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Bohm’s formulation in imaginary time: estimation
of energy eigenvalues

JIAN LIU and NANCY MAKRI*

Department of Chemistry, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA

(Received 15 September 2004; in final form 29 October 2004)

Bohm’s hydrodynamic formulation of quantum mechanics is employed to solve the diffusion
equation. Quantum trajectories are found to behave differently in imaginary time, exhibiting
caustic singularities. A wavefunction repartitioning methodology is introduced to prevent the
imaginary-time crossing events, leading to stable evolution that does not suffer from the
numerical obstacles that characterize Bohmian dynamics in real time. Use of an approximate
technique based on trajectory stability properties to solve Bohm’s equations in imaginary time
leads to an accurate prediction of the energy of a low-lying eigenstate from a single quantum
trajectory.

1. Introduction

It is well known that the imaginary-time-dependent
Schrödinger equation can be used to generate energy
eigenvalues and eigenstates. This is so because imagin-
ary time is mathematically analogous to temperature,
and thus propagation along the negative imaginary-time
axis quenches the energy of a trial wavefunction, causing
it to evolve to the lowest eigenstate of the same
symmetry. Quantum Monte Carlo methods [1–3] are
powerful implementations of this principle.
The hydrodynamic formulation of quantum dynamics

[4–6] was originally developed as an alternative to the
Schrödinger equation. Although fully equivalent to the
latter, Bohm’s approach is a trajectory description. In
addition to the standard classical forces exerted on a
system by the potential field in which it is embedded,
Bohm’s trajectories experience an additional ‘quantum’
force, which is governed by the local curvature of the
wavefunction. The density and velocity field from these
trajectories satisfy a continuity equation, and thus the
Bohmian ‘particles’ are reminiscent of fluid flow in a
space- and time-dependent potential field which itself
depends on the detailed characteristics of the flow [7].
Perhaps the greatest appeal of this hydrodynamics

formulation of quantum mechanics is its structure in
terms of trajectories that satisfy classical-like equations,
with a wavefunction expressed in the amplitude-action
form familiar from time-dependent semiclassical theory
[8, 9]. Unlike the latter, though, the presence of a

quantum potential that is to be evaluated from the
instantaneous wavefunction density leads to inter-
dependence of the trajectories, making the method
non-local and extremely demanding numerically.
In spite of significant progress in Bohmian trajectory
methodology [10–29], only approximate treatments
of bound anharmonic systems have been possible
in the past.

In this paper we extend Bohm’s formulation to
imaginary time. The resulting quantum trajectories
satisfy a diffusion equation augmented with Bohm’s
time-dependent quantum potential. As the imaginary-
time parameter increases (in the negative direction) the
quantum states described by these trajectories evolve to
symmetry-appropriate eigenstates of the Schrödinger
equation and the relevant eigenvalue can be extracted
from the properties of a single quantum trajectory.

While straightforward in principle, the transforma-
tion to imaginary time is accompanied by some subtle-
ties, and the imaginary-time quantum trajectories
behave in ways that are entirely different from the
well-understood behaviour in real time. The source of
these differences is the loss of uniqueness in the
amplitude-action decomposition of the imaginary-time
wavefunction, which leads to trajectory crossing and the
development of ‘caustics’ that are strictly absent from
the real-time formulation. We analyse these behaviours
using a harmonic oscillator model and propose a
wavefunction repartitioning procedure that entirely
eliminates these complications, leading to trajectories
that move by very small amounts over the course of the
propagation, thus stabilizing the method. The resulting
methodology is found to be extremely robust as well as*Corresponding author. e-mail: nancy.makri@scs.uiuc.edu
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stable numerically, suffering from none of the numerical
obstacles encountered in real time applications of the
Bohmian methodology. While practically all of the
available approaches for solving Bohm’s equations are
easily applicable to the imaginary-time formulation, we
implement in the present paper an approximate meth-
odology we recently developed that is based on
Bohmian trajectory stability properties (BTS) [28].
This approach offers the advantage of propagating
each trajectory based on information contained in its
own stability matrix (and its higher-order extensions),
thus allowing extraction of the desired energy eigenvalue
from the long imaginary-time properties of a single
quantum trajectory.
In section 2 we describe the extension of Bohm’s

