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Abstract

Symmetry properties of time correlation functions within the forward–backward semiclassical dynamics (FBSD) approximation are
considered. It is shown that FBSD autocorrelation functions of momentum and position-dependent operators satisfy rigorously the time
symmetry relation of the quantum mechanical expression. The detailed balance condition follows from this symmetry in the special case
where the density is given by the Boltzmann operator. The derived properties are illustrated with numerical simulations on liquid neon.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Semiclassical; Dynamics; Correlation functions
1. Introduction

Time correlation functions encode important dynamical
information. For example, dipole moment correlation
functions are related to absorption spectra, flux correlation
functions yield reaction rates, and velocity correlation func-
tions can be used to calculate diffusion coefficients. One
of the practical advantages of the time correlation function
approach is that the observable of interest often can be
obtained from relatively short time information. While
most theoretical efforts have been devoted to the calculation
of two-time correlation functions that correspond to linear
experiments, multi-time correlation functions have also
received attention as a tool for analyzing nonlinear spectro-
scopic data.

This paper deals with time correlation functions of the
form

CABðtÞ � Trðq̂0Âe
iĤ t=�hB̂e�iĤ t=�hÞ: ð1:1Þ

Here, a (hermitian) operator Â is multiplied by a time-
evolved (hermitian) operator
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B̂ðtÞ � eiĤ t=�hB̂e�iĤ t=�h ð1:2Þ
and the product is ensemble-averaged with respect to an
equilibrium density operator q̂0. Most relevant to con-
densed phase processes are finite temperature correlation
functions, in which the density is given by the Boltzmann
operator q̂0 ¼ e�bĤ=Z , where Z ¼ Tre�bĤ (b = 1/kBT).

Time-dependent semiclassical theory [1] offers a rigor-
ous and sufficiently accurate approximation [2] to the
quantum mechanical propagator in the �h ! 0 limit.
However, its application to polyatomic systems is hin-
dered by the oscillatory character of the semiclassical
phase, which impairs dramatically the efficiency of
Monte-Carlo methods. The forward–backward semiclas-
sical dynamics (FBSD) approximation [3–6] reduces the
oscillatory behavior of the integrand by combining the
actions of the forward and backward propagators into
a single semiclassical step, which amounts to the station-
ary phase limit of the quantum mechanical expression.
Thus, it provides a rigorous and practically useful meth-
odology for simulating the dynamics of condensed phase
systems that exhibit quantum mechanical effects and thus
are not treatable by classical molecular dynamics. Its
practicality lies in the extraction of dynamical properties
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from classical trajectories. Unlike ordinary molecular
dynamics methods, FBSD trajectories are sampled from
a properly quantized phase space distribution and thus
capture important quantum mechanical effects. A num-
ber of calculations in our group have shown that FBSD
can reliably reproduce the imaginary part of time corre-
lation functions [5,7–9], account for frequency shifts
associated with high-frequency vibrations [5], yield nearly
quantitative results for the diffusion constant of liquid
p-H2 in a temperature range where molecular dynamics
treatments lead to a qualitatively incorrect description
of the system�s thermodynamic phase [8], and accurately
incorporate identical particle exchange effects [10].
Recently, Nakayama and Makri [11] reported the first
successful simulation of superfluid helium, where FBSD
reproduced remarkably well the measured incoherent
structure factor in the intermediate to high neutron
momentum regime.

In this paper, we derive various symmetry properties of
time correlation functions in the FBSD approximation
[4,5]. Restricting our presentation to one-dimensional
systems for simplicity, the FBSD approximation to the
Heisenberg time-evolved operator defined in Eq. (1.2) takes
the form [6,12]

