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The linearized approximation to the semiclassical initial value representation �LSC-IVR� is used to
calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic
neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used
which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is
approximate. Some of the correlation functions involve only linear operators, and others involve
nonlinear operators. The consistency of the results obtained with the various time correlation
functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability
to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic
systems. The good agreement of the results obtained from different correlation functions, their
excellent behavior in the spectral moment tests based on the exact moment constraints, and their
semiquantitative agreement with the inelastic neutron scattering experimental data all suggest that
the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation
functions. © 2008 American Institute of Physics. �DOI: 10.1063/1.2889945�

I. INTRODUCTION

Most quantities of interest in the dynamics of complex
systems can be expressed in terms of thermal time correla-
tion functions.1 For example, dipole moment correlation
functions are related to absorption spectra, flux correlation
functions yield reaction rates, velocity correlation functions
can be used to calculate diffusion constants, and vibrational
energy relaxation rate constants can be expressed in terms of
force correlation functions. These correlation functions1 are
of the form

CAB�t� = Tr�Â�eiĤt/�B̂e−iĤt/�� , �1.1�

where Â�= �1 /Z�e−�ĤÂ is for the standard version of the cor-

relation function, or Âsym
� = �1 /Z�e−�Ĥ/2Âe−�Ĥ/2 is for the sym-

metrized version,2 or ÂKubo
� = �1 /Z���0

�d�e−��−��ĤÂe−�Ĥ is for
the Kubo-transformed version.3 These three versions are re-
lated to one another by the following identities between their
Fourier transforms:

���

1 − e−��� C̃AB
Kubo��� = C̃AB��� = e���/2C̃AB

sym��� , �1.2�

where C̃AB���= �1 /2���−�
� dte−i�tCAB�t�, etc. Here Ĥ is the

�time-independent� Hamiltonian for the system, which for
large molecular systems is usually expressed in terms of its
Cartesian coordinates and momenta

Ĥ = 1
2 p̂TM−1p̂ + V�q̂� = Ĥ0 + V�q̂� , �1.3�

where M is the �diagonal� mass matrix and p̂, q̂ are the
momentum and coordinate operators, respectively. Also, in

Eq. �1.1�, Z=Tre−�Ĥ��=1 /kBT� is the partition function, and

Â and B̂ are operators relevant to the specific property of
interest.

For large molecular systems, classical molecular dynam-
ics �MD� simulation methods are the only generally appli-
cable approach, so for this reason we have been pursuing the
use various initial value representations4–19 �IVRs� of semi-
classical �SC� theory20,21 to add quantum effects to classical
MD simulations of time correlation functions. The SC-IVR
provides a way for generating the quantum time evolution

operator �propagator� e−iĤt/� by computing an ensemble of
classical trajectories, much as is done in standard classical
molecular dynamics simulations. Such approaches actually
contains all quantum effects at least qualitatively, and in
molecular systems the description is usually quite
quantitative.4–8,15,20–27

The simplest �and most approximate� version of the
SC-IVR is its “linearized” approximation
�LSC-IVR�,9,26,28–35 which leads to the classical Wigner
model36–39 for time correlation functions; see Sec. II B for a
summary of the LSC-IVR. The classical Wigner model is an
old idea, but it is important to realize that it is contained
within the SC-IVR approach, as a well-defined approxima-
tion to it.28,29 There are other ways to derive the classical
Wigner model �or one may simply postulate it�,9,35,40,41 and
we also note that the “forward-backward semiclassical
dynamics” approximation of Makri et al.32,42–56 is very simi-
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lar to it. The LSC-IVR/classical Wigner model cannot de-
scribe true quantum coherence effects in time correlation
functions—more accurate SC-IVR approaches, such as the
Fourier transform forward-backward IVR �FB-IVR�
approach22,57 �or the still more accurate generalized
FB-IVR58� of Miller et al., are needed for this—but it does
describe some aspects of the quantum dynamics very
well;26,30–32,34,59–62 e.g., the LSC-IVR has been shown to de-
scribe reactive flux autocorrelation functions �which deter-
mine chemical reaction rates� quite well, including strong
tunneling regimes,31 and velocity autocorrelation
functions26,32,60 and force autocorrelation functions26,34,61,62

in systems with enough degrees of freedom for quantum
rephasing to be unimportant.

Similar to the LSC-IVR are two other ways to approxi-
mate the quantum dynamic correlation function such that the
result both approaches its classical limit at high temperature
and achieves the exact quantum result as t→0 for arbitrary
potentials. One such approach is the centroid molecular dy-
namics �CMD� method of Voth and co-workers,63–75 and an-
other is the ring polymer molecular dynamics �RPMD�
model recently proposed by Manolopoulos and
co-workers.76–81 In these approaches the real time dynamics
is related to a modified classical dynamics of the path inte-
gral beads of the quantum Boltzmann operator or the cen-
troid of them. These two models are also unable to capture
true quantum coherence effects. For the case of harmonic
systems, both of these models give the exact quantum result

if at least one of the operators Â and B̂ is a linear function of
position or momentum operators; however, they do not give
the correct result if both operators are nonlinear71,78,82,83; the
LSC-IVR, on the other hand, gives the exact quantum corre-

lation function for all time t and for arbitrary operators Â and

B̂ for a harmonic potential.9 Figure 4 of a recent study26

shows that for the realistic anharmonic system liquid para-H2

at the state point �25 K under nearly zero external pressure�,
the LSC-IVR is a more faithful approximation to quantum
mechanical real time correlation functions at short time �on
the order of thermal time ��� than the CMD and RPMD
models even for linear operators �such as p̂ or x̂�. How gen-
erally true this conclusion is must of course await future
investigations on other realistic systems. However, both the
CMD and the RPMD models have the desirable feature that
the quantum mechanical equilibrium distribution is correctly

conserved—i.e., for the case Â=1 the correlation function

�i.e. the canonical ensemble average of operator B̂� is time
independent—while this is not the case for the LSC-IVR
�though Liu et al.26,54 have demonstrated that this is in fact
not a problem in practical calculations so long as the corre-
lation time scale is not too long�.

We also note here that the maximum entropy analytic
continuation �MEAC� approach developed mainly by Berne
and co-workers84–89 and quantum mode-coupling theory
�QMCT� approach of Rabani and Reichman90–97 are also
very useful methods to capture accurate short-time behavior
of the real time correlation function. Since only the imagi-
nary time information is needed as the input, calculations of
these two methods are usually light and are feasible for cases

where dynamics are very slow �i.e., glassy liquids�, which is
the strength of these two methods. However, both methods
have their shortcomings as well, i.e., neither of them is exact
in the classical limit �although the QMCT reaches the clas-
sical mode-coupling theory that is accurate in many cases in
the classical limit�, the MEAC is not so good when the spec-
trum of the correlation function has multiple maxima87 and
when the system has a separation of time scales, and the
mode-coupling theory is not easy to apply to polyatomic
liquids.98,99 Since this paper mainly discusses on the approxi-
mated quantum dynamical methods involving trajectories,
we focus on the comparison among the LSC-IVR, CMD, and
RPMD.