equations to the imaginary-time Schrödinger equation
and discuss the problems associated with the lack of a
unique amplitude-action decomposition and their man-
ifestation as focal points and singularities. We also
describe a wavefunction repartitioning procedure that
circumvents these problems by effectively implementing
the method over short time intervals in which no
trajectory crossing occurs. Section 3 reviews the approx-
imate BTS procedure for solving the hydrodynamic
equations and brings them in a form suitable for solving
the imaginary-time equations with wavefunction reparti-
tioning. Several numerical applications of the method
are given in section 4, including strongly anharmonic
one-dimensional model systems and three-dimensional
Hamiltonians describing the internal dynamics of proto-
type triatomic molecules. A final discussion is given in
section 5, along with some concluding remarks.

2. Bohm’s formulation in imaginary time

In real time, Bohm’s description of the time evolution
of a wavefunction dynamics takes the form [4, 5]

�ðx; tÞ ¼ Rðx; tÞ eiSðx;tÞ=�hh: ð1Þ

Here, Rðx; tÞ is a real-valued amplitude, and the phase
Sðx; tÞ satisfies the quantum Hamilton–Jacobi equation

�
@Sðx; tÞ

@t
¼

1

2m

@Sðx; tÞ

@x

� �2

þVðx; tÞ þQðx; tÞ: ð2Þ

The latter differs from the ordinary equation of classical
mechanics through the presence of a quantum potential
proportional to the local wavefunction curvature,

Qðx; tÞ ¼ �
�hh2

2m
Rðx; tÞ�1 @

2Rðx; tÞ

@x2

¼ �
�hh2

8m
2
�ðx; tÞ�00ðx; tÞ

�ðx; tÞ2
�
�0ðx; tÞ2

�ðx; tÞ2

� �
,

ð3Þ

where �ðx; tÞ ¼ Rðx; tÞ2 is the local density. The
trajectory reaches the position xt at the time t upon
integration of the differential equations

_xxt ¼m�1pt, _ppt ¼
d

d�

@Sðxt,tÞ

@xt

� �
¼�V 0 xtð Þ �Q0 xtð Þ: ð4Þ

The initial condition for equation (2) is the phase S0ðx0Þ
of the initial wavefunction at the coordinate x0, and
p0 ¼ S0

0ðx0Þ. The dynamics of the Bohmian trajectories
resembles fluid flow, and the density obeys the following
hydrodynamic equation:

@�ðxt; tÞ

@t
¼ �

@

@xt
�ðxt; tÞ

pt

m

� �
: ð5Þ

The above equations uniquely determine the amplitude
and phase of the wavefunction, which satisfies exactly
the time-dependent Schrödinger equation.

As is well known, the substitution t ! �i� (�>0)
transforms the Schrödinger equation into the diffusion
equation

��hh
@

@�
�ðx; �Þ ¼ ĤH�ðx; �Þ: ð6Þ

It is easy to show that any wavefunction propagated
under this equation evolves to the lowest eigenstate
of the same symmetry. For this reason, the diffusion
equation offers a convenient and powerful tool for
obtaining low-lying eigenstates of many-particle
Hamiltonians, which is generally known as the diffusion
Monte Carlo method, a common version of quantum
Monte Carlo [3].

