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Long-time behaviour of quantized distributions in

forward–backward semiclassical dynamics

J. LIU, A. NAKAYAMA and N. MAKRI*
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(Received 16 August 2005; in final form 20 October 2005)

The paper reports investigations of the characteristics of phase space distributions in

forward–backward semiclassical dynamics (FBSD) calculations. By virtue of Liouville’s

theorem and energy conservation, the volume of the negative regions is rigorously conserved

and the energy distribution is invariant during time evolution. Thus, while the phase space

density is not invariant under FBSD, exhibiting a weak time dependence mostly in its wings,

it retains its quantum mechanical characteristics and does not revert to a classical Boltzmann

distribution at long times. Illustrative applications on liquid neon near its triple point

are presented.

1. Introduction

The forward–backward semiclassical dynamics (FBSD)
methodology [1–7] has emerged as a rigorous, yet
practical approximation to time-dependent quantum
mechanical properties of condensed phase systems.
Starting from the semiclassical phase space representa-
tion of a time-dependent observable or correlation
function and performing a series of transformations,
including the use of a derivative identity and the
evaluation of the midpoint integral by the stationary
phase method, FBSD expressions assume a quasiclassi-
cal form where the dynamical variables of interest are
averaged with respect to a phase space distribution that
corresponds to the quantized initial density. The main
appeal of this expression is its simple form in terms of
an integral over initial trajectory values, the absence of a
rapidly oscillatory phase, and the feasibility of evaluat-
ing the particular phase space transform of the density
operator without introducing additional approxima-
tions. The methodology also invites the use of molecular
dynamics tools in the evaluation of the integrals [8]
and can be combined with on-the-fly electronic structure
techniques. The FBSD approximation may also be
obtained as the stationary phase limit of the path
integral representation to a time correlation function.
As such, this particular (and most practical) version of
FBSD cannot account for quantum interference effects
that characterize low-dimensional molecular systems.
Miller and co-workers have proposed expressions [9]
that interpolate continuously between the more

accurate (and less practical for polyatomic systems)
semiclassical form and its full FBSD limit. Recent
calculations [8, 10–13] have confirmed the ability of
the quasiclassical FBSD methodology to capture impor-
tant quantum effects, even dynamical effects associated
with Bose–Einstein condensation [12, 13], and its
suitability for simulations with hundreds of particles.

The FBSD approximation to a time correlation
function corresponding to the inner product of two
vector operators Â and B̂

CA�BðtÞ � Tr �̂0Â � eiĤt=�hB̂e�iĤt=�h
� �

, ð1:1Þ

takes the form [7, 9, 14]

CFBSD
A�B ðtÞ ¼ ð2� �hÞ�n

Z
dx0dp0 1þ 1
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� �
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Here n is the number of degrees of freedom in the system
described by the coordinates xj and momenta pj,
j ¼ 1, . . . , n, gx0p0 are coherent states with wavefunctions
given by the relation

x
�� gx0p0� �

¼
2

�

� 	n=4

det !ð Þ
1=4

� exp �ðx� x0Þ �! � ðx� x0Þ þ
i

�h
p0 � ðx� x0Þ

� 	
ð1:3Þ*Corresponding author. Email: nancy@makri.scs.uiuc.edu

Molecular Physics
ISSN 0026–8976 print/ISSN 1362–3028 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00268970500525754



(where ! is the diagonal matrix of coherent state param-
eters �j), and xt, pt are the phase space coordinates
reached at the time t by a classical trajectory originating
at x0,p0. Equation (1.2) is derived by expressing the
operator B̂ in an exponential derivative form and
applying the time-dependent semiclassical approxima-
tion in the coherent state representation [15] to the
resulting product of exponential operators. Thus,
the FBSD approximation is the stationary phase limit
of a Heisenberg-evolved operator expressed in an
exponential form.
To implement the approximation, classical trajec-

tories are sampled from a phase space distribution given
by the absolute value of the exponential part of

