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The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys.
Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the

Boltzmann operator exp(—BI:I) for multidimensional systems. In this paper the TGA is combined
with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions.
Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner
model), and the “forward-backward semiclassical dynamics” approximation developed by Shao and
Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these
approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly,
providing an extremely simple result that is readily applicable to large molecular systems.
Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its
accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient)

of liquid neon demonstrates its
[DOL: 10.1063/1.2395941]

I. INTRODUCTION

There is currently a great deal of effort focused on de-
veloping waysl_7 for adding quantum mechanical effects to
classical molecular dynamics (MD) simulations of chemical
reactions, and other dynamical processes, in large molecular
systems. Though purely classical MD simulations are ad-
equate for many purposes, there is no doubt that quantum
aspects of the dynamics will sometimes be important, and
one will not know whether or not this is the case unless one
has the ability of including them in the treatment, even if
only approximately. Applications to a wide variety of mo-
lecular phenomena are obvious.

Semiclassical (SC) theory®'* provides one way for add-
ing quantum effects to classical MD simulations, and there is
ample evidence that the SC approximation is a usefully ac-
curate description of essentially all quantum effects in mo-
lecular dynamics.2’7’13718 For systems with many degrees of
freedom, various initial value representations (IVRs) of SC
theory provide the first step toward a practical way for car-
rying out SC calculations; this effectively replaces the non-
linear boundary value problem of traditional SC theory with
a Monte Carlo average over the initial conditions of classical
trajectories,g_12 a procedure much akin to what is done in
classical MD simulations, allowing one to borrow from the
great deal of computational development in that field. The
added difficulty of a SC-IVR calculation, compared to a clas-
sical MD one, is the phase of the integrand, which carries all
the quantum coherence information; thus all of the special
techniques375’14’19’20 developed for carrying out SC-IVR cal-
culations are concerned with this phase.
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applicability. © 2006 American Institute of Physics.

In this paper we focus on two of simplest SC-IVRs, the
“linearized” approximation to the SC-IVR (LSC-IVR),*®!*
which yields the “classical Wigner model,” and Shao and
Makri’s simplified version of a forward-backward approxi-
mation to the SC-IVR, which they refer to as “forward-
backward semiclassical dynamics” (FBSD).*> Both of these
approaches deal with the “phase problem” by assuming that
the two classical trajectories inherent to a time correlation
function (see Sec. II) are close to one another. The only
remaining issue is the quantum Boltzmann operator which
appears in a thermal correlation function (see Sec. II). In the
first applications of the linearized SC-IVR (LSC-IVR) (to
reactive flux correlation functions, and thus reaction rates)
the Boltzmann operator was approximated as harmonic about
the saddle point (transition state) on the potential surface;’
this worked fine so long as the temperature was not too low.
She and Geva later developed a more general “local har-
monic” a\pproximation7 for the Boltzmann operator that al-
lowed them to carry out very impressive LSC-IVR calcula-
tions for vibrational relaxation in liquids (involving force-
force autocorrelation functions).7’21 Similarly, Poulsen et al.
have used a variationally optimized local harmonic
approximati0n6 for the Boltzmann operator in carrying out
LSC-IVR calculations, and Bonella et al. have extended this
latter approach to also be able to describe electronically
nonadiabatic dynamics.22

More recently, Mandelshtam and co-workers have devel-
oped a very interesting thermal Gaussian applroximation23 24
(TGA) for the Boltzmann operator. It is itself a SC approxi-
mation, based on Heller’s earlier ‘“frozen Gaussian”
approximation25 (except that it involves imaginary time
propagation); it is also a type of local harmonic approxima-

© 2006 American Institute of Physics
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tion, but one about the classically evolving trajectory (in
imaginary time). Hellsing et al. applied such approaches
earlier,”® and more recently Shao and Pollak extended the
TGA by showing how quantum corrections can be added to
it.*’ Other imaginary time SC approximations for the Boltz-
mann operator that have been applied to thermal time corre-
lation functions are an imaginary Herman-Kluk-type SC-
IVR by Makri and Miller,® and the imaginary time Van
Vleck SC-IVR of Zhao and Miller.”? These latter two ap-
proaches provide more accurate approximations for the Bolt-
zmann operator but are not as easy to implement as the TGA.

The purpose of this paper is to use the TGA of Man-
delshtam and co-workers within the LSC-IVR and FBSD
approximations for thermal time correlation functions, to see
how well it works and to demonstrate its potential for appli-
cation to large molecular systems. Section II describes the
SC-IVR theory of time correlation functions, including the
LSC-IVR and the FBSD methods. A brief review of the TGA
is given in Sec. IIIl. Combinations of the TGA with the SC-
IVR methods (TGA-LSC-IVR and TGA-FBSD) and their
numerical advantages are discussed in Sec. IV. Several nu-
merical applications of the TGA-LSC-IVR and TGA-FBSD
methods are presented in Sec. V, including a strong anhar-
monic one-dimensional model system and a complex system
(liquid neon). Finally, some concluding remarks appear in
Sec. VL.