The purpose of this paper is to present an additional
challenging application and test of the LSC-IVR approxima-
tion to quantum mechanical time correlation functions,
namely the incoherent dynamic structure factor for inelastic
neutron scattering from liquid para-hydrogen,100,101 with spe-
cial emphasis on how consistent the results are when obtain-
ing this quantity from various time correlation functions, i.e.,
in most cases the physical quantity of interest can be ex-
pressed in terms of different time correlation functions,
which would all give the same result if the calculations could
be carried out exactly: e.g., Diffusion coefficients can be
obtained from position-position or velocity-velocity correla-
tion functions, rate constants can be obtained from flux-flux
or side-side correlation functions, etc. When the calculations
are carried out approximately, though, the results for the
physical quantity given by using different correlation func-
tions will generally be different, and the degree to which
they do agree with each other thus offers some measure of
how accurate one believes the approximate treatment to be.
In the present case, the incoherent dynamic structure factor
for inelastic neutron scattering can be obtained from the self-
part of the intermediate scattering function �involving non-
linear operators�, or from the velocity correlation function
�involving linear operators�;102 see Sec. II A for more details.
This thus provides an ideal test case to study the behavior of
the LSC-IVR method and its comparison to the CMD �Ref.
72� and the RPMD �Ref. 78� models. Section II first summa-
rizes the theory of inelastic neutron scattering and shows
how the self-part of the intermediate scattering function and
the velocity correlation function are related with each other,
and then describes the LSC-IVR formulation of these time
correlation functions using the thermal Gaussian approxima-
tion �TGA�.26,32 Section III presents the LSC-IVR simulation
results for the incoherent dynamic structure factor of liquid
para-hydrogen at T=14 K �under nearly zero external pres-
sure� using different correlation functions, along with the
spectral moment test and the comparison to other methods
and the recent inelastic neutron scattering experiment data.101

Conclusions are given in Sec. IV.

II. THEORY AND METHODOLOGY

A. Inelastic neutron scattering

Inelastic neutron scattering is a well established tech-
nique for obtaining information on dynamic structure of liq-
uids and vibrational spectroscopy.103–105 Within the first Born
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approximation, the experimentally observed differential scat-
tering cross section was shown by Von Hove106 to be propor-
tional to the coherent dynamic structure factor which reflects
the collective behavior of liquids,

Scoh��,�� =
1

2�
�

−�

�

dte−i�tF��,t� . �2.1�

Here the intermediate scattering function F�� , t� is given by

F��,t� =
1

N
�
i,j=1

N

�e−i�·x̂iei�·x̂j�t�	 , �2.2�

where N is the number of particles of the system, x̂i is the
position operator of the ith particle, ei�·x̂j�t�

=eiĤt/�ei�·x̂je−iĤt/� is the Heisenberg operator of ei�·x̂j, and the
momentum and energy transfers from the scattered neutron
to the liquid are, respectively,

�� = ��i − �� f , �2.3�

�� =
�2��i

2 − � f
2�

2mn
, �2.4�

where �i and � f are the initial and the final wave vectors of
the neutron and mn is the mass of the neutron.

For some liquids, such as liquid hydrogen and deute-
rium, in which the particles have nuclear spin effects or
nuclear internal variables, the incoherent dynamic structure
factor which reflects the single-particle motion is
pronounced,104

Sinc��,�� =
1

2�
�

−�

�

dte−i�tFs��,t� , �2.5�

where the self-part of the intermediate scattering function is

Fs��,t� =
1

N
�
i=1

N

�e−i�·x̂i�0�ei�·x̂i�t�	 . �2.6�

For isotropic systems, both the dynamic structure factors and
the scattering functions only depend on �= 
�
, i.e., they are
independent of the direction of �.

Using a cumulant expansion, it can be shown that the
self-part of the intermediate scattering function has the fol-
lowing equivalent form:102

Fs��,t� = exp�it
��2

2m
+ �

n=1

�

�− �2�n�n�t�� , �2.7�

where m is the mass of the particle in the pure liquid and
�n�t� is related to 2n-point velocity correlation functions, i.e.,

�1�t� = �
0

t

dt1�
0

t1

dt2�v��t2�v��t1�	 , �2.8�

�2�t� = �
0

t

dt1�
0

t1

dt2 ¯ �
0

t3

dt4�v��t4� ¯ v��t1�	 −
1

2
��1�t��2,

�2.9�

and so on, where v� is the velocity component along the
direction of �. For small values of �, the first order trunca-

tion in Eq. �2.7� gives a Gaussian approximation, which for
isotropic liquids is

Fs��,t� = exp��2it
�

2m
−

1

3
�

0

t

�t − t��Cv·v�t��dt��� ,

�2.10�

where Cv·v�t�� is the standard velocity autocorrelation func-
tion given by Eq. �1.1�. For the case that the velocity distri-
bution of the system is Gaussian, �2�t� and higher order
terms vanish, so that the Gaussian approximation of Eq.
�2.10� becomes exact. Furthermore, it can be shown that the
velocity distribution is Gaussian �i.e., Maxwellian� even if
quantum corrections through order �2 are taken into
account,107 so that higher order corrections to the Gaussian
approximation of Eq. �2.10� are expected to be extremely
small even for large �, except for very low temperatures.102

Equation �2.10� is in fact a very good approximation, i.e.,
non-Maxwellian effects are indeed negligible, for the system
under study in this paper—liquid para-hydrogen at 14 K—as
implied in the literature72,78,100 and also discussed in Sec. III
and Appendix C. The incoherent dynamic structure factor
can thus be computed either directly through the self-part of
the intermediate scattering function, Eq. �2.6�, or indirectly
through the standard velocity function, Eq. �2.10�, thus pro-
viding a test of the consistency of the LSC-IVR for these
different correlation functions �involving both linear and
nonlinear operators�.

B. LSC-IVR correlation functions using the TGA

The SC-IVR approximates the forward �backward� time

evolution operator e−iĤt/� �eiĤt/�� by a phase space average
over the initial conditions of forward �backward� classical
trajectories.5,7,8,20 By making the �drastic but reasonable� ap-
proximation that the dominant contribution to the phase
space averages comes from forward and backward trajecto-
ries that are close to one another and then linearizing the
forward and backward actions of such trajectories, Miller
and co-workers28–30 obtained the linearized SC-IVR
�LSC-IVR�, or classical Wigner model for the correlation
function

CAB
LSC-IVR�t� = �2���−3N� dx0� dp0Aw

��x0,p0�Bw�xt,pt� ,

�2.11�

where Aw
� and Bw are the Wigner functions36 corresponding

to these operators,

Ow�x,p� =� d�x�x − �x/2
Ô
x + �x/2	eipT�x/� �2.12�

for any operator Ô. Here �x0 ,p0� is the set of initial condi-
tions �i.e., coordinates and momenta� for a classical trajec-
tory, �xt�x0 ,p0� ,pt�x0 ,p0�� being the phase point at time t
along that trajectory. More recently, Liu and Miller9 have
shown that the exact quantum time correlation function can
be expressed in the same form as Eq. �2.11�, with an associ-
ated dynamics in the single phase space, and it was further-
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more demonstrated that the LSC-IVR is its classical limit
��→0�, high temperature limit ��→0�, and harmonic limit.
The LSC-IVR can be applied not only to correlation func-
tions at equilibrium but also to nonequilibrium correlation
functions. These merits of the LSC-IVR make it a versatile
tool to study quantum-mechanical effects in chemical dy-
namics of large molecular systems.