B̂
FBSDðtÞ ¼ ð2p�hÞ�1

Z
dx0

Z
dp0

3

2
jgx0p0ihgx0p0 j

�

�2cðx̂� x0Þjgx0p0ihgx0p0 jðx̂� x0Þ
�
Bðxt; ptÞ: ð1:3Þ

Here, gx0p0 are coherent states with wavefunctions given by
the relation

hxjgx0p0i ¼
2c
p

� �1
4

exp �cðx� x0Þ2 þ
i

�h
p0ðx� x0Þ

� �
ð1:4Þ

and xt, pt are the phase space coordinates reached at the
time t by a classical trajectory originating at x0, p0. Eq.
(1.3) is derived by expressing the operator B̂ in an exponen-
tial derivative form and applying the time-dependent semi-
classical approximation in the coherent state representation
[13] to the resulting product of exponential operators.
Thus, the FBSD approximation is the stationary phase
limit of the Heisenberg-evolved operator.

Use of Eq. (1.3) in Eq. (1.1) leads directly to the FBSD
approximation for time correlation functions,

CFBSD
AB ðtÞ ¼ ð2p�hÞ�1

Z
dx0 dp0

3

2
hgx0p0 jq̂0Âjgx0p0i

�

�2chgx0p0 jðx̂� x0Þq̂0Âðx̂� x0Þjgx0p0i
�
Bðxt; ptÞ:

ð1:5Þ

To implement the approximation, classical trajectories
are sampled from a phase space distribution proportional
to the exponential part of
PAðx0; p0Þ ¼ hgx0;p0
3

2
q̂0Â� 2cðx̂� x0Þq̂0Âðx̂� x0Þ

����
����gx0;p0i:

ð1:6Þ
Because this operator involves only the equilibrium den-
sity, it can be fully quantized (e.g., by expressing the Boltz-
mann operator as an imaginary time path integral [14]).
The accurate representation of the phase space distribution
that determines the weights of the classical trajectories
ensures a correct description of important quantum
mechanical effects associated with zero-point energy, fre-
quency shifts, and imaginary components that are respon-
sible for spectral asymmetries. At the same time, the
combination of a quantum mechanical treatment of the ini-
tial density with a subsequent classical propagation leads to
various inconsistencies. Among the most significant ques-
tions that arise are (i) whether FBSD satisfies the detailed
balance condition and (ii) how the quantized distribution
evolves at long times. The present paper focuses on the first
of these questions. The characteristics of the long-time
evolution of the quantized phase space density will be the
subject of another paper [15].

In a recent paper, Wright and Makri [16] performed
numerical calculations for the evolution of the phase space
density in model one-dimensional systems and demon-
strated that the FBSD correlation function satisfies the
detailed balance condition within the statistical precision
of the calculations. Detailed balance is a manifestation of
symmetries in the correlation function, and we revisit this
issue in the present paper by investigating under what
conditions certain time-domain symmetries hold rigorously

for the FBSD correlation function. We find that auto

correlation functions of interest satisfy these desirable
symmetries, and thus obey the detailed balance principle.
Because the static and dynamical operators in the FBSD
expression are treated at different levels, correlation
functions of different operators (and thus expectation
values) do not in general display these features and can
exhibit spurious temporal fluctuations. A practical
conclusion of this study is that the FBSD results for time
autocorrelation functions can be expected to be more reli-
able than consi- dered in the past, and that accuracy tests
based on the performance of expectation values tend to
over-estimate significantly the error in the autocorrelation
function.

For use in the following section, we review here the path
integral representation of the FBSD correlation function
derived in [5]. For a system of d atoms described by the
3d coordinates xsj, s = 1, 2, 3, j = 1, . . ., d, the inner pro-
duct correlation function of two vector operators Â and
B̂ takes the form

CA�BðtÞ � Z�1Trðe�bĤ Â � eiĤ t=�hB̂e�iĤ t=�hÞ

¼ ð2p�hÞ�3d
Z

dx0

Z
dp0

Z
dx1 � � �

Z
dxN

�Hðx0; p0; x1; . . . ; xN ÞKA�Bðx0; p0; x1; . . . ; xN Þ:
ð1:7Þ
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Here,

Hðx0; p0; x1; . . . ; xN Þ
¼ hgx0 ; p0je

�DbĤ0=2jx1ie�DbV ðx1Þhx1je�DbĤ0 jx2i
. . . e�DbV ðxN ÞhxN je�DbĤ0=2jgx0;p0i . . .