Il. SC-IVR CALCULATION OF TIME CORRELATION
FUNCTIONS

Most quantities of interest in the dynamics of complex
systems can be expressed in terms of time correlation
functions.*® For example, dipole moment correlation func-
tions are related to absorption spectra, flux correlation func-
tions yield reaction rates, velocity correlation functions can
be used to calculate diffusion constants, and vibrational en-
ergy relaxation rate constants can be expressed in terms of
force correlation functions. The standard real time correla-
tion function is of the form

Caplt) = zTr(e—BH Attt ittt

— Tr(ﬁQAeth/hée—th/h) , (2. 1)

or sometimes it is convenient to use the following symme-
. .31
trized version:

1 O
CAB(Z) - Z"[*I.(e—BH/ZAe—ﬁH/zelHt/ﬁBe—lHl/ﬁ) . (22)
Here H is the (time-independent) Hamiltonian for the sys-

tem, which for large molecular systems is usually expressed
in terms of its Cartesian coordinates and momenta

A~ 1 N
H= EﬁTM“f» +V(§) =Hy+ V(@), (2.3)

where M is the (diagonal) mass matrix and p and q are the
momentum and coordinate operators, respectively. Also, in

Egs. (2.1) and (2.2), Z=Tr e " (B=1/kgT) is the partition
function, py=eP"/Z is the equilibrium density operator, and
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A and B are operators relevant to the specific property of
interest.
The SC-IVR approximates the time evolution operator

e~ by a phase space average over the initial conditions of
classical tlrajectories.g‘lo’”‘33 The original, Van Vleck version
of the IVR is

i [ (0 i5)3N i :
e sz/ﬁ=fdpofdqoVqu/(Z7Tlﬁ)3NetSr(POvQO)/h|qt><q0

b

(2.4)

where (qq,pg) is the set of initial conditions (i.e., coordinates
and momenta) for a classical trajectory,
(pq0-P0)-4q,(qp,po)) the phase point at time ¢ which
evolves from that trajectory, S,(qq,po) the classical action
along it, and M,, the determinant of the Jacobian matrix
relating the final position and initial momentum,

M, = det(dq,(qo,Po)/Ipy)- (2.5)

For the correlation function in Eq. (2.1) and (2.2), one needs
to insert two such representations of the evolution propaga-
tor, yielding the following double phase space average for
the correlation function:

Cup(t) = 27hi) >Nz f dpy f dqy J dp,,

X f dqy(M,,M,,)"XqolA”qq)

XeiS,(pO,qo)/he—iS,(p('),q('))/ﬁ<qtr |é|%>’ (2.6)
where AP=¢ PHA for Eq. (2.1) or AP=eP12Ae=PH2 for Eq.
(2.2). The primary difficulty in evaluating this expression is
the oscillatory character coming from the difference between
the action integrals of the trajectories with initial conditions
(qo.Po) and (qg, po)-

One way to deal with this phase problem, proposed by
Miller and co-workers,> ' is to make the (rather drastic) ap-
proximation of assuming that the dominant contribution to
the double phase space average comes from phase points
(qo.Po) and (q,p;) that are close to one another. Changing
to sum and difference variables,

Po= %(po +py), Qo= %(QO +qq),
2.7)

Apo=po-p'. Aqy=qp-qp,

and expanding all quantities in the integrand of Eq. (2.6) to
first order in Ap, and Aq, gives the LSC-IVR, or classical
Wigner model for the correlation function,

CcR(n =z f dp, J dqoAP(q0,p0) B, (P, (2.8)

where here (qg,pg) =(qo,Po) (i.e., the “bars” have been re-
moved), and Aﬁ and B,, are the Wigner functions correspond-
ing to these operators,
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0,(q.p) = (2mh)=N f dAq(q - Ag/2|0|q + Aq/2)

X giP"Adlh (2.9)

for any operator O. That is, the integrals over Ap, and Aq,
have become the two Fourier integrals that produce the
Wigner functions of the two operators. Equation (2.8), with
the remaining (single) phase space average, now has the
form of the classical correlation function, the only difference

being that the Wigner functions corresponding to operators A

and B appear rather than the classical functions. The LSC-
IVR result in Eq. (2.9), also termed the classical Wigner
model, has been obtained by a variety of formulations, so the
result itself is not new. What is interesting, though, is to
realize that it is contained with the overall SC-IVR descrip-
tion, as a well-defined approximation to it.

Calculation of the Wigner function for operator Bin Eq.

(2.8) is usually straightforward; in fact, B is often a function
only of coordinates or only of momenta, in which case its
Wigner functions is simply the classical function itself. Cal-

culating the Wigner function for operator AR however, in-
volves the Boltzmann operator with the total Hamiltonian of
the complete system, so that carrying out the multidimen-
sional Fourier transform to obtain it is far from trivial. Fur-
thermore, it is necessary to do this in order obtain the distri-
bution of initial conditions of momenta p, for the real time
trajectories. A rigorous way to treat the Boltzmann operator
is via a Feynman path integral expansion, but it is then in
general not possible to evaluate the multidimensional Fourier
transform explicitly to obtain the Wigner function for AP
(and thus the distribution of initial conditions of the mo-
menta py; Appendix A discusses and analyzes this situation
in more detail). The inability to calculate the Wigner function
of AP exactly is, in fact, the reason for the various harmonic
and local harmonic approximations to the Boltzmann opera-
tor noted above, and the TGA discussed below in Sec. III.
Another SC-IVR approach for the time evolution opera-

tors e~H"" is the Herman-Kluk, or coherent state IVR,'

IR (2 7ri) 3N f dqo f dpoCi(qo, po)e™ P90 g, p,)

X{qo,Pol, (2.10)

where the preexponential factor is given by

Cdo,po) = 2—3N/2[det<rl/2ﬂr—1/2 12

aqq P

_ 2ihl"”2ﬂf‘”2 _ Lr—l/zﬂr—l/z)} "
po 2ih aq, ’

(2.11)

and |qy,p,) and |q,,p,) are coherent states, the wave func-
tions for which are given by
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3N/4
(x[qo,po) = (;) (det )" eXP(— (x—q9)'T(x-qq)

+ épg(x—qo)). (2.12)

Here I' is a (positive definite) width matrix.