Here we use the TGA �Refs. 108–112� of Frantsuzov and
Mandelshtam to construct the Boltzmann operator as neces-

sary to obtain the Wigner function of operator Â�.26,32 In the
TGA, the Boltzmann matrix element is approximated by a
Gaussian form

�x
e−	Ĥ
q0	 =  1

2�
�3N/2 1


det�G�	��
1/2


exp−
1

2
�x − q�	��TG−1�	��x − q�	�� + ��	�� ,

�2.13�

where G�	� is an imaginary-time dependent real symmetric
and positive-definite matrix, q�	� the center of the Gaussian,
and ��	� a real scalar function. The parameters are governed
by the equations of motion in imaginary time which were
given explicitly in our previous paper32 and in other
references.108,109,112 The matrix G�	� is a full 3N
3N ma-
trix, where N is number of particles of the system. The TGA
for the Boltzmann operator makes it possible to perform the
Fourier transform necessary to construct the Wigner function

of operator Â� analytically; specifically, Aw
��x0 ,p0� in Eq.

�2.11� is given as follows:32

Aw
��x0,p0� =

1

Z
� dq0

1

�4��3N/2
exp�2���

2 ��

det G��

2 �
1/2



1

�3N/2
det G��
2 �
1/2


exp�− �x0 − q��
2 ��TG−1��

2 �


�x0 − q��
2 ��� 
det G��

2 �
1/2

���2�3N/2


exp�− p0
TG��

2 �p0/�2� fA�
TGA�x0,p0,q��

2 �� ,

�2.14�

where for the Kubo-transformed momentum correlation
function

fA�,Kubo
TGA-LSC-IVR�x0,p0,q��

2 �� = 2
�2�

MG��
2 �p0 �2.15�

for the momentum operator Â= p̂ with ÂKubo
�

= �1 /Z���0
�d�e−��−��Ĥp̂e−�Ĥ;32 for the standard momentum

correlation function

fAA
TGA-LSC-IVR�x0,p0,q��

2 �� = p0 − i�G−1��
2 ��x0 − q��

2 ��
�2.16�

for the momentum operator Â= p̂ with Â�= �1 /Z�e−�Ĥp̂;32 for
the self-part of the intermediate scattering function

fAA
TGA-LSC-IVRx0,p0,q �

2��
=

1

N
�
i=1

N

e−i�·xi�0�


exp�p0
T · Gxi

 �
2� · �/� −

1

4
�T · Gxixi

 �
2� · �� �2.17�

for the operator Â=1 /N�i=1
N e−i�·x̂i with Â�

= �1 /Z�e−�Ĥ�1 /N�i=1
N e−i�·x̂i�. Here Gxi

�� /2� denotes the three
columns �related with x j� of the matrix G�� /2�, and
Gxixi

�� /2� the 3
3 block matrix of which the rows and
columns representing x j. The derivation of Eq. �2.17� is
shown in Appendix A. Calculation of Bw in Eq. �2.11� is

usually an easy task; in fact, B̂ is often a function only of
coordinates or only of momenta, in which case its Wigner
function is simply the classical function itself. Monte Carlo
evaluation of Eq. �2.11� together with Eq. �2.14� is now
straightforward, and we refer readers to Sec. IV of our
recent paper32 for more details. We note here that the
TGA/LSC-IVR is exact in the classical limit and in the har-
monic limit as pointed out in our previous work.32

For our simulations �the results of which are presented
and discussed in Sec. III� we have used the following three
approaches to calculate the incoherent dynamic structure fac-
tor Sinc�� ,��:

�1� Direct implementation of the TGA/LSC-IVR in Eqs.
�2.11�, �2.14�, and �2.17� to calculate the self-part of the
intermediate scattering function Fs�� , t�, with Sinc�� ,��
then given by Eq. �2.5�. We refer to this as “inelastic-
std.”

�2� Use of Eqs. �2.11�, �2.14�, and �2.16� to obtain the stan-
dard velocity correlation function Cv·v�t� and then cal-
culation of Sinc�� ,�� via Eqs. �2.10� and �2.5�. We de-
note this “vv-std.”

�3� Calculation of the Kubo-transformed velocity correla-
tion function Cv·v

Kubo�t� by Eqs. �2.11�, �2.14�, and �2.15�,
then use of the relation between the spectra, Eq. �1.2�,
to obtain the standard correlation function, i.e.,

Cv·v�t� =
1

2�
�

−�

�

d�ei�t ���

1 − e−����
−�

�

dt�e−i�t�Cv·v
Kubo�t�� ,

�2.18�

with Sinc�� ,�� then given by Eqs. �2.18�, �2.10�, and
�2.5�. We denote this approach “vv-kubo.”

Though all three earlier approaches would give the same
result for Sinc�� ,�� if the quantum mechanical correlation
functions were calculated exactly, the results will actually be
somewhat different because the LSC-IVR is being used to
calculate the correlation functions. Comparing the results ob-
tained for Sinc�� ,�� by these various approaches thus pro-
vides a test of the consistency �and presumably the accuracy�
of the LSC-IVR approximation for these correlation func-
tions, which involve both linear and nonlinear operators.
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C. Spectral moment tests

At present, exact quantum results of Sinc�� ,�� for this
system are not available, so there is no way to be absolutely
certain how well the LSC-IVR approximation performs in
our present calculations. However, low order spectral mo-
ments of Sinc�� ,�� can be calculated essentially exactly, by
Feynman �imaginary time� path integrals methods, and this
provides some rigorous comparisons by which to judge the
accuracy of these methods. Define the recoil frequency as
�R=��2 /2m. The now standard procedure102 is to express
the spectral moments as

�n��� = �
−�

�

�� − �R�nSinc��,��d�

= i−n dn

dtn �e−i�RtFs��,t��t=0, �2.19�

e.g., the three lowest moments for the isotropic system
are102,113

�0��� = 1, �2.20�

�1��� = 0, �2.21�

and

�2��� = �2�v�
2	 =

�2

3
Cv·v�0� �

2�2

3m
� p̂2

2mN
� . �2.22�

It is straightforward to verify that, when the Gaussian ap-
proximation, Eq. �2.10�, is combined with exact velocity cor-
relation functions, all moments in Eq. �2.19� are exact if the
velocity distribution of the system is Gaussian; the four low-
est moments are exact even for more general velocity distri-
butions. Eqs. �2.7� and �2.19� indicate that �0��� and �1���
remain exact when the Gaussian approximation, Eq. �2.10�,
is combined with any approximate velocity correlation func-
tion, but �2��� and higher order moments generally do not.
Moreover, in Appendix B it is shown that �0��� and �1���
are also exact for the TGA/LSC-IVR formulation of the self-
part of the intermediate scattering function Fs�� , t�, Eq.
�2.6�. In summary, all three methods in Sec. II B �the
inelastic-std, vv-kubo, and vv-std methods based on the
TGA/LSC-IVR� give the exact values for the two lowest
moments �0��� and �1��� �as shown in Table I�.