PAðx0,p0; 0Þ ¼ gx0,p0
� �� 1þ 1

2n
� �

�̂0Â

� 2ðx̂� x0Þ � !�̂0Â � ðx̂� x0Þ gx0,p0
�� �

: ð1:4Þ

Because this operator involves only equilibrium proper-
ties, it can be fully quantized (e.g. by expressing
the Boltzmann operator as an imaginary time path
integral [16]). The accurate representation of the phase
space distribution that determines the weights of the
classical trajectories ensures a correct description of
important quantum mechanical effects associated with
zero-point energy, frequency shifts, and imaginary
components that are responsible for spectral asymme-
tries. At the same time, the combination of a quantum
mechanical treatment of the initial density with a
subsequent classical propagation leads to various
inconsistencies. Among the most significant questions
that arise are (i) whether FBSD obeys certain relations
satisfied by exact quantum mechanical correlation
functions, and (ii) how the quantized distribution
evolves at long times. The first of these questions was
addressed in a recent paper [17], where we showed that
autocorrelation functions satisfy rigorously an impor-
tant time symmetry and the related detailed balance
condition. The characteristics of the long-time evolution
of the quantized phase space density are the subject of
the present work.
If Â ¼ 1 in the correlation function, then equation

(1.2) gives the expectation value for the operator B̂
during the time evolution, and equation (1.4) provides
the FBSD corresponding phase distribution function
for the density operator �̂0. In FBSD, the combination
of a quantum mechanical treatment of the initial density
with a subsequent classical propagation leads to various
inconsistencies. As the quantized phase space density is
not steady under classical dynamics, and a large system
(condensed phase system) usually is in practice ergodic,
one might expect it will show classical mechanical
relaxation behavior and finally reach an ‘equilibrium’

state characterized by a classical Boltzmann-like dis-

tribution at some effective temperature. In the next

two sections we show that this is not the case, although

the evolving distribution does deviate from the correct

quantum mechanical density, retaining important

quantum mechanical structures as it develops certain

classical-like features.
In the next section, we investigate various general

properties of the phase space density evolving according

to the FBSD approximation. In section 3, we illustrate

these properties with a simulation on liquid neon

and examine the long-time characteristics of this

density, and section 4 concludes.

2. Theoretical analysis

Using the path integral representation of the Boltzmann

operator �̂0 ¼ expð��ĤÞ=Z (where Z is the canonical

partition function), the FBSD expression for a thermal

correlation function takes the form [6]

CA�BðtÞ ¼ ð2��hÞ�n

Z
dx0

Z
dp0

Z
dx1 � � �

Z
dxN
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Here, x1, . . . , xN are the N auxiliary path integral

variables (the ’beads’) that arise from splitting the

Boltzmann operator into N factors corresponding to

imaginary time �� ¼ �=N, each of which is factored

using the Trotter approximation,
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�� �

¼
Yn
j¼1

2�j
�

� 	1=2
mj

mj þ �h2�� �j

mj

2��h2��

� 	ðN�1Þ=2

� exp �
mj

mj þ �h2�� �j
�jðxj,1 � xj,0Þ

2
þ �jðxj,N � xj,0Þ

2
�


þ
��

2m
p2j,0 þ

i

�h
pj,0ðxj,1 � xj,NÞ

	

�
mj

2�h2��

XN
k¼2

xj,k � xj,k�1

� �2
���

XN
k¼1

Vðxj,kÞ

)

ð2:2Þ

is the path integral discretization of the coherent state

transform of the Boltzmann operator alone, mj is

the mass associated with the jth degree of freedom,
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and the function �A�B depends on the specific form
of the operators.
Because FBSD propagates each phase space point

by classical mechanics, the time evolution of the phase
distribution is governed by Liouville’s theorem, which
states that

@PA

@t
¼ � PA,Hf g ¼ �

@PA

@x
�
@H

@p
þ
@PA

@p
�
@H

@x

¼ �
@PA

@x
�
p

m
þ
@PA

@p
�
@VðxÞ

@x
: ð2:3Þ

In the Langrangian view, where properties are examined

along the flow, the phase distribution function is
invariant during the evolution, i.e.