¼
Yd
s¼1

Y3
j¼1

2csj
p

� �1
2 ms

ms þ �h2Dbcsj

ms

2p�h2Db

� �N�1
2

� exp � ms

ms þ �h2Dbcsj

�
csjðxsj;1 � xsj;0Þ2:

(

þ csjðxsj;N � xsj;0Þ2 þ
Db
2m

p2sj;0 þ
i

�h
psj;0ðxsj;1 � xsj;N Þ

�

� ms

2�h2Db

XN
k¼2

ðxsj;k � xsj;k�1Þ2 � Db
XN
k¼1

V ðxsj;kÞ
)

ð1:8Þ

is the path integral discretization of the coherent state
transform of the Boltzmann operator alone, and the other
factor depends on the operators under consideration. The
function KA Æ B depends on the specific form of the opera-
tors; the explicit form of that function is given in the fol-
lowing section for some operators of interest.

In the following section, we investigate various time
symmetries of time correlation functions within the FBSD
approximation. One of these symmetries is used to prove
rigorously the validity of the detailed balance property
for force or velocity autocorrelation functions obtained
through FBSD calculations. In Section 3, we present a sim-
ulation on liquid neon and show that the detailed balance
condition is obeyed accurately. Finally, Section 4 summa-
rizes the findings of this work.

2. Time symmetries and detailed balance in FBSD

As is well known, at finite temperature the quantum
mechanical time correlation function defined by Eq. (1.1)
satisfies the symmetry relation

CABðtÞ ¼ C�
BAð�tÞ: ð2:1Þ

This relation holds for equilibrium correlation functions
because the density operator q̂0 ¼ e�bĤ commutes with
the Hamiltonian that generates the time evolution.

For Â 6¼ B̂ , the FBSD correlation function generally
does not satisfy the above condition. Expectation values of-
fer a clear illustration of this symmetry violation: Setting
B̂ ¼ 1 , the FBSD expression reduces to the exact quantum
mechanical expectation value of the operator Â , thus
CFBSD

A1 ðtÞ ¼ Trq̂0Â. With the choice Â ¼ 1 and B̂ 6¼ 1 the
FBSD expression CFBSD

1B ðtÞ generally yields expectation val-
ues that exhibit a mild time dependence, in contrast to the
exact quantum mechanical result that remains stationary
[15]. The spurious time dependence of FBSD is a conse-
quence of the lack of commutation between the density,
which is treated fully quantum mechanically, and its time
evolution, which is based on classical mechanics.

It is encouraging, however, that essentially all time auto
correlation functions of practical interest rigorously satisfy
the symmetry relation (2.1). This is shown first from the
explicit form of the path integral-discretized expression,
Eq. (1.7), for position or momentum autocorrelation func-
tions (Â ¼ B̂ ¼ x̂ or p̂), for which the integrand factor
becomes [5]

Kx�xðx0; p0; x1; . . . ; xN Þ

¼ 1þ 3

2
d

� �
n� 2

Xd
s¼1

X3
j¼1

csjf
b�

sj ðxsj;0; psj;0; xsj;1Þ

� �h2Db=2

ms þ �h2Dbcsj
xsjðtÞ þ nf b

sjðxsj;0; psj;0; xsj;N Þ
 !

ð2:2Þ

or

Kp�pðx0; p0; x1; . . . ;xN ; tÞ

¼ 1þ 3

2
d

� �
ihðx0; p0; tÞ � 2i

Xd
s¼1

X3
j¼1

csjf
b�
sj ðxsj;0; psj;0; xsj;1Þ

� ��h
ms

ms þ �h2Dbcsj
psjðtÞ þ hðx0; p0; tÞf b

sjðxsj;0; psj;0; xsj;N Þ
 !