Craig and Manolopoulos78 proposed another test to
check the accuracy of Sinc�� ,�� by calculating another set of
spectral moments of the incoherent relaxation spectrum

S̃inc�� ,��,

�n��� = �
−�

�

�nS̃inc��,��d� � i−n dn

dtn �F̃s��,t��t=0. �2.23�

Here the incoherent relaxation function F̃s�� , t� is

F̃s��,t� =
1

�N
�

0

�

d��
j=1

N

�e−i�·x̂j�−i���e−i�·x̂j�t� 	 �2.24�

and S̃inc�� ,�� is the Fourier transform of F̃s�� , t�. Since we

do not directly calculate F̃s�� ,�� �and then its spectrum

S̃inc�� ,��� using the TGA/LSC-IVR, we implement the rela-
tion in Eq. �1.2� into Eq. �2.23�, i.e.,

�� n��� = �
−�

�

�n �1 − e−����
���

Sinc��,��d� . �2.25�

It can be seen that each of the moment �� n��� in Eq. �2.25�
involves the collection of the moments �n��� in Eq. �2.19�.
Based on the detailed balance for Sinc�� ,��,

e−���CAB��� = CAB�− �� , �2.26�

one can show that all odd moments in Eq. �2.25� vanish.
From Eq. �2.23�, it can be shown3 that the first two even
moments are

�� 0��� = F̃s��,0� � �S��� �2.27�

and

�� 2��� =
�2

�m
. �2.28�

Accurate values78 of the susceptibility function �S��� can be
obtained by imaginary time path integral techniques. Gener-
ally, all the three methods in Sec. II B �inelastic-std, vv-kubo,
and vv-std based on the TGA/LSC-IVR approach� only give
approximate results for �� 0��� and �� 2��� �see Table I�. Com-
parison of these results with the exact ones can thus be used
to check the accuracy of Sinc�� ,�� given by the three meth-
ods proposed in Sec. II B. Table I �for the LSC-IVR� in this
paper can be directly compared with Table I �for the RPMD�
in Refs. 78 and 114 though such a table the CMD is not
available in Ref. 72.

III. RESULTS AND DISCUSSIONS

A. Simulation details

The system under study is liquid para-hydrogen at the
state point T=14 K, =23.5 nm−3 under nearly zero exter-
nal pressure,115 for which the Kubo-transformed velocity
correlation function has been calculated in our previous
paper.26 The computational details are quite similar and are
briefly described as follows.

Liquid para-hydrogen is well described by the Silvera–
Goldman �SG� model,116 an isotropic pair potential in which
the para-hydrogen molecule is treated as a sphere particle.

TABLE I. Two sets of moments given by the three methods based on the
LSC-IVR using the TGA as discussed in Sec. III. Those that can be analyti-
cally exact are marked with “3”.

Moments Inelastic-std vv-kubo vv-std

�0��� 3 3 3

�1��� 3 3 3

�2��� 
 
 


�� 0��� 
 
 


�� 1��� 3 3 3

�� 2��� 
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Thus, both Sinc�� ,�� and Fs�� , t� depend only on �= 
�
. To
accelerate the imaginary time propagation in the TGA, we fit
the SG potential to a linear combination of Gaussians.26 In
the simulation, we used periodic boundary conditions with
108 molecules per cell with the minimum image convention
at various values of the momentum transfer parameter �
= 
�
 that satisfy the Laue relation117,118

� = 2n�/L , �3.1�

where L is the length of the unit cell and n is integer. As in
our previous applications,26,32 the standard Metropolis algo-
rithm was implemented and the acceptance ratio of new ini-
tial Gaussians �for the Boltzmann matrix element, Eq. �2.13��
was about 40%. The initial inverse temperature of starting
Gaussians was 0.0001�. About 5
104 imaginary trajectories
were used for initial equilibrations, and then during the simu-
lation of the correlation function the total number of imagi-
nary trajectories was 8.6
105, with an imaginary time step
of 22. With initial conditions generated by each imaginary
time trajectory, ten real time trajectories were propagated
with the usual velocity Verlet algorithm, with a time step of
1.2 fs.

During the TGA/LSC-IVR simulation, Fs�� , t�, Cv·v�t�,
and Cv·v

Kubo�t� were calculated simultaneously by collecting
their estimators fA�

TGA�x0 ,p0 ,q�� /2�� ·Bw�xt ,pt� along trajec-
tories. For convenience, the incoherent dynamic structure
factor Sinc�� ,�� was calculated from the real part of Fs�� , t�,
i.e.,

Sinc��,�� =
1

��1 + e−�����−�

�

dte−i�t Re�Fs��,t�� . �3.2�

It is straightforward to derive Eq. �3.2� based on the detail
balance, Eq. �2.26�.

B. Incoherent dynamic structure factors

Figure 1 shows the self-part of the intermediate scatter-
ing function Fs�� , t� at four different values of the momen-
tum transfer parameter, i.e., �=0.378 Å−1 �n=1�,

1.512 Å−1 �n=4�, 2.646 Å−1 �n=7�, and 4.536 Å−1 �n
=12�. One sees that the time scale for the decay of Fs�� , t�
decreases as the momentum transfer parameter � increases.
By way of comparison, the typical time scale of the Kubo-
transformed velocity correlation function is �1 ps as shown
in Fig. 3�b� of Ref. 26. As pointed out in previous sections,
the LSC-IVR approximation to quantum mechanical correla-
tion functions is expected to be best at short times so that one
would thus expect it to be better for larger momentum trans-
fer. On the other hand, the larger the momentum transfer
parameter �, the more nonlinear are the operators in the cor-
relation function Fs�� , t�. Although it has already been
shown that the LSC-IVR deals well26 with linear operators
�i.e., the velocity correlation function� in this highly anhar-
monic system, there is still the question of how well it treats
these nonlinear operators.

To check these two points, incoherent dynamic structure
factors Sinc�� ,�� are calculated by the three methods pro-
posed in Sec. II B and are plotted as a function of the energy
transfer parameter � at various values of the momentum
transfer parameter � in Fig. 2. �Appendix C discusses in
more detail why Eq. �2.10� is expected to be a good approxi-
mation for all � for this system, and why this leads to the
incoherent dynamic structure factor Sinc�� ,�� being Gauss-
ian at very large � and Lorentzian at very small �, as ob-
served in Fig. 2.�

The most important conclusion from Fig. 2 is that the
results of the three methods based on the LSC-IVR approxi-
mation are in very good agreement with one another, pro-
vided � is not very small. It is very encouraging that the
results agree well with each other even for quite large values
of �, for which the relevant operators are highly nonlinear.
This demonstrates that the LSC-IVR provides a consistent
approximation to the quantum mechanical correlation func-
tions for both linear and the nonlinear operators when the
time scale of the correlation function is not too long. How-
ever, for very small �, corresponding to long time, Fig. 2
does show some deviations among the three methods pro-
posed in Sec. II B based on the TGA/LSC-IVR, although the
peaks are located at nearly the same frequency. In this re-
gime, the deviations among three methods imply that some
inconsistency may exist in the LSC-IVR formulation of cor-
relation functions for different operators at very long times.