PAðxt,pt; tÞ ¼ PAðx0,p0; 0Þ ð2:4Þ

By virtue of this fact, even though the phase distribution

in the Euler representation may change or distort from
its initial form, the total volume of its negative regions

is a time-invariant property.
For Â ¼ 1 in the correlation function, equation (1.4)

provides the FBSD phase space distribution PA¼1ðx0,p0Þ
for the initial density operator. This distribution, in

turn, determines the energy distribution,

f ðEÞ ¼

Z
dx0

Z
dp0 PA¼1ðx0,p0Þ � E�Hðx0,p0Þ

� �
: ð2:5Þ

Since the energy is conserved along each classical
trajectory employed in FBSD, the energy distribution

f ðEÞ will not change during the evolution. As each
trajectory reaches its micro-canonical equilibrium state
in an ergodic system, the entire distribution will reach

its equilibrium state as well, which means its thermo-
dynamic properties attain constant values. The final
phase distribution of such an ergodic large system will

depend on f ðEÞ only, and thus is steady (time-invariant)
under the classical dynamics. In other words, the density

phase distribution at the equilibrium in the FBSD
approximation is given by

Peq x,pð Þ ¼ PA¼1 x,p; t ! 1ð Þ ¼ f E ¼ Hðx,pÞð Þ: ð2:6Þ

The equilibrium phase space distribution PA¼1 x,p; tð Þ

is totally determined by the quantization PA¼1ðx0,p0Þ of
the density operator. Thus the coherent state width may
show its weak influence on Peq x,pð Þ. As a result of this

quantization, the phase space distribution PA¼1ðx0,p0Þ
and thus the energy distribution f ðEÞ has both positive
and negative regions. Hence the final distribution

Peq x,pð Þ will be different from the classical Boltzmann
distribution in phase space, retaining important

structures associated with quantization rather than
relaxing to a pure classical distribution as it reaches
equilibrium. Another characteristic property is the
momentum distribution,

� p; tð Þ ¼

Z
dxPA¼1 x,p; tð Þ ð2:7Þ

This function will also have positive and negative
regions. Therefore, the long-time ’equilibrium’ momen-
tum distribution in the FBSD approximation differs
from the Maxwell–Boltzmann distribution. In the next
section we retain the use of the relation p2=2m

� �
¼ 3

2kBT
to infer the ’equilibrium temperature’ of the system after
a long-time relaxation of its initial quantized phase
space distribution, but it should be clear that the FBSD
density never changes to that charactering classical
mechanical systems.

For each constant energy surface of the phase space
distribution, phase space points carrying initially posi-
tive and negative weights will mix as time progresses,
showing a similar behavior as described in a one-
dimensional system in a previous paper [18]. Finally,
in the high-temperature limit, the quantized phase space
density distribution will reduce to its corresponding
classical Boltzmann distribution, and hence the phase
distribution function will be time-invariant.

3. Numerical illustrations

In this section we illustrate the phase space character-
istics and long-time limit of FBSD with a simulation on
liquid neon. While fully quantum mechanical results
on liquids are not available for comparison, several tests
on model systems have shown the FBSD methodology
to give nearly quantitative results (as long as quantum
interference effects are not significant). We choose
! ¼ �1, where 1 is the identity matrix. The system is
treated as a Lennard–Jones fluid with parameters
� ¼ 2:749 Å, "=kB ¼ 35:6K and m ¼ 3:35� 10�26kg,
at a reduced density �� ¼ 0:78 and reduced temperature
T � ¼ 0:84. This state point is at a fairly low temperature
(T ¼ 29:9K), while still in the liquid region of both
the Lennard–Jones and experimental phase diagrams
[11, 19, 20]. Quantum effects are significant under these
conditions: the kinetic energy computed by path integral
Monte Carlo methods is 55.15K, amounting to a 20%
quantum correction to the classical kinetic energy of
44.85K. These sizable quantum mechanical effects arise
from the large zero-point energy of the light neon atoms.
The dynamical consequences of these quantum effects
are even greater: the momentum autocorrelation func-
tion computed by FBSD was found to differ sub-
stantially from that obtained by classical molecular