:

ð2:3Þ
In these equations

f b
sjðxsj;0; psj;0; xsj;kÞ ¼

hxsj;kje�DbĤ0=2ðx̂sj � xsj;0Þjgxsj;0;psj;0i
hxsj;kje�DbĤ0=2jgxsj;0;psj;0i

¼ ms

ms þ �h2Dbcsj
xsj;k � xsj;0 þ i�h

Db
2m

psj;0

� �
;

ð2:4Þ

nðx0; p0; tÞ ¼
Xd
s¼1

X3
j¼1

ðfsjðxsj;0; psj;0; xsj;N Þ þ xsj;0ÞxsjðtÞ; ð2:5Þ

and

hðx0; p0; tÞ ¼
Xd
s¼1

X3
j¼1

wsjðxsj;0; psj;0; xsj;NÞpsjðtÞ; ð2:6Þ

where

wb
sjðxsj;0; psj;0; xkÞ ¼ �i

hxsj;kje�DbĤ0=2p̂sjjgxsj;0;psj;0i
hxsj;kje�DbĤ0=2jgxsj;0;psj;0i

¼ ms

ms þ �h2Dbcsj
½�ipsj;0 þ 2�hcðxsj;k � xsj;0Þ�:

ð2:7Þ

Consider a trajectory with initial conditions (x0,p0)
which at the time t reaches the phase space point (xt,pt).
The classical equations of motion

dxt

dt
¼ m�1 � pt;

dpt
dt

¼ � oV ðxtÞ
oxt

imply that, upon integration in the negative time direction
to the final time �t, a trajectory with initial conditions
(x0,�p0) will reach the phase space point (xt,�pt). It



26 J. Liu, N. Makri / Chemical Physics 322 (2006) 23–29
follows that the same initial condition (x0,�p0) will reach
the phase space coordinates (x�t,�p�t) at the time t, thus

xtðx0;�p0Þ ¼ x�t ; ptðx0;�p0Þ ¼ �p�t: ð2:8Þ
We now examine the effect of reversing the direction of

the initial momentum on the FBSD expressions given
above. Eq. (1.8) implies

Hðx0;�p0; x1; . . . ; xN Þ ¼ Hðx0; p0; x1; . . . ; xN Þ�:
Next, from Eqs. (2.4)–(2.7) we obtain

f b
sjðxsj;0;�psj;0; xsj;kÞ ¼ f b

sjðxsj;0; psj;0; xsj;kÞ
�
;

wb
sjðxsj;0;�psj;0; xkÞ ¼ wb

sjðxsj;0; psj;0; xkÞ
�
;

from which it follows that

hðx0;�p0; tÞ ¼ �hðx0; p0;�tÞ�

and

nðx0;�p0; tÞ ¼ nðx0; p0;�tÞ�:
Using these relations one concludes that

Kp�pðx0;�p0; x1; . . . ; xN ; tÞ ¼ Kp�pðx0; p0; x1; . . . ; xN ;�tÞ�

ð2:9Þ
and

Kx�xðx0;�p0; x1; . . . ; xN ; tÞ
¼ Kx�xðx0; p0; x1; . . . ; xN ;�tÞ�: ð2:10Þ

It is straightforward to prove the symmetry relation (2.1)
using Eqs. (2.9) and (2.10). From Eq. (1.7) one finds

Cp�pðtÞ ¼ ð2p�hÞ�3d
Z 1

�1
dx0

Z 1

�1
dp0

Z 1

�1
dx1 � � �

Z 1

�1
dxN

�Hðx0; p0; x1; . . . ; xN ÞKp�pðx0; p0; x1; . . . ; xN ; tÞ

¼ ð2p�hÞ�3d
Z 1

�1
dx0

Z 1

�1
dp0

Z 1

�1
dx1 � � �

Z 1

�1
dxN

�Hðx0;�p0; x1; . . . ; xN Þ�Kp�pðx0;�p0; x1; . . . ; xN ;�tÞ�

¼ Cp�pð�tÞ�

and similarly,

Cx�xðtÞ ¼ Cx�xð�tÞ�:
Interestingly, this symmetry property can also be proven

for a general density that is not necessarily given by the
Boltzmann factor and for essentially all autocorrelation
functions of interest. We show this below by manipulating
the coherent state matrix elements of the density operator
in Eq. (1.5). For simplicity the derivation is presented in
one-dimensional notation.