A similar transformation to imaginary time is possible
within Bohm’s hydrodynamic formulation. Indeed,
substituting t ! �i� (�>0), p ! �ip and S ! �iS
in equations (2), (4) and (5), one obtains the relations

@Sðx; �Þ

@�
¼ �

1

2m

@Sðx; �Þ

@x

� �2

þVðx; �Þ þQðx; �Þ, ð7Þ

_xx� ¼m�1p� , _pp� ¼
d

d�

@Sðx� ,�Þ

@x�

� �
¼ V 0ðx�Þ þQ0ðx�Þ, ð8Þ

@�ðx�; �Þ

@�
¼ �

@

@x�
�ðx�; �Þ

p�

m

� �
: ð9Þ

These, along with equation (3) for the quantum
potential, govern the propagation of Bohmian particles
in imaginary time. The wavefunction is again given in
terms S and � by the equation

�ðx; �Þ ¼ Rðx; �Þ e�Sðx;�Þ=�hh: ð10Þ
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All variables (and also the wavefunction) are real-
valued in these expressions. Equations (7)–(9) are
sufficient to describe the evolution of the wavefunction
in imaginary time.
While equations (7)–(9) correctly specify the solution

to the imaginary-time Schrödinger equation, the parti-
tioning of the wavefunction in equation (10) is not
unique. This is so because the exponential factor in this
expression is now real-valued, and thus partitioning the
initial condition into amplitude- and action-dependent
factors is arbitrary. This situation is to be contrasted
with the real-time form of the hydrodynamic formula-
tion given in equations (1)–(5), where the definitions of
amplitude and phase are evident as well as unique.
The ambiguity in the factorization of the imaginary-

time wavefunction into amplitude and phase com-
ponents has some bothersome implications, of
which the most important is the possibility of trajectory
crossing. Such behaviour (which is strictly absent from
Bohmian trajectories in real time) is reminiscent of the
occurrence of ‘caustic’ or focal points in time-dependent
semiclassical theory [30]. In close analogy to the latter,
the onset of crossing in imaginary-time Bohmian
trajectories is associated with singularities in the
amplitude. These features are clearly illustrated by
considering the evolution of a Gaussian wavefunction,

�0ðxÞ ¼
2�

p

� �1=4

expð��x2Þ, ð11Þ

in a one-dimensional harmonic oscillator Hamiltonian
with frequency !. Choosing the initial condition
Rðx; 0Þ ¼ �0ðxÞ, Sðx; 0Þ ¼ 0, solution of Bohm’s

imaginary-time differential equations for the amplitude
and phase leads to the expressions

Rðx; �Þ ¼
2�

p

� �1=4 �2

�2 cosh2 !� � �2 sinh2 !�

� �1=4

� exp
���2

�2 cosh2 !� � �2 sinh2 !�
x2

� �
,

ð12Þ

exp �
1

�hh
Sðx; �Þ

� �

¼ cosh!� �
�

�
sinh!�

� �1=4
� exp

�ð�2 � �2Þ cosh!� sinh!�

�2 cosh2 !� � �2 sinh2 !�
x2

� �
,

ð13Þ

where a ¼ m!=2�hh. Multiplying these, one recovers the
correct form of the imaginary-time wavefunction,

�ðx; �Þ ¼
2�

p

� �1=4

cosh!� þ
�

�
sinh!�

� ��1=4

� exp ��
� cosh!� þ � sinh!�

� cosh!� þ � sinh!�
x2

� �
:

ð14Þ

Although equation (14) for the wavefunction is
well-behaved, its components given by equations (12)
and (13) encounter (for �>�) essential singular-
ities and the quantum potential becomes undefined
when the imaginary-time parameter satisfies the
equation � coshð!�Þ � � sinhð!�Þ ¼ 0. Figure 1 shows
a few trajectories (obtained from the above anal-
ytic treatment) illustrating this situation, which develop
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Figure 1. Four imaginary-time Bohmian trajectories corresponding to a Gaussian wavefunction with � ¼ 1.1 � in a harmonic
potential. (a) Continuous propagation in time as obtained from the analytic solution of the differential equations. All trajectories
are seen to accelerate and eventually go through a focal point when the amplitude and phase develop singularities. (b) Trajectories
obtained with wavefunction repartitioning. The Bohmian particles remain very close to their initial positions during the
propagation.
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a caustic at that time. Numerical methods fail as the
amplitude becomes exponentially small, and propaga-
tion cannot continue past the singular time.
To circumvent these serious difficulties, we exploit

the arbitrariness discussed earlier to repartition the
wavefunction into amplitude and action parts at the
beginning of propagation intervals ��, such that
the amplitude comprises the entire wavefunction
(which is always real-valued) and the action equals zero:

R x; n��ð Þ � lim
�!n���

�ðx; �Þ, Sðx; n��Þ ¼ 0: ð15Þ

Equation (15) serves as the ‘initial’ condition for
propagation by a time interval ��, during which

� x; �ð Þ ¼ R x; �ð Þ e�Sðx;�Þ=�hh: ð16Þ

This way the effects of the imaginary-time action are
incorporated into the density after each step of the
procedure. Since the action is reset to zero at the
beginning of every propagation step, the momentum of
the re-initialized Bohmian trajectories vanishes, causing
the particles to move away from their initial position at
a very slow rate. This rescaling procedure improves
greatly the stability of the propagation.
Finally, the energy associated with an imaginary-time

Bohmian trajectory is obtained from the expression

E� ¼ �
p2�
2m

þ Vðx�Þ þQ�ðx�Þ: ð17Þ

3. Solution of the imaginary-time Bohmian equations

We solve the Bohmian equations of motion approxi-
mately, using the BTS procedure we developed recently
[28]. This method avoids the use of numerical derivatives
in the evaluation of the quantum potential, exploiting
instead information encoded in the stability properties
of an individual trajectory. As a result, approximate
Bohmian trajectories may be propagated one at a time,
eliminating the need for data storage that scales
exponentially with the number of particles. The initial
conditions of the BTS trajectories may be selected by a
Monte Carlo procedure. Test calculations have shown
that the BTS formulation of certain observables may
converge extremely rapid. The approximate nature of
the BTS methodology arises from the need to truncate
an infinite hierarchy of equations. We have shown that
even the lowest-order BTS scheme (where the quantum
potential is locally truncated at the second order) is
capable of accounting for tunneling effects amounting
to several orders of magnitude, and can reproduce rate
constants with slightly higher accuracy than possible

by quasiclassical methods at a fraction of the com-
putational cost, while improved results can be obtained
by retaining higher-order terms.

Below we summarize the BTS procedure in the
context of imaginary-time propagation. Following our
earlier work, the derivatives of the density required
to obtain the quantum potential can be expressed in
terms of derivatives of the initial density by repeated
differentiation of the continuity equation:

�ðx�Þ ¼ �0ðx0Þ
@x0
@x�

, ð18Þ

�0�ðx�Þ ¼ �00ðx0Þ
@x0
@x�

� �2

þ �0ðx0Þ
@2x0
@x2�

, ð19Þ

�00� ðx�Þ ¼ �000ðx0Þ
@x0
@x�

� �3

þ 3�00ðx0Þ
@x0
@x�

@2x0
@x2�

þ �0ðx0Þ
@3x0
@x3�

,

ð20Þ

�ð3Þ0 ðx�Þ

¼ �ð3Þ0 ðx0Þ
@x0
@x�

� �4

þ 6�000ðx0Þ
@x0
@x�

� �2@2x0
@x2�

þ �00ðx0Þ 4
@x0
@x�

@3x0
@x3�

þ 3
@2x0
@x2�

� �2
 !

þ �0ðx0Þ
@4x0
@x4�

,

ð21Þ

etc. The derivates of the initial density are assumed
known. Equations (18)–(21) require knowledge of
derivatives of the coordinate x� reached by a quantum
trajectory with respect to its initial condition x0.
The first of these derivatives is related to one of the
elements of the stability matrix:

M� ¼

@x�
@x0

@x�
@p0

@p�
@x0

@p�
@p0

0
BBB@

1
CCCA: ð22Þ

This matrix satisfies the differential equation

d

d�
M� ¼ T� �M�, ð23Þ

where

T� ¼
0 m�1

V 00
tot 0

� �
: ð24Þ

In the last equation, Vtotðx�Þ ¼ Vðx�Þ þQðx�Þ is the
sum of the classical and quantum potentials acting on
the Bohmian particle.
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Repeated differentiation of equation (23) with respect
to x0 leads to the following differential equations:

d

d�

@M�

@x0
¼ T� �

@M�

@x0
þ
@T�

@x0
�M�, ð25Þ

d

d�

@2M�

@x20
¼ T� �

@2M�

@x20
þ 2

@T�

@x0
�
@M�

@x0
þ
@2T�

@x20
�M�, ð26Þ

etc., which can be solved to yield the higher-order
derivatives contained in equations (18)–(21). These
equations require knowledge of derivatives of
V 00

totðx�Þwith respect to its initial position x0 which can
once again be expressed in terms of stability matrix
elements and their derivatives. For example,

@V 00
totðx�Þ

@x0
¼ V

ð3Þ
totðx�Þ

@x�
@x0

� �
, ð27Þ

@2V 00
totðx�Þ

@x20
¼ V

ð4Þ
totðx�Þ

@x�
@x0

� �2

þV
ð3Þ
totðx�Þ

@2x�
@x20

� �
: ð28Þ

To implement the rescaling procedure described in
section 2, one must redistribute the density and its
derivatives at regular intervals. We choose the rescaling
interval �� equal to the propagation imaginary-time
step. Defining the density and action at � ¼ n�� as �n
and Sn, respectively, the rescaling procedure for
propagation of a particle initially located at x0 consists
of the following operations:

�0ðx0; 0Þ ¼ �0ðx0Þ
2, S0ðx0Þ ¼ 0, p0ðx0Þ ¼ 0, ð29Þ

�nðxn��; n��Þ ¼ �n�1ðxn��; n��Þ e�2Sn�1ðxn��;n��Þ=�hh, ð30Þ

Snðxn��; n��Þ ¼ 0, pnðxn��; n��Þ ¼ 0, ð31Þ

�0nðx; n��Þ

¼ �0n�1ðx; n��Þ � 2�hh�1�n�1ðx; n��Þpn�1ðx; n��Þ
� �
� e�2Sn�1ðx;n��Þ=�hh,

ð32Þ

�00nðx; n��Þ ¼ �00n�1ðxn��; n��Þ � 4�hh�1�0n�1ðxn��; n��Þ
�
� pn�1ðxn��; n��Þ

þ 4�hh�2�n�1ðxn��; n��Þpn�1ðxn��; n��Þ2

�2�hh�1�n�1ðxn��; n��Þp0n�1ðxn��; n��ÞÞ

� e�2Sn�1ðxn��;n��Þ=�hh:

ð33Þ

The required momentum derivatives are calculated from
the stability matrix elements by using the chain rule.

Equations (29)–(33) supplement the BTS equations,
implementing the wavefunction repartitioning discussed
in section 2 that circumvents numerical problems
associated with rapidly accelerating trajectories and
the emergence of singularities.

Extension of the imaginary-time BTS procedure to
many dimensions is (at least in principle) straight-
forward. For a system of n degrees of freedom,
truncation of the BTS hierarchy at the mth order gives
rise to 2nþ 4n2ð1þ nþ n2 þ � � � þ nm�1Þ þ 2 equations.
Storage of the largest array stores nmþ 2 elements.

In the next section we implement the BTS method-
ology in imaginary time to estimate the ground and
first excited state energies of several model and small
molecular systems. Results are obtained from a single
imaginary-time BTS trajectory. The differential equa-
tions are solved using a simplified predictor-corrector
algorithm.

4. Model calculations

4.1. Harmonic potential

In the case of a harmonic system the quantum potential
remains quadratic at all times and Gaussian wavepack-
ets remain Gaussian. As a consequence, the second-
order BTS scheme reproduces the ground state exactly.
All BTS trajectories yield the precise value of the ground
state energy.

Similar remarks pertain to the first excited state
eigenvalue of a harmonic oscillator.