Long-time behaviour of quantized distributions in semiclassical dynamics 1269



dynamics methods, and various quantum correction
factor prescriptions give rise to different results, none
of which are in perfect agreement with the FBSD
results [11]. Using the pair-product (PP) approximation
[10] to the coherent state matrix element of the
Boltzmann operator, the present simulation converged
with a single path integral bead.
First, we investigate the expectation value of the

kinetic energy by setting Â ¼ 1 , B̂ ¼ p̂
2
=2m. As dis-

cussed in earlier work [18], FBSD averages evaluated
with this choice of operators depend sensitively on the
wings of the phase space distribution, leading to poor
Monte Carlo statistics. Although FBSD methodology
is in principle exact at zero time, we were unable to
converge the FBSD results for the average kinetic energy
of liquid neon to better than 5%. We find, however,
that the change with time of the system’s kinetic energy
relative to its initial value is well-converged in our
calculation. For this purpose we display in figure 1
corrected average kinetic energy values, which we
obtained by shifting the simulation results by the
amount necessary to make the initial value equal to
that obtained from a high-precision PIMC calculation
(2.64K for � ¼ 6 a:u:, 2.66K for � ¼ 8 a:u:).
Figure 1 shows the time evolution of the system’s

average kinetic energy per molecule for two near-
optimal values of the coherent state parameter. It is
seen that the average kinetic energy approaches a nearly
constant value following an initial time interval of
approximately 0.7 ps, during which the kinetic energy
changes nonmonotonically. The spurious variation of
the liquid’s kinetic energy is a consequence of the
non-commutation between the quantum mechanical
treatment of the Boltzmann operator and the classical
Liouville operator generating the time evolution of this
density. As seen in figure 1, the difference of the initial
(55.15K) and equilibrium (about 50K) values depends
weakly on the coherent state width. Although the
average kinetic energy decreases by about 5K during
the course of FBSD time evolution, its final value
remains well above the corresponding classical value.
For comparison, the temperature at which the quantum
mechanical expectation value of the system’s kinetic
energy (obtained by PIMC) at the same density
(�� ¼ 0:78) is 50K (i.e. equal to the FBSD long-time
value) is T ¼ 26:19K.
Before proceeding with further analysis of these

simulation results, we show in figure 2 a snapshot of
the atomic positions (coordinates of the coherent state
centers) and PP-path integral coordinates (beads) at
the final equilibrium state reached by one of the FBSD
trajectories. The observed randomness suggests that the
system is still in a typical liquid configuration (although
at a lower temperature) and has not phase-separated.

The time dependence in the expectation value of the

kinetic energy (in principle, a conserved quantity)

observed in figure 1 is at first disturbing. In a recent

paper we investigated various theoretical features of

FBSD expressions and showed that an important time

symmetry, which is responsible for the detailed balance

relation, is satisfied rigorously in the FBSD method-

ology only for time autocorrelation functions. In view of

this property, the non-stationarity of expectation values

is not surprising. In a certain sense, the higher symmetry

attained in expressions where the two operators

are identical alleviates some of the inconsistency

caused in FBSD by the classical mechanical propagation

of an initially quantized phase space distribution.
Figure 3 shows FBSD results with Â ¼ p̂, B̂ ¼ p̂=2m

for liquid neon under the same conditions. This quantity

is proportional to the system’s velocity autocorrelation

function (although the normalization is chosen such that

at zero time the real part of figure 3 coincides with that

in figure 1). Not only do the results shown in figure 3

exhibit a negligible dependence on the coherent state

width within the chosen range, they also converge much

better than those for the average kinetic energy shown

in figure 1 (and thus appear as a smoother curves).
To shed more light on the characteristics of the

evolving phase space distribution, we calculate the pair

distribution function g rð Þ using

Â ¼ 1, B̂ ¼
v

n2p

Xnp
i<j

� r� ĵr
ðiÞ
� r̂

ðjÞ
j

� �
ð3:1Þ
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t2 /
2m

>
 (

K
)
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Figure 1. Evolution of the average system kinetic energy
p2t
� �

=2m. Solid line: � ¼ 6 a:u: Dashed line: � ¼ 8 a:u. Chain-
dashed line: quantum mechanical result. Chain-dotted line:
classical mechanical result.
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where np is the number of particles in the box of the

simulation, and the molar volume v ¼ 16:04 cm3 mol�1.