Consider first autocorrelation functions of position
operators, where B̂ ¼ Â ¼ Aðx̂Þ. Of much practical impor-
tance is the case are correlation functions of the dipole mo-
ment operator (Â ¼ lðx̂Þ ), force autocorrelation functions
(Â ¼ lðx̂Þ), and the reactant–product form of the flux oper-
ator [17] (Â ¼ hðx̂Þ; B̂ ¼ hð�x̂Þ, where h is a step function)
which is useful in the calculation of rate constants. The ma-
trix elements of the density with position-dependent opera-
tors satisfy the properties
hgx0;p0 jq̂0Aðx̂Þjgx0;p0i

¼
Z

dx0
Z

dx00hgx0;p0 jx
0ihx0jq̂0jx00iAðx00Þhx00jgx0;p0i

¼
Z

dx0
Z

dx00hgx0;�p0
jx0i�hx0jq̂0jx00iAðx00Þhx00jgx0;�p0

i�

¼ hgx0;�p0
jq̂0Aðx̂Þjgx0;�p0

i�

and

hgx0;p0 jðx̂� x0Þq̂0Aðx̂Þðx̂� x0Þjgx0;p0i

¼
Z

dx0
Z

dx00hgx0;p0 jx
0iðx0 � x0Þhx0jq̂0jx00i

� Aðx00Þðx00 � x0Þhx00jgx0;p0i

¼
Z

dx0
Z

dx00hgx0;�p0
jx0i�ðx0 � x0Þhx0jq̂0jx00i

� Aðx00Þðx00 � x0Þhx00jgx0;�p0
i�

¼ hgx0;�p0
jðx̂� x0Þq̂0Aðx̂Þðx̂� x0Þjgx0;�p0

i�:

It follows that the phase space density defined in Eq. (1.6)
obeys the relation

PAðxÞðx0; p0Þ ¼ PAðxÞðx0;�p0Þ
�
:

This, along with the first of the relations in Eq. (2.8),
proves the desired symmetry relation for the force autocor-
relation function (or that of any position-dependent
operator).

The symmetry of the momentum autocorrelation func-
tion can be shown in a similar fashion: the first matrix ele-
ment in Eq. (1.6) becomes