4.2. Quartic potential

The second model is described by the potential
VðxÞ ¼ 0:5x2 þ x4. This potential is extremely anhar-
monic: its zero point energy is equal to 0.8038 (i.e.
exceeds the harmonic value by 60%) and the spacing
between ground and first excited states is 1.9341 (almost
double the value of the harmonic term). To estimate the
ground state energy we choose a Gaussian initial state of
the form �ðx; 0Þ ¼ ð2�=pÞ1=4e��ðx��Þ2 . We found that
BTS trajectories positioned initially near the potential
minimum, where the density is maximum, lead to most
accurate energy estimates. For the first excited state
energy our initial (trial) function has the form
�ðx; 0Þ ¼ ð2�=pÞ1=4x e��x2 . Again, initial conditions
near the maximum density of the first excited state
give very accurate results.

For a given initial position of the Bohmian particle,
the obtained eigenvalue is independent of the width and
centre of the initial wavefunction. The lack of sensitivity
to the choice of initial wavefunction is demonstrated
very clearly in figures 2 and 3, which show the evolution
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of the desired eigenvalues for several choices of the
wavepacket width and centre. Further, the energy
eigenvalues obtained from Bohmian particles with
different initial positions agree with one another quite
well as long as these particles are placed near the density
maximum of the same eigenstate, as shown in figure 4.
The stability and robustness of the algorithm shown
demonstrated in figures 2–4 on a very strongly
anharmonic system is noteworthy and encouraging.

The energy eigenvalues estimated from the imaginary-
time BTS procedure (truncated at the sixth order) are
shown in table 1 and compared with accurate results
obtained from a basis set calculation. We note again
that the harmonic values are 0.5 and 1.5, such that the
anharmonicity amounts to a correction of the first
excited state energy of over 80%. Still, the sixth-order
imaginary-time BTS procedure captures this correction
extremely well, giving an estimate that is within 0.02%
of the exact value.

4.3. Morse potential for H2 vibration

The potential describing the vibration of the H2

molecule is well described by the Morse form
VðxÞ ¼ Dð1� e��xÞ

2, where D ¼ 0.1745 a.u. and
� ¼ 1.026 a.u. The reduced mass of the molecule is
m ¼ 1837/2 a.u. Results from fourth- and sixth-order
imaginary-time BTS calculations for the ground state
energy are shown in table 2 and compared with those
from accurate basis set calculations and the harmonic
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Figure 4. Evolution of first excited state energy eigenvalue
for different Bohmian particles propagated from the same
initial wavepacket with width � ¼ 2 centred at � ¼ 0: (n)
x0 ¼ �0:5; (� ) x0 ¼ �0:6; (h) x0 ¼ �0:7; (m) x0 ¼ �0:8;
(f) x0 ¼ �0:9.
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Figure 3. Evolution of lowest energy eigenvalue for a particle
propagated from initial Gaussian wavepackets with width
� ¼ 1. The initial position of the particles is x0 ¼ 0: (h) � ¼ 4;
(*) � ¼ 2; (g) � ¼ 0.
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Figure 2. Evolution of lowest energy eigenvalue for a particle
originating at x0 ¼ 0 with initial Gaussian wavepackets
centred at � ¼ 0: (g) � ¼ 0:2; (h) � ¼ 1; (f) � ¼ 2; (*)
� ¼ 8.

Table 1. Ground and first excited state energies for the
quartic oscillator described in section 4.2.

Ground

state

First-excited

state

BTS trajectory initial position 0 0.7

Basis set calculation 0.8038 2.7379

Harmonic approximation 0.50 1.50

Fourth imaginary-time order

BTS calculation

0.8356 2.7425

Sixth imaginary-time order

BTS calculation

0.7928 2.7375

Table 2. Ground state energies for the Morse oscillator with
parameters corresponding to H2 vibration.

E0 (a.u.)

Basis set calculation 0.0098565

Harmonic approximation 0.010

Fourth imaginary-time BTS calculation 0.0098643

Sixth imaginary-time BTS calculation 0.0098567
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approximation. Anharmonicity corrections are small in
this case, amounting to about 1.5% of the ground state
energy. It is seen that the fourth-order imaginary-time
BTS method captures the bulk of these corrections,
resulting in an energy that is within 0.1% of the exact
result. When carried to sixth order the error of the
imaginary-time BTS procedure drops to 0.002%.