Below we compare the pair distribution function

obtained at select times during the FBSD evolution

with the corresponding quantum mechanical and

classical results.
Figure 4 shows the pair distribution function at

different times during the evolution. Time t ¼ 0

represents the initial pair distribution function,

t ¼ 0:048 ps corresponds to the time at which the
system kinetic energy is at its first local minimum in
figure 1, t ¼ 0:133 ps is the time at the peak in figure 1,
and t ¼ 1:004 ps and t ¼ 1:604 ps are times at which the
system kinetic energy has attained its equilibrium value.
The height of the first peak of the pair distribution
function decreases at the beginning until the system
kinetic energy reaches its peak in figure 1, and then
increases until it reaches its final value. During the
course of classical mechanical propagation in FBSD,
the initially quantized phase space density changes
in complex ways that at short times appear to combine
both classical and quantum mechanical features.
Thus, in spite of a sharp decrease in the average kinetic
energy at t ¼ 0:048 ps (which is typical of evolution
toward a classical-like density), the first peak in the pair
distribution function appears at that time slightly
lowered (a characteristic of a quantum mechanical
trend). The first peak of the distribution function is
further lowered considerably at t ¼ 0:133 ps, when the
average kinetic energy goes through a local maximum.
Eventually, at long times, the peak in gðrÞ recovers
its original height, although its position has moved to
a slightly shorter interatomic distance.

Figure 5 shows the initial and final pair distribution
functions in the FBSD calculation, and also their
quantum mechanical and classical counterparts at
T ¼ 29:90K and T ¼ 26:19K. The second of these
temperatures is that at which the quantum mechanical
kinetic energy of the system equals that attained at
long times by the FBSD-evolved density. As shown in
figure 4, the first peak occurs at an interatomic distance
smaller than the position of the Lennard–Jones potential
minimum rmin ¼

ffiffiffi
26

p
� ¼ 3:0856 Å for liquid neon.

At the initial point t ¼ 0 ps (T ¼ 29:90K), using the

Figure 2. Final three-dimensional configuration of the neon system through FBSD and its two-dimensional projection.
The simulation employed 108 atoms in the unit cell with periodic boundary conditions. The coordinates of each atom are shown
in red, and the PP bead is shown in blue.
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Figure 3. Autocorrelation function p0 � pt
� �

=2m, where � is
the width parameter of the coherent state. Solid line: real part
of the correlation function with � ¼ 6 a:u: Long-dashed line:
imaginary part of the correlation function with � ¼ 6 a:u:
Solid circles: real part of the correlation function with
� ¼ 8 a:u: Hollow squares: imaginary part of the correlation
function with � ¼ 8 a:u: Short-dashed line: classical molecular
dynamics results.
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PP approximation to the coherent state matrix element
of the Boltzmann operator with only one bead, the
FBSD simulation results (the position and height of
the first peak of the pair distribution function) are in
reasonable agreement with the results of a path integral
Monte Carlo (PIMC) simulation (which required up
to 20 beads for convergence). The small (3.71K) drop
of the system temperature causes the first peak of
the pair distribution function in the PIMC or CMC
calculations to move very slightly to the right. This is so
because a decrease in temperature implies a decrease
in the system’s kinetic and potential energy for the
quantum mechanical and classical simulations; since
the first peak of the pair distribution function lies on

the left of the potential minimum, a decrease in potential
energy leads to right shift in the peak of gðrÞ.
By contrast, the first peak of the final pair distribution
function in the FBSD calculation exhibits a noticeable
shift to the left of its initial value. The pair distribution
function obtained with � ¼ 8 a:u: exhibits similar trends.
In the FBSD simulation, the system kinetic energy is
lowered relative to its initial value as shown in figure 1,
but since the propagation conserves the total energy,
the average potential energy must increase as the final
’equilibrium’ state is reached, leading to the observed
shift of the peak toward a shorter interatomic distance.
Similar arguments apply to the second peak of the pair
distribution function.