hgx0;p0 jq̂0p̂jgx0;p0i

¼
Z

dx0
Z

dx00hgx0;p0 jx
0ihx0jq̂0jx00ihx00jp̂jgx0;p0i

¼
Z

dx0
Z

dx00hgx0;p0 jx
0ihx0jq̂0jx00ii�h

o

ox0
hx00jgx0;p0i

¼ �
Z

dx0
Z

dx00hgx0;�p0
jx0i�hx0jq̂0jx00i i�h

o

ox0
hx00jgx0;�p0

i
� ��

¼ �
Z

dx0
Z

dx00hgx0;�p0
jx0i�hx0jq̂0jx00ihx00jp̂jgx0;�p0

i�

¼ �hgx0;�p0
jq̂0p̂jgx0;�p0

i�; ð2:11Þ

while the second term is rewritten as

hgx0 ;p0 jðx̂� x0Þq̂0p̂ðx̂� x0Þjgx0 ;p0i

¼
Z

dx0
Z

dx00hgx0 ;p0 jx̂� x0jx0ihx0jq̂0jx00ihx00jp̂ðx̂� x0Þjgx0 ;p0i

¼
Z

dx0
Z

dx00hgx0 ;p0 jx
0iðx0 � x0Þhx0jq̂0jx00ii�h

o

ox0
ðx00 � x0Þhx00jgx0 ;p0 i

¼ �
Z

dx0
Z

dx00hgx0 ;�p0
jx0i�ðx0 � x0Þhx0jq̂0jx00i

� i�h
o

ox0
ðx00 � x0Þhx00jgx0 ;�p0

i
� ��

¼ �
Z

dx0
Z

dx00hgx0 ;�p0
jx̂� x0jx0i�hx0jq̂0jx00ihx00jp̂ðx̂� x0Þjgx0 ;�p0

i�

¼ �hgx0 ;�p0
jðx̂� x0Þq̂0p̂ðx̂� x0Þjgx0 ;�p0

i�:
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It follows that the phase space density defined in Eq. (1.6)
obeys the relation

Ppðx0; p0Þ ¼ �Ppðx0;�p0Þ
�
:

Together with the second of the relations in Eq. (2.8), the
last equation proves the desired symmetry relation for the
momentum autocorrelation function.

Finally, we consider the flux–flux autocorrelation func-
tion [17], whose integral yields the rate constant for a
barrier crossing process. The relevant operator

Â � F̂ ¼ 1

2m
ðdðx̂Þp̂ þ p̂dðx̂ÞÞ

has position matrix elements given by the expression

hx0jF̂ jx00i ¼ � i�h
2m

ðd0ðx0Þdðx00Þ � dðx0Þd0ðx00ÞÞ;

hx0jF̂ jx00i� ¼ �hx0jF̂ jx00i:

The coherent state matrix elements become

hgx0 ;p0 jq̂0F̂ jgx0 ;p0 i

¼
Z

dx0
Z

dx00
Z

dx000hgx0 ;p0 jx
0ihx0jq̂0jx00ihx00jF̂ jx000ihx000jgx0 ;p0i

¼ �
Z

dx0
Z

dx00
Z

dx000hgx0 ;�p0
jx0i�hx0jq̂0jx00ihx00jF̂ jx000i

�hx000jgx0 ;�p0
i�

¼ �hgx0 ;�p0
jq̂0F̂ jgx0 ;�p0

i�

and

hgx0;p0 jðx̂� x0Þq̂0F̂ ðx̂� x0Þjgx0;p0i

¼
Z

dx0
Z

dx00
Z

dx000hgx0;p0 jx
0iðx0 � x0Þhx0jq̂0jx00ihx00jF̂ jx000i

� ðx000 � x0Þhx000jgx0;p0i

¼ �
Z

dx0
Z

dx00
Z

dx000hgx0;�p0
jx0i�ðx0 � x0Þhx0jq̂0jx00i

� hx00jF̂ jx000i�ðx000 � x0Þhx000jgx0;�p0
i�

¼ �hgx0;�p0
jðx̂� x0Þq̂0F̂ ðx̂� x0Þjgx0;�p0

i�:

From these it follows that

PF ðx0; p0Þ ¼ �PF ðx0;�p0Þ
�
:

Futher, Eq. (2.8) implies

F ðxt;�ptÞ ¼ � 1

2
dðxtÞ

pt
m
þ pt

m
dðxtÞ

� �
¼ �F ðxt; ptÞ:

The last two relations lead to the result

CFF ðtÞ ¼ CFF ð�tÞ�:
The validity of Eq. (2.1) implies that momentum and po-

sition (or force) FBSD autocorrelation functions have an
even real part and an odd imaginary part. As a conse-
quence, the spectral function

GAAðxÞ ¼
Z 1

�1
CAAðtÞe�ixt dt ð2:12Þ

is real-valued for these autocorrelation functions.
It is possible to show that the FBSD autocorrelation
function for a system at thermal equilibrium satisfies
another time symmetry, which is closely related to the
detailed balance condition. Consider the correlation func-
tion for a complex time argument,

CABðt þ i�hbÞ � Trðq̂0Âe
�bĤeiĤ t=�hBe�iĤ t=�hebĤÞ: ð2:13Þ

In the special case where q̂0 ¼ e�bĤ=Z, the FBSD approxi-
mation to Eq. (2.13) is