4.4. Two-dimensional model for HCN vibrations

Below we apply the imaginary-time BTS method to a
molecular Hamiltonian consisting of the two bending
vibrations of the HCN molecule. The potential is
expressed in dimensionless normal mode coordinates
in the form

V ¼
X 1

2
!iq

2
i þ

X
kijkqiqjqk þ

X
kijklqiqjqkql þ � � � :

ð34Þ

The potential parameters in the normal coordinate
form, which were obtained by transforming the quartic
internal-mode force field parameters calculated in [31],
are given in table 3. The results of the imaginary-time
BTS method are given in table 4.

4.5. Three-dimensional model for H2O vibrations

The three vibrational modes of H2O are well described
by a quartic force field in normal modes [32]. The
potential is again given by equation (34).
Potential anharmonicity in water results in a s1%

correction to the harmonic estimate for the ground
state energy. Results are displayed in table 5.
Again, the fourth- and sixth-order imaginary-time BTS
calculations capture these deviations from the harmonic
approximation very accurately.

5. Concluding remarks

We have adapted Bohm’s hydrodynamic formulation of
quantum mechanics to the imaginary-time Schrödinger
(or diffusion) equation, whose solution allows the
determination of energy eigenvalues. Even though the
imaginary-time version of the theory does not afford a
unique decomposition of the wavefunction into ampli-
tude and action factors, leading to trajectory crossing,
the unpleasant consequences of caustics familiar from
time-dependent semiclassical approximation, a simple
repartitioning technique that we have developed com-
pletely circumvents these problems. In addition, the
arbitrariness of this decomposition afforded by the real
valued solution of the imaginary-time Schrödinger equa-
tion allows implementation of the method in a series of

short time propagation steps. Because the numerical
difficulties associated with essentially all propagation
methods develop gradually during the course of the
evolution, this repartitioning procedure where all the
Bohmian particles are restarted with zero velocity and
action at each propagation step circumvents such prob-
lems, allowing the extraction of eigenvalues in systems
where potential anharmonicity is extremely strong.

Adaptation of the BTS methodology to the
imaginary-time Bohmian equations with wavefunction
rescaling was shown to be straightforward. In spite of
the approximate nature of this method, our test
calculations showed that very accurate results are
obtainable by carrying through the BTS procedure to
fourth or sixth order, even when anharmonic corrections
are nearly as large as the eigenvalue spacing. The
method appears rather insensitive to the details of the
trial wavefunction, requiring only that the Bohmian

Table 4. Ground state energies for the two-dimensional
Hamiltonian describing the bending vibrations of HCN.

E0 (cm
�1)

Basis set calculation 2861

Harmonic approximation 2875

Fourth imaginary-time BTS calculation 2860

Sixth imaginary-time BTS calculation 2860

Table 3. Normal-mode force constants for HCN.

Parameter Value (cm�1)

!1 3520.66

!3 2230.72

K111 �306.414

K113 �214.569

K133 �56.6978

K333 �103.683

K1111 36.4538

K1113 27.0342

K1133 11.2697

K1333 �7.2678

K3333 6.21578

Table 5. Ground state energies for the three-dimensional
Hamiltonian describing the vibrations of H2O.

E0 (cm
�1)

Basis set calculation 4652

Harmonic approximation 4712

Fourth imaginary-time BTS calculation 4652

Sixth imaginary-time BTS calculation 4657

Bohm’s formulation in imaginary time 1089



trajectory be initialized in the vicinity of a wavefunction
maximum. These features are very encouraging, making
the imaginary-time BTS methodology with frequent
wavefunction repartitioning a potentially powerful tool
for the determination of low-lying vibrational or elec-
tronic energy eigenvalues. Assessment of the efficiency
of this approach in comparison with well-established
methods for calculating electronic and vibrational spec-
tra will require additional applications of the method
to prototype systems and systematic comparisons.
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