Inserting two such Herman-Kluk representations for the
propagator into Eq. (2.1) and (2.2) leads to the following
double phase space average for the correlation function:

Cap(t) = (2mh)>Nz! f dpy f dq, f dp,,

X f dq¢C,(q0.Po)C; (a), Py)

X (o, PolA*] qg, poeS P00

X e"5(20:90/(q! p!|B|q,.p,). (2.13)

The phase cancellation here is as severe in this integrand as it
is in Eq. (2.6). Shao and Makri* introduced an approximate
way to evaluate it by assuming that the dominant contribu-
tion to the double phase space average comes from two tra-
jectories, one starting from (qg,p,) and another from
(q4,p,), that satisfy the following “jumps” in coordinates
and momenta at time #:

) dB(q,.p,) ,
q =q-h— ", p,=p+h

P,

dB(q,.p,)

(2.14)
oq,

This assumption yields the FBSD method for the correlation
function,

3N
Chp (1) = Qah) 2! f dqo f dpo{<1 + 7)
X(‘lo,Po|Aﬁ|%’P0> = 2(qo.Pol X — qp)”

XTAP(X - qo)lqo,po>}B(qt,p,)- (2.15)

The essential remaining task here is to evaluate the co-
herent state matrix elements of operator AP, which is non-

trivial because A® involves the Boltzmann operator with the
total Hamiltonian of the complete system. This is analogous
to the problem of computing the multidimensional Fourier

transform to obtain the Wigner function for operator AR in
the LSC-IVR approach described above. As in the LSC-IVR
approach, if the Boltzmann operator is treated exactly, i.e.,
by Feynman path integration, the coherent matrix cannot be
easily evaluated, as in necessary to obtain the distribution of
initial conditions for the real time trajectories; Appendix A
also discusses this in more detail. Just as for the LSC-IVR
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approach, it is these various local harmonic approximations
to the Boltzmann that allow these matrix elements (or mul-
tidimensional Fourier transforms) to computed analytically
and thus obtain an explicit result to the distribution of initial
conditions (qg,p,) for the real time trajectories.

lll. THERMAL GAUSSIAN APPROXIMATION

For a N-particle system described in Eq. (2.3), the ther-
mal (imaginary time) propagator (i.e., coordinate representa-
tion of the Boltzmann operator) e ™ is approximated by
Mandelshtam and co-workers as a multidimensional Gauss-

. 23,24
ian form:*>

1 >3N/2 1

(xle"|qq) = (—

-~ = exp(— Sx-a()

|det(G(7))

XG'I(T)(X—q(T))+7(T)), (3.1)

where G(7) is an imaginary time dependent 3N X 3N real
symmetric and positive-definite matrix, q(7) the center of the
Gaussian, and y(7) a real scalar function. The parameters are
governed by the equations of motion:

G =~ GV Via( )G + M,

a7 =- GV, (.2)

7)== TV Via()G() - (Via(),
T 4

with the notation

1 3N/2 1
wor=( 1) e

J dx(- (x - q(7)"
v —0
XG™ (D) (x - q(7))h(x).

(3.3)

The initial conditions for the imaginary time propagation
are

q(7=0)=q, G(r=0)=h>7M",
(3.4)

H7=0)=-7V(qp).

To ensure that the element of the Boltzmann operator
(x|e"™|x") is symmetric, Frantsuzov and Mandelshtam com-
pound the approximation in Eq. (3.1) twice to obtain

J. Chem. Phys. 125, 224104 (2006)

ey = f dato(xle ] qo) qoleIx)

_ f d ( 1 >3Nexp(2y(r/2))
=] P\ 2n) det(G(72))|

ceal-she-d)) e (3)
el Dol o)
SIS HI

The expression for a partition function, for example, be-
comes

(3.5)

Z:fdxfdqo(x|e‘Tﬁ/2|q0><q0|e‘ﬂ;/2|x>

_fd 1 exp(2y(7/2))
= ] YOGV get G(712)| P

Frantsuzov and Mandelshtam® originally utilized the varia-
tional principle to obtain the equations of motion, Eq (3.2).
Shao and Pollak later rederived these equations by expand-
ing the potential function in terms of the Gaussian averaged
potential and its derivatives. In doing so, they showed the
TGA to be a harmonic approximation about the imaginary
time dependent path q(7) and gave its more generalized
version.”’

In order to make it feasible to apply the TGA to complex
systems, one must be able to evaluate the quantities
(V(a(7), (VV(a(7), and (VV'V(q(7)) in Eq. (3.2) effi-
ciently. To do so, the potential is usually expressed as a sum
of Gaussian functions or polynomial functions so that these
quantities are evaluated analytically. Recent applications
have shown the TGA to be a good approximation for the
thermodynamics properties of some complex systems (neon
clusters) even at very low temperature.B'34

(3.6)

IV. SC-IVR METHODS WITH TGA

The SC-IVR description of real time dynamics can be
combined with any type of method for evaluating elements
of Boltzmann operator what one uses for it is a question of
accuracy and ease of application. Here we consider the TGA
for the Boltzmann operator, showing how it leads to particu-
larly simple ways for carrying out semiclassical dynamics
calculations for complex systems with the two approximate
SC-IVR’s, the LSC-IVR and the FBSD (TGA-LSC-IVR or
TGA-FBSD), summarized in the preceding section.