Figure 2 can be directly compared with Fig. 7 in Ref. 72
by Hone and Voth and Fig. 1 in Ref. 78 by Craig and
Manolopoulos. These authors have studied the same system
using the CMD and the RPMD models. They considered two
approximate approaches:

�1� Calculate the Kubo-transformed version of

Fs�� , t�—the incoherent relaxation function F̃s�� , t�,
i.e., Eq. �2.24�—and then obtain the incoherent dy-
namic structure factor Sinc�� ,�� from its spectrum via
Eq. �1.2�; we refer to this approach as “RPMD-kubo”
for the RPMD.

�2� Calculate the Kubo-transformed velocity correlation
function and follow the same procedure as the vv-kubo
method proposed in Sec. II B; we refer to this as
“RPMD-vv-kubo” for the RPMD.

FIG. 1. �Color online� Self-parts of the intermediate scattering functions
Fs�� , t�=1 /N�i=1

N �e−i�·x̂iei�·x̂i�t�	 for liquid para-hydrogen at the state point
T=14 K; =25.6 cm3 mol−1. Dashed line: �=0.378 Å−1. Dotted line: �
=1.512 Å−1. Dot-dashed line: �=2.646 Å−1. Solid line: �=4.536 Å−1.

144511-6 J. Liu and W. H. Miller J. Chem. Phys. 128, 144511 �2008�



It has been shown,72,78 for both the CMD and RPMD
models, that approach �1� agrees well with approach �2� ear-
lier in the regime of small �; for large �, however, the agree-
ment between the two earlier approaches becomes poor, pre-
sumably because the operator e−i�·x̂i becomes more
nonlinear.

To summarize the results contained in Fig. 2, all com-
parisons of the incoherent dynamic structure Sinc�� ,��
among the three TGA/LSC-IVR methods �proposed in Sec.
II B�, and with other models,72,78 show that the LSC-IVR is a
quite consistent method for approximating quantum me-

chanical correlation functions involving both the linear and
nonlinear operators if the time scale of the correlation func-
tion is not too long.

C. Spectral moment test

In Fig. 3, the three lowest moments �n��� of Sinc�� ,��
obtained from our calculations are plotted as a function of
the momentum transfer parameter �, compared with the ex-
act results in Eqs. �2.20�–�2.22� and the RPMD results of
Ref. 78. The spectral moments from the CMD are not avail-
able in Ref. 72, but expected to be similar to those given by

FIG. 2. �Color online� Incoherent dy-
namic structure factors for liquid para-
hydrogen at the state point T=14 K;
=25.6 cm3 mol−1. Solid line: From
the Kubo-transformed velocity corre-
lation function �vv-kubo�. Dot-dashed
line: From the standard velocity corre-
lation function �vv-std�. Dashed line:
From the self-part of the intermediate
scattering function �inelastic-std�.
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RPMD. Since the analysis in Appendix B shows that
the inelastic-std, vv-kubo, and vv-std versions of our
TGA/LSC-IVR approach are expected to produce �0��� and
�1��� exactly �also see Table I�, the slight disagreements
with the exact values seen in Fig. 3 are due to residual nu-
merical error. Figure 3 implies that the inelastic-std version
of the TGA-LSC-IVR deviates more than the other two ver-

sions; we attribute this to the fact that the estimator for
FS

TGA/LSC-IVR�t� in the Monte Carlo evaluation, Eq. �A3�, has
more numerical cancellation from the phase term.

For the second-order moment �2���, the results of the
methods based on the Gaussian approximation, Eq. �2.10�,
are independent of � and only depend on how accurate the
average kinetic energy �p̂2 /2mN	 is given by the velocity
correlation function �see Eq. �2.22��. For example, the
vv-kubo version of the TGA/LSC-IVR gives a value of
�65.0 K �for the present simulation of 108 para-H2 mol-
ecules per cell with periodic boundary condition26�, and the
accurate result by the imaginary time path integral Monte
Carlo is 63.2 K,48 so that the approximation to �2��� over-
estimates the result by less than 2.85%. For comparison, it
was reported in Ref. 78 that the RPMD-vv-kubo result for
�2��� exceeds the exact value by 6.3%. Furthermore, the
relative error in �2��� by the inelastic-std version of the
TGA/LSC-IVR or by the RPMD-kubo method certainly de-
pends on the momentum transfer parameter �; these results
are plotted in Fig. 4. It is encouraging to see that the relative
error given by the inelastic-std TGA/LSC-IVR method is
quite small even at large values of �. For instance, at the
largest � in Fig. 4, the relative error is about 8% while that
given by the RPMD-kubo �Ref. 78� is over 524%. In the
regime where � is very small, the inelastic-std version of the
TGA/LSC-IVR does not work as well, e.g., for the smallest
value of � in the simulation, the relative error is about 18%,
which is close to that given by the RPMD-kubo in Ref. 78
�about 19%�.

Shown in Fig. 5 are the first two even moments of

S̃inc�� ,�� obtained from these three versions of the TGA/
LSC-IVR, and from the two versions of the RPMD, in addi-
tion to the exact results in Eqs. �2.27� and �2.28�. Since the

RPMD-kubo directly calculates F̃s�� , t� and then its spec-

trum S̃inc�� ,��, it can be shown that the RPMD gives the
exact results for �� 0��� and �� 2���.78 Figure 5 demonstrates
that all methods �the vv-kubo and the vv-std of the TGA/
LSC-IVR and the RPMD-vv-kubo� which are based the
Gaussian approximation, Eq. �2.10�, are a very good ap-
proximation for this system, and the inelastic-std also works
well for the test of this set of moments.119

Again, the overall comparisons of spectral moments as
shown in Figs. 3–5 demonstrate that the LSC-IVR is a con-
sistently good short-time approximation to time correlation
functions involving both linear and nonlinear operators.

D. Comparison with experimental data

Though experimental data reported so far on pure liquid
para-hydrogen around 14 K are not yet sufficient to compare
with the incoherent dynamical structure factor Sinc�� ,�� for
the whole range of the momentum transfer parameter �
shown in Fig. 2, some inelastic neutron scattering experi-
ments such as Refs. 100 and 101 do provide experimental
results on one or two points of Sinc�� ,�� for each �. Very
close to the system that we consider in this paper, pure liquid
para-hydrogen at the state point T=14.1�1� K, 
=22.95�3� nm−3 has been examined in recent experiments
by Colognesi et al.101 In addition to Sec. III A, Appendix D

FIG. 3. �Color online� The first three moments �n��� of the incoherent
dynamic structure factors Sinc�� ,�� shown in Fig. 2. Solid line: Exact result.
Dashed line with solid circles: From the self-part of intermediate scattering
function Fs�� , t� �inelastic-std�. Hollow circles: From the Kubo-transformed
velocity correlation function �vv-kubo�. Crosses: From the standard velocity
correlation function �vv-std�. Dot-dashed line: From the Kubo-transform of

Fs�� , t� �the self relaxation function F̃s�� , t�� by the RPMD method �RPMD-
kubo�. Hollow squares: From the Kubo-transformed velocity correlation
function by the RPMD method �RPD-vv-kubo�.
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gives more details on the simulation of the experiment, and
Fig. 6 shows the momentum transfer parameter �F��� or
�B��� as a function of the energy transfer parameter � for
the forward or backward scattering in the experiment.