2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

g(
r)

r (Å) r (Å)

(a)

0

0.5

1

1.5

2

2.5

g(
r)

(b)

Figure 4. Evolution of the pair distribution function gðrÞ with � ¼ 6 a:u: Black line: t ¼ 0 ps. Red line: t ¼ 0:048 ps. Orange line:
t ¼ 0:133 ps. Green line: t ¼ 1:0038 ps. Blue line: t ¼ 1:604 ps. (The green and blue lines essentially coincide). Panel (b) shows a
blowup of the curves shown in (a).
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Figure 5. Comparison of the initial and final pair distribution functions gðrÞ to their quantum mechanical (PIMC) and classical
mechanical (CMC) counterparts. The coherent state width parameter in the FBSD calculations is � ¼ 6 a:u. Cyan line: CMC
at T ¼ 29:90K. Blue line: CMC at T ¼ 26:19K. Red line: PP-FBSD at t ¼ 0 ps. Green line: FBSD at t ¼ 1:604 ps. Black line
and circles: PIMC at T ¼ 29:90K. Purple line: PIMC at T ¼ 26:19K. The arrow shows the position of the minimum of the
Lennard–Jones potential rmin. Panel (b) shows a blowup of the curves shown in (a).
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The shift of the peak in the pair distribution function
in figures 4 and 5, along with the relaxation behaviour
shown in figure 1, clearly illustrates that time evolution
under FBSD does not preserve the exact shape of
the phase space density. This artifact is a result of
the inconsistent treatment of the initial density (which
is fully quantized) and its time evolution (which
is obtained from classical trajectories). Furthermore,
one concludes from figure 5 that the ‘equilibrium’ state
reached by FBSD matches neither the quantum
mechanical nor the classical phase space distributions
at either the actual or the final FBSD temperatures.
Though this 108-atom simulation shows ergotic behav-
ior under classical dynamics, the FBSD final ‘equilib-
rium’ is not a classical Boltzmann distribution for
a system in a different thermodynamic state. In this
sense, one should not, strictly speaking, extract a
’temperature’ from the FBSD kinetic energy (except at
zero time). As we discussed in the previous section,
classical dynamics preserves the volume of negative
parts of the phase space density distribution, therefore
the FBSD phase space density will under no circum-
stances evolve into a (positive definite) classical
Boltzmann distribution.

4. Concluding remarks

We have examined the time evolution of the phase
space density in FBSD, with emphasis on its long-time
‘equilibrium’ limit. Based on rigorous arguments, we
have shown that the long-time phase space distribution
retains important quantum mechanical structures
built in its initial condition. As the energy distribution
determined by the initial quantized density phase
distribution is time invariant during the evolution,
phase points of positive and negative density at the
same energy may mix during propagation. By virtue
of the Liouville’s theorem, the volume of the negative
regions is rigorously conserved, and so are the positive
parts. As a consequence of these facts, the phase
space distribution cannot revert to a classical
Boltzmann distribution. At the same time, the classical
propagation of each phase space point prevents statio-
narity, leading to a weak time-dependence of the
evolving density.
Numerical simulations on liquid neon show that

expectation values are harder to converge than time
autocorrelation functions (which, as discussed in pre-
vious work [17], satisfy important properties), and that
they exhibit a spurious time dependence that depends
weakly on the coherent state width. Calculations of the
pair distribution function show that the liquid retains a
similar, but not identical structure to that corresponding

to its initial quantized equilibrium state, which corre-
sponds to a slightly decreased kinetic energy.

In recent years, much attention has been given to
the Wigner quasiclassical (or linearized semiclassical
initial value representation) approximation [21–25]. This
is similar in structure to the FBSD expression, but the
required numerical evaluation of the Wigner transform
usually is feasible only with additional approximations.
The theoretical analysis presented in this paper also
applies to the Wigner approximation.
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