A. TGA-LSC-IVR

The TGA for the Boltzmann operator, Eq. (3.5), makes it
possible to analytically integrate out the phase term in the
Wigner transform of the Boltzmann operator of the LSC-
IVR; i.e., substituting Eq. (3.5) into Eq. (2.9) gives
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[e_'gé]w(x,p) = (277%)_31\"[ dAX(x — Ax/2|e‘31;|x + Ax/2>eipTAX/ﬁ

~ (2ﬂ'ﬁ)_3Nf dAx f dq{x — Ax/2|e‘ﬁl:”2|q0><q0|e‘ﬁl:”2|x + Ax/2)e Ath

_ a1 )W exp(2y(8/2))
= J dqo(2h) (77 det G(B2)|2 <

Equation (4.1) contains no oscillatory term, so the integrand
can be naturally used as the sampling function for Monte
Carlo calculations of the LSC-IVR correlation functions of
complex systems. In the high temperature limit, 8—0, it is
straightforward to verify that Eq. (4.1) reduces to its classical
limit, the classical Boltzmann distribution, which was also
pointed out by Shao and Pollak®’ by considering the limit
h—0.

To obtain the Wigner function for operator A? [Eq. (2.8)]

1 exp(2¢(B/2))

{evelgh
- 2242

(4.1)

with the TGA, itﬁis more convenient to use the symmetrized
version AP=e PH2Ae PH2 if A=A(R) is a local operator;
however, the form AP=¢PHA is preferred if A=p, since
evaluating derivatives of {(qo|e ?"|x+Ax/2) with respect to
qo in Eq. (4.1) would require considerably more work in the
imaginary time propagation with the TGA, i.e., extra equa-
tions of motion for dG(7)/dqy,dq(7)/dqq, etc., would be re-
quired in Eq (3.2). Applying the TGA within Eq. (2.9), TGA-
LSC-IVR autocorrelation functions are expressed as

1
CTGA-LSC—IVR f)=— f d
AA ( ) 7 q0(477_)3N/2 |det G(,8/2)|1/2

ldet G(B12)| 1”2
X | dpg (7Th2)3N/2

where

fESA'LSC'WR(xO,po,q(f) ;r) = A()AX(x0,po))  (4.3)

for local operators with AP=e"BH2A(R)e P12, and

LSC- B
A7 g £)

T
= poP(X0,Po) — iﬁ(Xo - q(g)) G“(g)pt(Xo,po)
(4.4)

for the momentum operator A=p with Aﬁ=e‘ﬁéf).
Monte Carlo (MC) evaluation of Eq. (4.2) for complex
systems is now straightforward:

(I) Generate an imaginary time trajectory governed by the
TGA equations of motion, Eq. (3.2), the weight of
which is sampled by the function
exp(29(B/2))/|det G(B/2)|">.

! B\ -1 B B
Bo SN ger (a2 P\ T (X0l 5 ) ) GG )\l ;

B LsC- B
sol - 16 2o 1550, g £) ).

(4.2)

(2) The imaginary time trajectory produces Gaussian dis-
tributions in both position and momentum spaces,
exp(~(xo-a(B8/2))"G™'(B/2)(xo—q(B/2))) and exp!
—poG(B/2)py/h?), respectively, which can be use to
sample initial conditions (xy,p,) for the real time tra-
jectory very efficiently.

(3) Run real time trajectories from phase space points

(X9 Po) and estimate the property
TOATLSCIVR (x 1, P, q(B/2);1) of the corresponding

time correlation function.

A schematic representation of Eq. (4.2) for the TGA-
LSC-IVR is given in Fig. 1. Provided that
FRSATESEIVR(x 0 po,q(B/2) ;1) does not vary rapidly, the MC
sampling of Eq. (4.2) is much more efficient for high-
dimensional system than one might expect. Our applications
of the TGA-LSC-IVR to large systems show that only a few
phase space points (X,,p) (i.e., real time trajectories) are
necessary for each imaginary time trajectory to yield con-
verged results so long as the number of imaginary time tra-
jectories is sufficient to guarantee the convergence of the
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thermodynamic properties. For example, when enough
imaginary time trajectories have been propagated for the
quantity (p®) to converge, only a few real time trajectories
for each imaginary time trajectory are necessary to obtain the
real time correlation function (p(p,) accurately.

It should be noted that Morinica et al.” have recently
expressed the Wigner function of the Boltzmann operator
using an imaginary time Gaussian wave packet approxima-
tion that, though formulated differently, can be shown to be
equivalent to the TGA treatment [i.e., Eq. (4.1)] and have
used it to compute thermal time correlation functions. The
essential difference of this work from the present is that Ref.
35 uses the Gaussian approximation to compute the Wigner
function of the Boltzmann operator itself, and makes the fur-

ther approximation that the Wigner function of operator APBis
the product of the separate Wigner functions of the Boltz-

mann opertor and that of operator A. The TGA-LSC-IVR
approach described above deals directly with the Wigner

function of operator AP,

B. TGA-FBSD

The Husimi transform of the Boltzmann operator,
(xg,PoleP"|xy.po), plays the analogous role in the FBSD

method as the Wigner function of operator AP does in the

LSC-IVR; i.e., it is the quantity used to sample initial

J. Chem. Phys. 125, 224104 (2006)

q(8/2)

VAU At

/ e g " ,('lual’l})
qQ'(p/2)

FIG. 1. (Color online) Schematic representation of the TGA-LSC-IVR rep-
resentation of the density (Boltzmann operator) for two particles. Black
solid circles represent positions of two particles at the beginning and end of
the imaginary time propagation, black curves indicate imaginary time tra-
jectories, purple solid circles demonstrate Wigner density phase points gen-
erated upon imaginary time trajectories according to Eq. (4.2), red wavy
lines illustrate spring potentials (from Gaussian distributions) between final
points of imaginary time trajectories and phase points, and green straight
lines depict intermolecular interactions. The generated phase points (purple
solid circles) are not involved in the intermolecular interaction directly in
the imaginary time, which is different from that in Fig. 5 The schematic
representation of the TGA-FBSD representation of the density (Boltzmann
operator) for two particles is exactly the same as that of the TGA-LSC-IVR,
except that purple sold circles depict coherent state phase points and the
corresponding Gaussian distribution parameters are different.