All available results of the incoherent dynamic structure
factor S����� ,�� computed by all three versions—the
inelastic-std, the vv-kubo, and the vv-std—of the
TGA/LSC-IVR formulation of the time correlation function
are plotted together with the experimental data in Fig. 7.
Panel �a� shows the comparison for the forward scattering
along the �F��� in Fig. 6, which represents the momentum
transfer from �=1.780 to 3.716 Å−1, i.e., in the intermediate
regime between the diffusive and the impulsive regime �see
Fig. 2 and Appendix C�. Overall, the three versions of the
TGA/LSC-IVR agree quite well with the experimental re-
sults. There is some discrepancy among the three versions
near the peak, ��2.18 Å−1, with the vv-kubo version seem-
ing to give the best agreement with experiment. Panel �b�
shows the comparison for the backward scattering along
�B��� in Fig. 6, which samples the momentum transfer from
�=3.532 to 5.551 Å−1, i.e., from the intermediate to the im-
pulsive regime �see Fig. 2 and Appendix C�. Again, all three
versions of the TGA/LSC-IVR give reasonably good agree-
ment with the experimental data, though there is somewhat
more disagreement among the three versions in the backward
scattering case. The inelastic-std agrees best with the experi-
ment for the regime −5 meV���5 meV or 3.532 Å−1

������4.343 Å−1, while the vv-kubo does so for larger �
or ����. Note that the discrepancies in Fig. 7 could be due to
various factors, including the TGA introduced to obtain the
analytical form for the Wigner function Aw

�, i.e., Eq. �2.14�,
or the oversimplified isotropic pair potential �the SG
model116� used in a process involved with the rotational ex-
citation from J=0 to J=1 �Ref. 101� �not good for the spheri-
cal approximation�. And we notice that the system size may
have its effect on the simulation results �at least in the diffu-
sive region�,80 but currently our simulations are limited up to

FIG. 4. �Color online� The relative error of the moment �2��� the incoher-
ent dynamic structure factors Sinc�� ,�� shown in Fig. 2. Solid line with solid
triangles: From the self-part of intermediate scattering function Fs�� , t�
�inelastic-std�. Dashed line with solid circles: From the Kubo-transform of

Fs�� , t� �the self-relaxation function F̃s�� , t�� by the RPMD method
�RPMD-kubo�.

FIG. 5. �Color online� The first two even moments �� n��� of the incoherent

relaxation function S̃inc�� ,�� based on the incoherent dynamic structure
factors Sinc�� ,�� shown in Fig. 2. Solid line: Exact result. Dashed line with
solid circles: From the self-part of intermediate scattering function Fs�� , t�
�inelastic-std�. Hollow circles: From the Kubo-transformed velocity correla-
tion function �vv-kubo�. Crosses: From the standard velocity correlation
function �vv-std�. Dot-dashed line: From the Kubo-transform of Fs�� , t� �the

self-relaxation function F̃s�� , t�� by the RPMD method �RPMD-kubo�. Hol-
low squares: From the Kubo-transformed velocity correlation function by
the RPMD method �RPMD-vv-kubo�.

FIG. 6. �Color online� Wave-vector transfer ���� accessible by the
TOSCA-II experiment in backward scattering �dashed line� and forward
scattering �solid line� as a function of the energy transfer parameter � based
on the conservation laws, Eqs. �2.3� and �D1�.
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216 molecules per box �see Appendix D�. How the results
can be extrapolated to infinite system size is of course worth
investigating in future.

We note that the RPMD-vv-kubo approach also gives
very good agreement with these experiments, though the
RPMD-kubo is believed to give poor results.78 �Since the
RPMD-kubo results are not available in Ref. 78, we do not
systematically compare the LSC-IVR and the RPMD results
here.� The CMD model shares the same behavior as the
RPMD, as seen in the simulations for some similar
experiments.100,120 These results obtained through the Kubo-
transformed velocity correlation function based on the
RPMD and the CMD, in addition to what is shown in Fig. 7
for the TGA/LSC-IVR, verify that the Gaussian approxima-
tion, Eq. �2.10�, is very good for calculating the incoherent
dynamic structure factor of liquid para-hydrogen even at T
=14 K, which indicates that the non-Maxwellian part of the
velocity distribution is negligible �consistent with the conclu-
sion in Appendix C based on Fig. 2�.

In summary, it is clear from Fig. 7 that all three methods
proposed in Sec. II B based on the TGA/LSC-IVR give rea-
sonably good agreement with one another and a semiquanti-
tative description of both the forward and backward scatter-

ing data. This agrees with our previous comments in Secs.
III B and III C that the LSC-IVR formulation of time corre-
lation functions treats both the linear and nonlinear operators
in a fairly consistent manner in such a realistic highly anhar-
monic system.

IV. CONCLUSIONS

In this paper, we have presented the first systematic ex-
amination of the consistency of the LSC-IVR approximation
for time correlation functions with different operators for a
realistic model of a complex system far from the harmonic
regime. We applied the TGA/LSC-IVR approximation to in-
clude quantum dynamical effects in the simulation of the
inelastic neutron scattering from liquid para-hydrogen at T
=14 K. Taking advantage of the fact the velocity distribution
is still very nearly Gaussian even for such a low-temperature
liquid system, we were able to calculate the incoherent dy-
namic structure factor Sinc�� ,�� directly by using the self-
part of the intermediate scattering function, Eq. �2.6�, or in-
directly by implementing the Gaussian approximation, Eq.
�2.10�, based on velocity correlation functions �both the stan-
dard and the Kubo-transformed versions�. These approaches
based on the TGA/LSC-IVR all give semiquantitative agree-
ment with inelastic neutron scattering experiments.101 To-
gether with the spectral moment tests, it clearly demonstrates
that the LSC-IVR is a good short-time approximation to the
quantum dynamical time correlation function and can treat
different operators �both the linear and the nonlinear opera-
tors� fairly consistently.