CFBSD
AB ðt þ i�hbÞ ¼ Trðq̂0Âe

�bĤ B̂
FBSDðtÞebĤÞ

¼ TrðebĤ q̂0Âe
�bĤ B̂

FBSDðtÞÞ

¼ TrðÂq̂0B̂
FBSDðtÞÞ:

Substituting the FBSD expression of Eq. (1.5), this
becomes

CFBSD
AB ðt þ i�hbÞ ¼

Z
dx0dp0

3

2
hgx0p0 jÂq̂0jgx0p0i

�

�2chgx0p0 jðx̂� x0ÞÂq̂0ðx̂� x0Þjgx0p0i
�
Bðxt; ptÞ

¼
Z

dx0dp0
3

2
hgx0p0 jq̂0Âjgx0p0i

�

�2chgx0p0 jðx̂� x0Þq̂0Âðx̂� x0Þjgx0p0i
��

Bðxt; ptÞ

¼ CFBSD�

AB ðtÞ: ð2:14Þ

Further, by virtue of Eq. (2.1), canonical FBSD autocorre-
lation functions must satisfy the relation

CFBSD
AA ðt þ i�hbÞ ¼ CFBSD

AA ð�tÞ:

Next, we focus on the spectral function defined in Eq.
(2.12). Changing the integration variable,

GFBSD
AA ð�xÞ ¼

Z 1

�1
CFBSD

AA ð�tÞe�ixt dt:

Substituting the complex time form derived in Eq. (2.14),
making a new change of integration variables and shifting
the contour of integration, we obtain

GFBSD
AA ð�xÞ ¼

Z 1

�1
GFBSD

AA ðt þ i�hbÞe�ixt dt

¼ e��hxb

Z 1

�1
GFBSD

AA ðtÞe�ixt dt ¼ e��hxbGFBSD
AA ðxÞ:

This proves that the FBSD autocorrelation function satis-
fies the detailed balance condition

GFBSD
AA ð�xÞ ¼ e��hxbGFBSD

AA ðxÞ: ð2:15Þ

The spectral function may be partitioned into symmetric
GAA,sym and antisymmetric GAA,asym parts, which corre-
spond to the Fourier transforms of the real and imaginary
parts of the correlation function, respectively. Eq. (2.15)
implies the following relation between the symmetric and
antisymmetric components:
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Fig. 1. Fourier transform of the velocity time correlation function for neat
neon at the thermodynamic point specified in Section 3. Solid line: Fourier
transform of the total velocity autocorrelation function. Solid circles show
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GFBSD
AA;asymðxÞ ¼ tanh

1

2
�hxb

� �
GFBSD

AA;symðxÞ: ð2:16Þ

3. Detailed balance in liquid neon

We illustrate the validity of the detailed balance condi-
tion with a simulation on liquid neon. The system is treated
as a Lennard–Jones fluid with parameters r = 2.749 Å,
e/kB = 35.6 K and m = 3.35 · 10�26 kg, at a reduced den-
sity q* = 0.78 and temperature T* = 0.84. This state point
is at a fairly low temperature, while still in the liquid region
of both the Lennard–Jones and experimental phase dia-
grams [9,18]. Quantum effects are significant under these
conditions: the kinetic energy computed by path integral
Monte-Carlo methods is about 55.15 K, amounting to a
20% quantum correction to the classical kinetic energy of
44.85 K. These sizable quantum mechanical effects arise
from the large zero-point energy of the light neon atoms.
The dynamical consequences of these quantum effects are
even greater: the momentum correlation function com-
puted by FBSD was found to differ substantially from that
obtained by classical molecular dynamics methods, and
various quantum correction factor prescriptions give rise
to different results, none of which is in good agreement
with the FBSD results [9]. Using the pair-product approx-
imation [8] to the coherent state matrix element of the
Boltzmann operator, the present simulation converged
with a single path integral bead.