conditions (xy,py) for the real time trajectories. Using the
TGA [Eq. (3.5)] to approximate the Boltzmann operator al-
lows the Husimi transform to be evaluated analytically, giv-
ing the following result:

<Xo,P0|3_BH|X0’P0>:fdxfdx,<X0’P0|X><X|€_BH|X'><X’|X03Po>

=fdQOdeJdX'<Xo’P0|X><X|€_BH/2|(l0><QO|e_BH/2|X,><X'|X0,P0>

exp(2¥(B/2))|det '/

1 3N/2
qu0<27> |det G(B/2)||det(T" + (1/2)G~1(B/2))|

T L (B))! 2
Xexp| — Py F+EG 5 po/2%

ol -(xo-al ) & (8] 50(§) rls-ol )

(4.5)

The integrand in Eq. (4.5) can thus be used as the Monte Carlo sampling function for the real time initial conditions (X, py)-
One can show that Eq. (4.5) reduces to its classical limit—the Boltzmann distribution—in the high temperature limit, 83— 0,

i.e., when Eq. (3.4) holds.

Combining the TGA with the FBSD expression for the correlation [Eq. (2.15)] gives the following TGA-FBSD result for

correlation functions of complex systems:

CTGAFBSD ) _ ~ 1 exp(29(B/2))
U f 01‘10(477)”’2 |det G(B/2)[2

G™'(B12))'T(xo - 4(B2)))

» f |det |2 exp(— (xo — q(8/2)) "G~ 1(B/2)(T + (1/2)

V2| det G(B/2)"?|det(T" + (1/2)G1(B/2))|?

exp(—=po(T' + (1/2)G™Y(B/2)) ' py/2h?) TGA_FBSD< ( é’). )
f D0 2y V2 der(T + (172) G- (B12)) |72 /4 XoPod\, )57 )>

(4.6)
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where

R [ R T e L R

R
—_ — [ F —
q(z 2P\ +36

for local operators with AB=e PH2A(R)e™PH2, and
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4.7)
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for the momentum operator A=p with A#=¢#p. To obtain
better convergence, the partition function Z is calculated by

using £15PP(x0, po, q(B/ 2);1)(A=1) as the estimator for
the Monte Carlo sampling.

The Monte Carlo procedure for evaluating the TGA-
FBSD is similar to that of the TGA-LSC-IVR described in
the previous section. However, since f55°(xo,Po,q(8/2) ;1)
typically involves more cancellation than does the analogous
quantity in the TGA-LSC-IVR, the number of real time tra-
jectories required for each imaginary trajectory to obtain
convergence is considerably larger than for the TGA-LSC-
IVR.

A schematic representation of Eq. (4.6) for the TGA-
FBSD is also given in Fig. 1, which is the same as that of the
TGA-LSC-IVR. The TGA-LSC-IVR and the TGA-FBSD
are, in fact, closely related to one another (and give very
similar results in most applications). For example, the Gauss-
ian distributions in position and momentum are the same for
the two approximations in the limit I'— in Eq. (4.6) or
(4.5), provided one rescales py by the squared root of the
matrix (2I'G(8/2)+1)~". Furthermore, the Wigner function
and the Husimi function of the density with the TGA repre-
sentation are equivalent in the limit I' — o, i.e., the coherent
state  becomes the position eigenstate, though,
Fag NP (x0,p0, 4(B12)51) # fug MR (x0. po. 4(B/2) 1)
even in that limit. This arises from the fact that the FBSD
density is not the same as the Husimi function
(X0, PolAolXo, Po), but is instead (1+(3N/2))(X,PolHolXo, Po)
—2(x¢, Pol(X=x%¢) T py(X—x0)|X(,Py)» a narrower one. It is
straightforward to show that both the TGA-LSC-IVR and
the TGA-FBSD reduce to the classical limit at high tempera-
ture.

;)lpofﬁprl(f)(“iG' ) rl-ol2)

V. NUMERICAL APPLICATIONS

A. Anharmonic oscillator

The first example is a calculation of the force-force au-
tocorrelation function for an asymmetric anharmonic oscilla-
tor,

1
V(x) = Emwzxz -0.10x* +0.10x*, (5.1)

with m=1 and w= \5. This potential has been used as a test
model and discussed previously in the literature.*'%*® Both
the LSC-IVR and the FBSD methods are able to describe the
dephasing accurately for short times and semiquantitatively
for longer times, but fail to capture the rephrasing at longer
times due to coherence effects. In many cases in complex
systems one expects such long time rephasing effects to be
quenched by coupling among the various degrees of
freedom.'***’

In order to explore how well the TGA-LSC-IVR and the
TGA-FBSD perform, we test them at a high temperature
Bﬁw:xE/ 10 and a very low temperature Shw=8v2, com-
paring the results to the classical and the exact quantum re-
sults. At both temperatures, we use 21 imaginary trajectories
with the imaginary time step of 0.01, and a large number of
real time trajectories generated from each imaginary trajec-
tories with a real time step of 0.02. The velocity Verlet inte-
grator was used for both real and imaginary time dynamics.

Figure 2 shows the force autocorrelation function at the
temperature SAw= \6/ 10. All four results are in good agree-
ment. This is not surprising since both the TGA-LSC-IVR
and the TGA-FBSD correlation functions approach the clas-
sical result in the high temperature regime where classical
mechanics is a good approximation to the exact quantum
correlation function. However, at the very low temperature
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FIG. 2. (Color online) The symmetrized force autocorrelation function for
the_one-dimensional anharmonic oscillator given in Eq. (5.1) for Bhw
=v2/10. Black line: Exact quantum mechanical result. Green hollow square
with dashed line: classical result. Red solid triangle: TGA-LSC-IVR result.
Blue solid circle: TGA-FBSD result.