For dynamical processes in condensed phase systems
where quantum mechanics play a significant role and time
scales of correlation functions are usually not very long, the
consistency of the LSC-IVR in treating different operators
makes it a practical and versatile method for studying these
phenomena semiquantitatively. It will be interesting to apply
the LSC-IVR to complex systems at even lower temperature
�such as normal and superfluid liquid He� where quantum
effects are more pronounced, to see how well the Gaussian
approximation �Eq. �2.10�� works,52,121 and its comparison
with the direct calculation of the incoherent dynamic struc-
ture factor using Eq. �2.6� and also with experimental
data.121–126 It will also be an interesting task to use the LSC-
IVR to calculate the coherent dynamic structure factor,
which reflects the collective behavior of liquids rather than
the single-particle motion,72,95,104,127 as demonstrated in ex-
periments on liquid H2 /D2 �Refs. 127–130� and liquid He.131

However, we did observe some inconsistencies among
the different versions of the LSC-IVR approach in the long
time behavior of the time correlation function. Recently, we
have derived a different method9 to improve the long-time
dynamical behavior of the LSC-IVR without having to deal
with the phase cancellation problems in the full version of
the SC-IVR. This method with its modified classical dynam-
ics can in principle guarantee that the distribution generated

for the operator Â� is invariant with time for the case Â=1

�i.e., Â�=1 /Ze−�Ĥ, the Boltzmann operator itself�, which
remedies one of the principle defects of the LSC-IVR. It will
be interestingly in future work to apply this improved ver-

FIG. 7. �Color online� Comparison of the LSC-IVR simulations with the
inelastic neutron scattering experiment results along two different kinematic
lines in the �� ,�� plane: �a� Forward scattering �=�F��� and �b� backward
scattering �=�B���. Solid line: Experiment results. Solid squares: From the
self-part of intermediate scattering function Fs�� , t� �inelastic-std�. Hollow
circles: From the Kubo-transformed velocity correlation function �vv-kubo�.
Crosses: From the standard velocity correlation function �vv-std�.
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sion of the LSC-IVR �Ref. 9� and other more advanced SC-
IVRs �Refs. 22, 57, and 58� to complex �large� systems. For
instance, it would be natural to use the Fourier transform
FB-IVR approach22,57 to calculate Fs�� , t�, Eq. �2.6�, by in-
troducing the momentum jump �� at time t between the
forward trajectory �0→ t� and its backward counterpart �t
→0�, similar to an early study on incoherent neutron scatter-
ing from solid HCN.132

Finally, we note that using the RPMD �Ref. 76� results
as the prior in the MEAC �Refs. 84–89� approach �the
RPMD+MEAC� recently suggested by Manolopoulos et
al.,81 �though in an earlier proposed CMD+MEAC �Ref. 88�
paper, the author mentioned about the possibility to use the
CMD results as the prior in the MEAC, but no further work
was shown�, could in practice improve the behavior of the
RPMD model to calculate the time correlation function with
nonlinear operators; e.g., the RPMD+MEAC could probably
reduce the large relative error of the RPMD-kubo approach
for large � �Ref. 133� in Figs. 3 and 4. Quite interestingly,
Ref. 81 shows that even classical dynamics combined with
the MEAC �the CD+MEAC� could produce similar results
as those given by the RPMD+MEAC. Since the LSC-IVR is
a consistently better approximation to the quantum mechani-
cal correlation function than classical dynamics, the LSC-
IVR combined with the MEAC �the LSC-IVR+MEAC�
could very likely improve the long-time behavior of the
original LSC-IVR. A further investigation of this extension
of the LSC-IVR approach for treating quantum dynamical
phenomena in large molecular systems is certainly war-
ranted.
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APPENDIX A: TGA/LSC-IVR FORMULATION OF THE
INTERMEDIATE SCATTERING FUNCTION

The TGA/LSC-IVR formulation of the intermediate
scattering function F�� , t�, Eq. �2.2�, or its self-part FS�� , t�,
Eq. �2.6�, is related to the operator Â=1 /N�i=1

N e−i�·x̂i or Â�

= �1 /Z�e−�Ĥ�1 /N�i=1
N e−i�·x̂i�, the Fourier transform of which

is

Aw
��x0,p0� =� d�x�x0 − �x/2
Â�
x0 + �x/2	eip0

T�x/�

=
1

NZ
� dq� d�x�x0 − �x/2
e−�Ĥ/2
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· �q
e−�Ĥ/2�
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1

4
�xTG−1��

2 ��x� 1

N


�
i=1

N

e−i�·�xi−�xi�eip0
T�x/�. �A1�

The integral over �x gives Eqs. �2.14� and �2.17�. Substitut-
ing them into Eq. �2.11�, one obtains the expression of the
correlation function as

CAB
TGA/LSC-IVR�t� =

1

Z
� dq0

1

�4��3N/2
exp�2���

2 ��

det G��

2 �
1/2


� dx0
1

�3N/2
det G��
2 �
1/2


exp�− �x0 − q��
2 ��TG−1��

2 �

· �x0 − q��
2 ���� dp0


det G��
2 �
1/2

���2�3N/2


exp�− p0
TG��

2 �p0/�2�

gAB

TGA/LSC-IVR�x0,p0,q��
2 � ;t� , �A2�

where the estimator �in the Monte Carlo evaluation of Eq.
�A2�, which is described in Sec. IV of Ref. 32� is given by

gAB
TGA/LSC-IVRx0,p0,q �

2� ;t�
= fAB

TGA/LSC-IVRx0,p0,q �
2��Bw�xt,pt�

=
1

N
�
i=1

N

ei�·xi�t�e−i�·xi�0� exp�p0
T · Gxi

 �
2� · �/�

−
1

4
�T · Gxixi

 �
2� · �� for FS��,t�

=
1

N
�
j=1

N

ei�·xj�t��
i=1

N

e−i�·xi�0� exp�p0
T · Gxi

 �
2� · �/�

−
1

4
�T · Gxixi

 �
2� · �� for F��,t� . �A3�

For the isotropic system, both F�� , t� and FS�� , t� depend
only on �= 
�
. Since the direction of the vector � does not
matter, for convenience one can choose it along the x axis in
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the calculation, i.e., Â=1 /N�i=1
N e−i�·x̂i =1 /N�i=1

N e−i�x̂i, where
x̂i is the x-axis component of the position operator x̂i for the
ith particle, and Eq. �A3� can be simplified further. Better
statistics could be obtained by averaging over the direction
of � over the three Cartesian axes.

APPENDIX B: ANALYTICAL ANALYSIS OF SPECTRAL
MOMENTS

The two lowest spectral moments in Eq. �2.19� are given
exactly by the LSC-IVR. Based on the well-known identity

for the trace of a product of any two operators P̂ and Q̂,

Tr�P̂Q̂� = �2���−3N� dx� dpPw�x,p�Qw�x,p� �B1�

and the relation

�0��� = FS��,t = 0� , �B2�

it immediately follows that the LSC-IVR, Eq. �2.11�, gives
the exact result for �0���. From the LSC-IVR expression for
FS�� , t�,

FS
LSC-IVR��,t� = �2���−3N�NZ�−1� dx0� dp0� d�x�x0

− �x/2
e−�Ĥ�
i=1

N

e−i�·x̂i
x0

+ �x/2	eip0
T�x/�ei�·xi�t�

= �2���−3N�NZ�−1� dx0� dp0� d�x�x0

− �x/2
e−�Ĥ
x0

+ �x/2	�
i=1

N

e−i�·�xi�0�−xi�t��eip0
T�x/�−i�·�xi/2,

�B3�

one can show that

d

dt
FS

LSC-IVR��,t = 0�

= i�2���−3N�NZ�−1�
i=1

N � dx0� dp0� d�x�x0

− �x/2
e−�Ĥ
x0 + �x/2	eip0
T�x/�−i�·�xi/2

� · pi�0�
m

. �B4�

In each term of the sum, if one replaces the ith particle com-
ponent of the variable p0 by pi�0�→pi�0�+�� /2 �which
does not affect the integral over p0� and takes advantage of
the symmetry of the matrix element