Fig. 1 shows the Fourier transforms Eq. (2.12) of the
FBSD velocity time correlation functions for this system.
As has been argued in previous work [7], the existence of
an imaginary component in the FBSD time correlation
function leads to the observed asymmetry in frequency
space. Fig. 1 shows that the detailed balance relation, Eq.
(2.15), is satisfied accurately. (The validity of this relation
is demonstrated in the figure by multiplying the positive-
frequency part of the function by the Boltzmann factor
e�⁄xb, which generates the left-hand-side of Eq. (2.15); neg-
ative-frequency points are not processed this way, as the
exponentially growing Boltzmann factor would lead to a
large magnification of statistical errors.) The other mani-
festation of the detailed balance condition, Eq. (2.16), is
also shown to hold accurately over the entire frequency
domain.

4. Concluding remarks

Thermal quantum mechanical time correlation func-
tions satisfy the detailed balance condition, which is a con-
sequence of a time symmetry given in Eq. (2.1). In turn, the
latter is a manifestation of the commutation between the
Boltzmann density operator and that quantum evolution
operator that generates the dynamics.

Within the FBSD formulation, time correlation func-
tions take a hybrid form, where the density operator is
evaluated fully quantum mechanically, and all dynamical
effects enter through classical trajectories. An immediate
consequence of mixing quantum and classical mechanics
is the breakdown of commutation properties, which leads
to an apparent violation of time symmetry and the detailed
balance relation.

In the case of autocorrelation functions, the time sym-
metry of the exact quantum mechanical expression is not
related to the form of the density operator, but is purely a
manifestation of unitarity for the time-evolution operator
generated from a Hermitian Hamiltonian. Interestingly,
we have shown in this paper that FBSD autocorrelation
functions for momentum or position-dependent operators,
and even flux autocorrelation functions, also rigorously
satisfy the time symmetry of the quantum mechanical
expression and, as a consequence, the detailed balance
condition in the special case where the density is given
by the Boltzmann operator. This property is a very desir-
able one, and gives us further confidence in the accuracy
of the FBSD approximation to time autocorrelation func-
tions. We emphasize again that expectation values, which
can be thought of as a special case of time correlation
functions for mixed operators, do not share these fea-
tures. Indeed, numerical calculations have shown that
FBSD expectation values can exhibit a spurious time
dependence; it was found that the latter can be minimized
through a judicious choice of the coherent state parame-
ter, but cannot be eliminated.

Finally, we point out that the time symmetry used in this
paper to prove the validity of the detailed balance condi-
tion also holds for the quasiclassical Wigner approxima-
tion to correlation functions of select operators. In this
approximation the correlation function takes the form

CW
ABðtÞ ¼

Z
dx0

Z
dp0W q0Aðx0; p0ÞW Bðxt; ptÞ; ð4:1Þ
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where

W Aðx0; p0Þ ¼ ð2p�hÞ�1

Z
dyhx0 þ

1

2
yjÂjx0 �

1

2
yie�ip0y=�h

ð4:2Þ
is the Wigner transform of the operator Â. Clearly, the
Wigner transform of q̂0Aðx̂Þ is real-valued and WA(x)

(xt,pt) = A(xt), so following the arguments given in the pre-
vious section one concludes

W AðxÞðx0; p0Þ ¼ W AðxÞðx0;�p0Þ
� ð4:3Þ

For Â ¼ p̂ one has

x0 þ
1

2
yjq̂0p̂jx0 �

1

2
y

� 	
¼
Z

dx
Z

dp x0 þ
1

2
yjq̂0jx

� 	
peipðx�x0þ1

2yÞ=�h;

ð4:4Þ
which leads to the relation

W pðx0; p0Þ ¼ �W pðx0;�p0Þ
� ð4:5Þ

These relations prove the detailed balance condition within
the Wigner quasiclassical approximation.

Apart from providing a deeper theoretical understand-
ing of the FBSD approximation, the above observations
will find practical utility in analyzing the results of chal-
lenging FBSD simulations on condensed-phase systems.
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