(,Bﬁw=8v5) shown in Fig. 3, the classical results depart
from quantum results with regard to both the amplitude of
the oscillation (drastically) and frequency (noticeably). It is
encouraging to see that the TGA-LSC-IVR and the TGA-
FBSD are able to describe these semiquantitatively over sev-
eral vibrational periods.

B. Liquid neon

Another example is application of the TGA-LSC-IVR
and the TGA-FBSD methods to calculate the quantum dy-
namics with a simulation of liquid neon. Although fully
quantum mechanical results on liquids are not available, the
FBSD velocity autocorrelation function with the pair-product
(PP) approximation (PP-FBSD) which accurately describes
the zero-time property and satisfies the detailed balance'®*
provides a good comparison. The system is treated as a
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Lennard-Jones fluid with parameters o=2.749 A, elkg
=35.6 K, and m=3.35X10"2° kg, at a reduced density p"
=0.78 and temperature T~ =0.84. This state point is at a fairly
low temperature, while still in the liquid region of both the
Lennard-Jones and experimental phase diagrams.39’40 Quan-
tum effects are significant under these conditions: the kinetic
energy computed by path integral Monte Carlo methods is
about 55.15+0.27 K, amounting to a 20% quantum correc-
tion to the classical kinetic energy of 44.85 K. These sizable
quantum mechanical effects arise from the large zero-point
energy of the light neon atoms. The dynamical consequences
of these quantum effects are even greater: the momentum
correlation function computed by FBSD was found to differ
substantially from that obtained by classical molecular dy-
namics methods, and various quantum correction factor pre-
scriptions give rise to different results, none of which is in
good agreement with the FBSD results.*’

In this application, we used 512 000 imaginary trajecto-
ries with 20 imaginary time propagation steps, and one real
time trajectory per imaginary time trajectory for the TGA-
LSC-IVR (10 real time trajectories per imaginary time tra-
jectory for the TGA-FBSD) with 800 real time propagation
steps. During the imaginary time propagation the Lennard-
Jones potential is fitted by three Gaussian functions the pa-
rameters of which are described in the literature.” Since lig-
uid neon is treated as an isotropic system, we choose the
coherent state parameter I'=+y1, where 1 is the identity ma-
trix and y=6, for both the PP-FBSD and the TGA-FBSD
simulations. The average kinetic energy computed by the
TGA methods is about 54.53+0.07 K.

Figure 4 shows the velocity correlation function for lig-
uid neon obtained by the PP-FBSD, the TGA-LSC-IVR, and
the TGA-FBSD. Both the real and imaginary parts of the
correlation function are in good agreement with the PP-
FBSD method. The TGA-LSC-IVR correlation function (real
part) decays to a somewhat lower well in comparison with
the TGA-FBSD and the PP-FBSD results. The comparison of
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Ly w8 1] 1Lyt d w1
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FIG. 3. (Color online) As in Fig. 2, but for a much lower temperature Sho=8 \2. Panel (b) shows a blowup of the curves shown in (a).
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FIG. 4. (Color online) The velocity autocorrelation function of liquid neon. panel (a) shows the real part of the correlation function while Panel (b) depicts
the imaginary part. Black solid line: PP-FBSD result. Blue solid circle with dashed line: TGA-LSC-IVR result. Red solid square with dotted line: TGA-FBSD

result. Green solid line: classical result.

the semiclassical correlation function to the classical result
has been shown in Fig. 4. Note that the classical correlation
function has no imaginary part, i.e., it is purely real.

As reported in Ref. 23, the total number of the imaginary
time trajectories in the TGA can be substantially decreased if
a classical distribution of q is generated at a reference tem-
perature (which can be the same temperature 7=29.90 K in
this case), and in every thousand classical MC steps or so,
choose one point q, for the TGA imaginary time propaga-
tion, because the classical Metropolis walk is easy to achieve
and thus helps the successive points (g to sample the space
efficiently. As a consequence, it should also greatly acceler-
ate the sampling efficiency in the TGA-LSC-IVR and the
TGA-FBSD. We would like to apply this technique in the
future.

VI. CONCLUDING REMARKS

In this paper, we have shown how the TGA can be com-
bined with the SC-IVR to construct time correlation func-
tions in a fully semiclassical scheme, using both real and
imaginary time propagations. Specially, we have shown that
both the TGA-LSC-IVR and the TGA-FBSD allow one to
integrate out the oscillatory term inherent in the LSC-IVR or
FBSD, and thus make them practical for descriptions of
quantum dynamical effects in large molecular systems. The
Kubo-transformed correlation function can also be calculated
in the same fashion without additional work, as shown in
Appendix B.

Numerical simulations of an anharmonic oscillator and a
low temperature liquid (liquid neon) show that the TGA-
LSC-IVR and the TGA-FBSD are good approximations for
time correlation functions. Work is continuing to see how
well they do in more challenging applications in the con-
densed matter phase, such as clusters®>** and more quantum
mechanical liquids (hydrogen or helium). It will also be in-
teresting in future work to see how application of the TGA
can be used with a more rigorous treatment of the real time

dynamics in a SC-IVR, such as Miller’s version of the
forward-backward IVR,41 or the exact forward-backward
semiclassical IVR expression (EFB-IVR). >