�x0 − �x/2
e−�Ĥ
x0 + �x/2	 = �x0 + �x/2
e−�Ĥ
x0

− �x/2	 , �B5�

then Eq. �B4� becomes

d

dt
FS

LSC-IVR��,t = 0� =
i��2

2m
� i�R, �B6�

so that

�1 = i−1 d

dt
�e−i�RtFs��,t��t=0 = 0. �B7�

Interestingly, the LSC-IVR is still exact for �0��� and
�1��� when using the TGA. In fact, it is straightforward to
show the TGA/LSC-IVR expression for FS�� , t�, Eq. �A2�
with Eq. �A3�, gives the exact value at t=0, i.e.,

FS
TGA/LSC-IVR��� = 1 �B8�

which is the same as Eq. �2.20�. Also note that the earlier
proof for �1��� in the LSC-IVR only requires the symmetry
of the Boltzmann matrix element, i.e., Eq. �B5�, which is
certainly true for the TGA �see Eq. �3.6� of Ref. 32 and its
discussion�, so that it then follows that the TGA/LSC-IVR
expression of FS�� , t� also satisfies Eq. �B7�, i.e., gives the
exact value of �1���.

APPENDIX C: INCOHERENT DYNAMIC STRUCTURE
IN THE LIMIT OF LARGE AND SMALL �

The results for Sinc�� ,�� in Fig. 2 tend to be Gaussian
for all three versions of the LSC-IV for large �. This indi-
cates that even for such a low-temperature system as liquid
para-hydrogen at T=14 K, the velocity distribution is still
nearly Gaussian. To see this more clearly, substitute Eq. �2.7�
into Eq. �2.1�, make a change of the variable y=�t, and
expand the �n functions in Eqs. �2.8� and �2.9�, etc. in pow-
ers of y, giving

Sinc��,�� =
1

2��
�

−�

�


exp�− iy�� − �R�/��exp��
n=1

�

gn�y��dy ,

�C1�

where

g1�y� = − �v̂�
2	y2/2 + O�1/�� ,

g2�y� = ��v̂�
4	 − 3�v̂�

2	2�y4/24 + O�1/�� , �C2�

and so on.102 As �→� �in the impulsive regime�, if the
velocity distribution is Gaussian, g2�y� and higher order
terms vanish, which leads to

lim
�→�

Sinc��,�� = �effm

2��2�1/2
exp�− �effm�� − �R�2/2�2�

�C3�

with �eff=3N /2�p̂2 /2m	, for isotropic systems.134,135

Figure 2 verifies that the non-Maxwellian effect of the
velocity distribution for such a low-temperature system as
liquid para-hydrogen at T=14 K is still negligible, which is
why Eq. �2.10� is indeed a good approximation for all �,
allowing one to use the velocity correlation function to cal-
culate the incoherent dynamic structure factor for this system
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as pointed out in Sec. II A. The inelastic-std, vv-kubo, and
vv-std methods proposed in Sec. II B thus would give essen-
tially the same results for Sinc�� ,�� if the quantum mechani-
cal correlation functions were exactly calculated. Compari-
son of Sinc�� ,�� based on the three approaches does shed
light on the consistency of the LSC-IVR approximation to
deal with different operators.

However, for very small � �in the diffusive regime�, the
incoherent dynamic structure Sinc�� ,�� turns out to be
Lorentzian instead. Since the time scale of the correlation
function Fs�� , t� is very long, as shown in Fig.1 �longer than
that of Cv·v�t���, Eq. �2.10� is equivalent to

Fs��,t� = exp��i�R − �2D�t� , �C4�

where D is the diffusion constant. As a consequence, one has
a Lorentzian-like spectrum in the very small � region,104 i.e.,

lim
�→0

Sinc��,�� =
D�2/�

�2 + �D�2�2 , �C5�

as seen in Fig. 2.

APPENDIX D: ADDITIONAL SIMULATION DETAILS
ON THE INELASTIC NEUTRON SCATTERING
EXPERIMENT

In the experiment101 that we consider in Sec. III D, the
neutron scattering spectrometer—the TOSCA-II
apparatus136,137—was used to scatter neutrons from the liquid
at a forward and a backward angle �i.e., the angle between
the initial and the final wave vectors of the neutron, �i and � f

in Eqs. �2.3� and �2.4��. The forward angle is 42.6° and the
scattered neutron is at energy of 3.35 meV �i.e., �2� f

2 /2mn in
Eq. �2.4��, and the quantities for the backward direction are
137.7° and 3.32 meV, respectively. Since the experiment101

actually measured the cross section for the inelastic scatter-
ing process involved with the rotational excitation n+H2�J
=0�→n+H2�J=1�, the energy transfer �� should be re-
placed by ���+�10� in Eq. �2.4�, i.e.,

��� + �10� =
�2��i

2 − � f
2�

2mn
, �D1�

where ��10=14.53 meV is the excitation energy from the
rotational ground state �J=0� to its first excited state �J=1�
of H2. By virtue of the conservation laws, i.e., Eqs. �2.3� and
�D1�, it is straightforward to calculate the momentum trans-
fer parameter �F��� or �B��� as a function of the energy
transfer parameter � for the forward or backward scattering
experiments. Both �F��� and �B��� are plotted in Fig. 6 in
the range of � where the experiment101 detects Sinc����� ,��.
Such two kinematic lines for a wider range of � are shown in
Fig. 1 of Ref. 101.

Because of the relation, Eq. �3.1�, in the simulation using
a finite cell with periodic boundary conditions, the available
momentum transfer parameter ���� depends on the size of
the simulation box. For a particular box size, only a few
points of �F��� or �B��� in Fig. 6 satisfy Eq. �3.1� in the
range of experimental data �−5 meV���25 meV�. To ob-
tain more computational results, four sets of simulations are
carried out: 64, 125, and 216 molecules in a box starting

from a cubic lattice, and also 108 molecules in a box with the
face-centered-cubic structure as the initial configuration.

The TOSCA-II experimental data101 along the two kine-
matic lines in the �� ,�� plane in Fig. 6 provide only two
points of Sinc�� ,�� for each � in the overlapped regime of �F

and �B, i.e., 3.532 Å−1���3.716 Å−1, and but one point
of Sinc�� ,�� for each � in other regimes. More favorable
experimental results will of course be those providing the
whole spectrum Sinc�� ,�� for each � to allow one to have a
direct comparison to Fig. 2, which would give much more
information to check the theoretical simulations. Neverthe-
less, the TOSCA-II experimental data101 still provide a useful
test for the accuracy of the TGA/LSC-IVR approximation
while exact quantum mechanical results are not available.

Figure 7 shows the incoherent dynamic structure
S����� ,�� calculated from the three methods proposed in
Sec. II B based on the TGA/LSC-IVR, compared with the
experimental data. Since the TOSCA backward scattering
data contain “a possible spurious background,”101 an addi-
tional linear polynomial �4
10−5 meV−2�� is added to the
simulated Sinc����� ,�� in panel �b� as suggested by Refs. 78
and 101. This is not necessary for panel �a� since the back-
ground has already been removed from experimental forward
scattering data.78,101
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