG. 11. �Color online� Kubo-transformed momentum autocorrelation functions �divided by 2mkB� for the liquid para-H2 at the state point: T=25 K, �
=31.7 cm3 mol-1. Comparison among different trajectory-based approaches �panel �a��, comparison among the MEAC results with different priors �panel �b��,
and comparisons between the LSC-IVR �and its MEAC-corrected version� to each of other trajectory-based approaches �and their MEAC corrections� �panels
�c�–�e��.
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more than a factor of 2 are reduced to 20%–30%. The
MEAC+LSC / IVR gives nearly the same result as the LSC-
IVR at T=25 K, but for the lower temperature the MEAC
procedure decreases it by �25% and brings it into much
better agreement with experiment. The results in Tables II
and III suggest that the MEAC procedure is very likely an
improvement for all other priors as well.147

IV. CONCLUSIONS

By using the LSC-IVR as the prior for the MEAC pro-
cedure, we have shown that the MEAC+LSC / IVR approach

significantly improves the region of accuracy of the LSC-
IVR approximation for real time correlation functions. This
is particularly useful for low temperature, where a SC ap-
proximation such as the LSC-IVR is expected to be least
accurate on its own. The MEAC correction to the LSC-IVR
is effective for correlation functions of both linear and non-
liner operators. This approach has been demonstrated for
both a challenging one-dimensional model �a pure quartic
potential� and a realistic system �liquid para-hydrogen at two
state points�. This MEAC extension of the LSC-IVR ap-
proximation should be of use in a variety of other applica-
tions, e.g., for evaluating the correlation functions relevant to
vibrational energy relaxation35–39 in liquids.

FIG. 12. �Color online� Same as in Fig. 11, but at the different state points: T=14 K; �=25.6 cm3 mol-1.
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The applications to liquid para-hydrogen, in fact, show
that essentially all trajectory-based quantum dynamics ap-
proximations �LSC-IVR, RPMD, CMD, and also FBSD,
considering its similarity to LSC-IVR �also see the note Ref.
148�� benefit from MEAC corrections, a generalization of the
result first demonstrated by the work of Habershon
et al.93 for the RPMD model. Furthermore, the MEAC cor-
rection should be applicable to any approximate method for
describing the quantum dynamics, such as QMCT
approach115,126,142,143,149–152 and empirical quantum correc-
tion factors for classical dynamics,118,153–159 and even classi-
cal dynamics itself. The information entropy test �for the
MEAC procedure�, as shown in Table I, can be considered a
measure to compare the accuracy of priors produced by vari-
ous approximate methods for quantum dynamics. Use of the
classical correlation function itself as the prior, i.e., the
MEAC+classical approach, was seen to work fairly and sug-
gests an extremely economic way to obtain a rough estimate
of quantum dynamical effects on the correlation functions for
condensed matter systems.160 �We also note that for all the
priors containing dynamic information for the system in the
MEAC procedure, the CME seems to work as well as the
L-curve technique even when the spectrum is broad and
work better when the spectrum contains sharp peaks, and
thus seems to be a viable choice for us.�

Although the MEAC+LSC / IVR approach extends the
time scale over which quantum coherence behavior can be
correctly described, it nevertheless does dephase at still
longer times. In order to capture true quantum interference
effects on time correlation functions for longer time, the im-
proved version of the LSC-IVR6 and more accurate SC-IVR
approaches �such as the generalized FB-IVR �Ref. 73� and
exact FB-IVR �Ref. 5� of Miller et al.� are needed, e.g., for
use as better priors in the MEAC procedure. Further investi-
gation along such directions is certainly warranted.
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APPENDIX: MORE DISCUSSION ON THE RELATION
BETWEEN REAL TIME AND IMAGINARY TIME
AUTOCORRELATION FUNCTIONS

For the standard version of correlation function given by
Eq. �1�, it can be verified that

C*�t� = C�− t� �A1�

so that by virtue of detail balance, Eq. �4�, the spectrum
defined in Eq. �3� can be obtained from the real part of C�t�
�which usually is more convenient�,

C� ��� =
2

1 + e−����
−�

�

dte−i�t Re�C�t��


2

1 + e−���C� R��� . �A2�

Equation �6� then has the equivalent form

C�i��� = �
0

�

d�KR��,��C� R��� , �A3�

where

KR��,�� =
1

�
� e−��� + e−��−����

1 + e−��� � , �A4�

which is also a function which exponentially decays as �
→� for any � �0����� and is constant for �=0,�. Con-
sidering the symmetry C�i���=C�i���−���, it is straightfor-
ward to see that C�i�� /2� is the furthest statistically inde-
pendent point along the imaginary time axis and will thus
have the strongest influence on the long time behavior of the
real time correlation function. To demonstrate this even more
concretely, following the work of Habershon et al.93 for
Kubo-transformed correlation functions, one can substitute
Eq. �A2� into Eq. �A3�, which leads to the following relation
between the imaginary and real time correlation functions:

C�i��� = �
0

�

dtgR��,t�Re�C�t�� , �A5�

where

gR��,t� = �
0

�

d�e−i�tKR��,�� = � 1

��
Im� 1

sinh��t/�� − i��/��
−

1

sinh��t/�� + i��/��� �for 0 � � � ��

��t� for � = 0,� .
� �A6�
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One can verify that gR�� , t�=gR��−� , t�. Since the integral
of gR�� , t�� is normalized to unity, i.e., �0

�dt�gR�� , t��=1,
now one can define a function

GR��;t1,t2� = �
t1

t2

dt�gR��,t�� �A7�

as a measure of the weight contributed from the real part of
the real time correlation function between the time interval
�t1 , t2� to the imaginary time data C�i��� and vice versa; note
that GR�� ; t1 , t2�=GR��−� ; t1 , t2�� �0,1�. Figure 13 plots
GR�� ; t1 , t2� as a function of � /�. One sees that values of the
correlation function around the imaginary time �=� /2 con-
strain the longest real time value of the correlation function,
analogous to the analysis for Kubo-transformed autocorrela-
tion functions by Habershon et al.,93 and the well-known fact
that analytic continuation from the imaginary time data
C�i��� �such as Eq. �A3� or �A5�� provides little information
on real times longer than the order of the thermal time ��.

Finally, in addition to the standard autocorrelation
function, there are other versions of the autocorrelation

function, such as the symmetrized version119 with Âsym
�

=e−�Ĥ/2Âe−�Ĥ/2 /Z in Eq. �1�, and the Kubo-transformed

version120 with ÂKubo
� =�0

�d�e−��−��ĤÂe−�Ĥ /Z� in Eq. �1�.
These three versions are related to one another by the fol-
lowing identities between their Fourier transforms:

���

1 − e−���C� Kubo��� = C� ��� = e���/2C� sym��� , �A8�

where the spectrum C� ��� is defined in Eq. �3�, etc. Substi-
tuting Eq. �A8� into Eq. �6� leads to the analytic continuation
equations for different versions of the autocorrelation func-
tions. For instance, for Kubo-transformed version, one has

C�i��� = �
0

�

d�KKubo��,��C� Kubo��� , �A9�

where

KKubo��,�� =
����e−��� + e−��−�����

2��1 − e−����
�A10�

for which similar studies can be found in literature.86,93
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use in Eqs. �A9� and �A10� for the MEAC+classical method.
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