We note, however, that the TGA does not provide a good
description for the Boltzmann operator in barrier problems,
as is typical for the reactive flux correlation functions that
determine chemical reaction rates. Current calculations,
along with analytical studies (Appendix C), show that the
TGA fails to capture the character of the Boltzmann operator
at a low temperature: at low temperature, coordinate matrix
elements of the Boltzmann operator bifurcate into a dual
saddle point structure described by the quantum instanton
model. No Gaussian model is able to capture the nature of
this bifurcation. The more rigorous imaginary time Van
Vleck and the coherent state propagators in imaginary time,
however, are able to describe this bifurcation
semiquantitively.42 Further effort is thus being devoted to the
goal of finding efficient ways of using these more rigorous
SC imaginary time approximations for the Boltzmann opera-
tor within the overall SC-IVR approach to time correlation
functions.
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FIG. 5. (Color online) Schematic representation of combined path integral
LSC-IVR representation of the density (Boltzmann operator) for two par-
ticles for n=4 inserting beads. Black solid circles represent the path integral
beads, red wavy lines indicate spring potentials between neighbor beads,
green straight lines depict intermolecular interactions, and blue dotted lines
demonstrate the connection between the end beads via the Fourier trans-
form. The open rings illustrate the integrand in Eq. (A2), while the closed
ones the Wigner function of the Boltzmann operator. Note the two end beads
of the open rings merge into single beads (purple solid circles) at their
average positions associated with the momenta coming from the Fourier
transform of the difference between the two end beads, thus in this way it
constructs the initial phase space in the LSC-IVR.

APPENDIX A: DIFFICULTIES IN EXACT PATH
INTEGRAL REPRESENTATIONS OF THE LSC-IVR
AND THE FBSD

As discussed in Sec. II, the Wigner function for operator

(qo > po

N% (h |

o

q. q;

AP is nontrivial since it involves a multidimensional Fourier
transform involving the Boltzmann operator ¢ P" of the
complete system. One way to proceed is to express the Bolt-
zmann operator as a Feynman path integral. By inserting
path integral beads (q;,qs,...,q,) for the Boltzmann opera-
tor, the path integral representation of the LSC-IVR [Eq.
(2.8)] may be written as

Ci ™R =2 f dpy f dqp f dq, - f dq,

XO(po.q0.9> - --
(A1)

where A45(Po.49.9;5---q,) is function related with the op-
erators A and Ig‘ and the
0(po. 909> ---
of {(qy—Aqy/2|e PH|qy+Aq,/2) after inserting the beads
(41,93, ... ,q,) into the elements of the Boltzmann operator,
which gives

sampling  function
,q,,) is the Fourier transform of the integrand

®(p0’q0’q1’ s ’qn)

= (27Tﬁ)_3Nf dA(Ioeip"TAqO((lo - AQO/2|3_AB£I|(11>

X{qyle 2Pt q,) - - (q,le 2P| qo + Aqy/2),  (A2)

) Aap(P0- 90,915 - - -q,),

J. Chem. Phys. 125, 224104 (2006)
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FIG. 6. (Color online) Schematic representation of combined path integral
FBSD representation of the density (Boltzmann operator) for two particles
for n=4 inserting beads based on an early version. (Ref. 16) Black solid
circles represent the path integral beads, purple solid circles demonstrate the
coherent state beads, red solid wavy lines indicate spring potentials between
neighbor path integral beads while red dashed wavy lines illustrate the
spring potential between the coherent state bead and its neighbor path inte-
gral beads, green straight lines depict intermolecular interactions, and blue
dotted lines show the interaction between the two path integral beads that
are neighbors to the coherent state bead from the phase term in Eq. (A4).
The coherent state beads are not involved in the intermolecular interaction
directly in the imaginary time. Note the coherent state beads define the
initial phase space in the FBSD.

where AB=p/(n+1). Figure 5 shows a schematic represen-
tation of Eq. (A2).

For complex systems, generally it is not possible to ex-
plicitly evaluate the Fourier transform in Eq. (2.9) or (A2)
because of the sign problem (the phase cancellation is se-
vere). Some kinds of harmonic 21ppr0ximati0n3’6’7 for the el-
ements of the Boltzmann operator are necessary. These ap-
proximations have been successfully applied to some
complex systems.ls’2l They all, however, encounter problems
at low temperature when the potential energy has negative
curvature; this shows up most strikingly in regions of poten-
tial barriers, but also in the long range region of bounded
potentials.

A similar difficulty arises in the FBSD if one uses a
Feynman path integral representation of the Boltzmann op-
erator. Introducing the path integral representation of the
Boltzmann operator into Eq. (2.15) yields the following
form® for the correlation function:

CiBSP(1) = (2mh) =Nz f dp, f dq f dq; -

XJ dqne)(p()’q()’ql’ ’qn)

XAap(P0:q0:q1> --- ) (A3)

where A,z(Po.90,9;>--->9q,) is a function related to the op-

erators A and l§, and ©(py,qp.q;, .-

(qo.Pole™P|qg.py) after inserting the beads (q.qs,....q,)
into the Boltzmann operator, which has the explicit form

,q,) is the integrand of
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O(P0.q0-915 - -- -q) = (Go. Pole™P10?|q, e A9 (q, e =2AH0| ) - - -
« exp - (q; — qo) " M(M + #*ABI)"'T'(q,
AB
+ = Po(M+A2ABT) 'pg + —po(M +H?ABT) ' M(q, -

2h2A,8

Usually |®(py.q0.9; - - »q,)| would be used as the sampling
function for the Monte Carlo evaluation of the integral in Eq.
(A3). However, the phase in Eq. (A4) only vanishes when
inserting one bead is sufficient for evaluating the Boltzmann
operator, and thus becomes a bottleneck at low temperature
for complex systems. Nakayama and Makri therefore intro-
duced the pair-product (PP) approximation so that one bead
is accurate enough for low-temperature pure isotropic
liquids.l7 Figure 6 gives a schematic representation of Eq.
(A4).

To summarize, for general complex systems, the rigor-
ous path integral treatment of the Boltzmann operator in both
the LSC-IVR and the FBSD methods encounters the
problem—the inability to explicitly obtain the initial phase
distribution for the real time trajectories—as shown in Figs.
5 and 6.

APPENDIX B: TGA-LSC-IVR AND TGA-FBSD
FORMULATIONS OF KUBO-TRANSFORMED
CORRELATION FUNCTIONS

The Kubo-transformed real time correlation function** is
given as
iHilh B e—iih/h) ’

1 .
Cubo(r) = ETr(A{iuboe (B1)

where AP, =1/p[Ed\e FNIAeM  is  the  Kubo-
transformed operator. The Kubo-transformed versions of the

1 exp(2¥Bl2))

2 (qe— Q) Mg — qsy) - ABE V(qy)

J. Chem. Phys. 125, 224104 (2006)

e_AﬁV(q")<~xn|e_ABH0/2|q0’ p0>
- qo) + (g, = q9)"M(M + #*ABI)'T'(q, - q)
q,)

(A4)

TGA-LSC-IVR and TGA-FBSD can both be expressed in a
similar form as Eq. (4.2) or (4.6). Here we take the momen-
tum and the force autocorrelation functions as examples.
Since the momentum and force operators can be expressed as
p=(i/H)M[H,R] and F(X)=-V'(R)=i/A[H,p], their Kubo
transforms are given by

M[x e_BH]

Y (B2)

f)ﬁubo

and

~ [ A
Fgubo= ﬁg[p’e BH]' (BS)

Equations (B2) and (B3) directly connect the standard real
time correlation function [Eq. (2.1)] with the Kubo-
transformed correlation function [Eq. (B1)], which shows an-
other way to calculate the Kubo-transformed correlation
function.

The Wigner function and the Husimi function of &, or
ﬁﬁubo can be obtained analytically using the TGA in the same
way as in Eqgs. (4.1) and (4.5), respectively. The final form of
the TGA-LSC-IVR of the Kubo-transformed real time corre-
lation function can be shown to be

1

CTOALSCIVR () _ 1 f
AA Kubo 7 (477)”\”2 |det G(B/2)]"?

ol 2o

2 2

2

X0 P2 det G(B12)|
B

|det G(B/2)['?
(7Tﬁ2)3N/2

)]

B LSC- B
eso| - Jon a0 e £) ) o
where
LsC- B 2 B
ke xomal £ < Zopime 2], =

for the momentum A:f), and
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TGA-LSC-IVR B\
AA.Kubo (XO,PO,‘I<E> J)

2 T
=—E(XO—Q(§>> G_n(ﬂ) F(x.po) (B6)

for the force A=F.

The formula of C}S’%]Lbsoc VR(#) and that of C}S’A'LSC’IVR(I) in Eq. (4.2) show that they share exactly the same MC
sampling, except that the estimator function }SEIL[)SOC’WR(XO,pO,q(B/ 2):1) is different from f1o"SCVR(x ) po.q(B8/2);:1), so
they are able to be calculated simultaneously.

Similarly, we obtain the following result for the TGA-FBSD version of the Kubo-transformed correlation function:

TGA-FBSD,y _ | 1 exp(29(B/2))
Cadiano ()= D42 |get G(BI2)[ 2

" f |det T2 exp(= (xo - q(8/2)) "G (B/2)(T + (1/2)G(8/2))'T'(x, — q(3/2)))
V2| det G(B/2)"?|det(T" + (1/2)G1(B/2))|?

exp(=po( + (12)G™(B12))"'py/2h?) 1. FBSD< (/_3))
fd Po (27Tﬁ2)3N/2|det(F+(l/2)G 1(ﬂ/2))|1/2 AAKubo | X0-Po-4 2 s, (B7)

where

(el 2)a)=[(1+2) sl o (8)) e (8)) ol 2] (4
X(ﬁiv(f))1f(r+;c‘§§>>lc‘(§>(%q(f))]

for the momentum A:f), and

ol 213 sl 8 ) o
et (8 28 2]
e )

F+1G‘1<'[—3>>_1F<I‘+lG‘1<’[—3>>_1G‘1(’[—3)F, (B9)
27 \2 27 \2 2

for the force A=F. (x— Ax/2|e"3ﬁ|x + Ax/2)

= f dqo(x - A1“/2|e_ﬁé”z|(10><qo|e_’31;”2|x +Ax/2)

APPENDIX C: PROBLEM OF TGA TREATMENT OF w
THE BOLTZMANN OPERATOR OF THE B 1\ Mexp(2¢(B/2))
BARRIER POTENTIAL 27/ |det G(B/2)]

It can be shown that the matrix G(7) in Eq. (3.2) is
always positive definite for a physical system (for which the
second derivative of the potential is zero or positive in the ——
asymptotic region). Therefore, since matrix elements of the Xexp(- (x—q(8/2))'G™(B/2)(x - q(B/2))),
Boltzmann operator are given within the TGA by (C1)

1
Xexp(— ZAXTG_I(,BQ)AX)
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and since G(B/2) is positive definite, the matrix element
along the off-diagonal direction Ax is always a Gaussian
centered at 0. This is qualitatively wrong, however, for a
barrier potential (i.e., Eckart barrier) at low temperature,

where the element (—Ax/2|e PH|Ax/2) is typically bimodal;
i.e., the TGA is intrinsically incapable of capturing the two
saddle points (along the off-diagonal direction Ax) of the
coordinate Boltzmann matrix element for a barrier potential,
which is characteristic of the low temperature regime, as
shown in Fig. 1(a) in Ref. 45. This bimodal character, how-
ever, is described semiquantitively by the more rigorous
imaginary time Van Vleck and the Herman-Kluk propagators
in imaginary times.*?
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