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It is shown that the quantum force in the Bohmian formulation of quantum mechanics can be related to the
stability properties of the given trajectory. In turn, the evolution of the stability properties is governed by
higher order derivatives of the quantum potential, leading to an infinite hierarchy of coupled differential
equations whose solution specifies completely all aspects of the dynamics. Neglecting derivatives of the
guantum potential beyond a certain order allows truncation of the hierarchy, leading to approximate Bohmian
trajectories. Use of the method in conjunction with Bohmian initial value formulatidnShem. Phys2003

119 60] gives rise to simple position-space representations of observables or time correlation functions. These
are analogous to approximate quasiclassical expressions based on the Wigner or Husimi phase space density
but involve lower dimensional integrals with smoother integrands and avoid the costly evaluation of phase
space transforms. The lowest-order version of the truncated hierarchy can capture large corrections to classical
mechanical treatments and yields (with fewer trajectories) results that are somewhat more accurate than those
based on quasiclassical phase space treatments.

I. Introduction squares fitting schem@é815 distributed approximating func-
tionals* or Gaussian expansictigor evaluating the derivatives
necessary to obtain the quantum force from density information
in the neighborhood of a quantum trajectory. Despite their
success in treating barrier and dissociation problems, these
methods have proven elusive in systems that exhibit strong
; ) X ) . . . guantum interference effects. The dynamics of such systems is
trajectories obey classical-like equations of motion with an ¢ racterized by strong and rugged force fields, whose accurate

additional force arising from a “quantum potential” that is o\ a1ation continues to pose a serious numerical problem that
proportional to the local wave function curvature. Apart from . -4< to render the solution unstaBleTo date. accurate
interest in Bohmian theory as an interpretational tool, the close calculation of Bohmian trajectories in systems, with strong
resemblance of the Bohmian formulation to that of classical quantum interference has been possible only by utilizing

mechanics raises the intriguing prospect of using it to develop gjqangiate information obtained by solving the full quantum
new numerical tools applicable to multidimensional systems that mechanical problem by conventional methd#&$:26

are too large to treat via conventional quantum mechanical . .
The approach presented in the present manuscript was

methods. Of course quantum mechanics is a nonlocal theory, tivated b desire t id luati fth wum f
and the Bohmian formulation is not expected to beat the scaling motivated by our desire to avoid evajuation ot the quantum force
via numerical derivative procedures, thereby circumventing the

laws that apply to basis set or grid based methods. Yet, " . . . - .
approximate versions of Bohmian dynamics may lead to stability problem.m the calculation of thm|an tra!ectorles and
sufficiently accurate results in some systems with many degreesthe ne ed for s!mgltaneous propagation. Starting from the
of freedom. Another attractive approach is the construction of equation of continuity for th? quantym densifyve shovy that
practical quantum-classical (or even quantum-semiclassical)the quantgm force a!ong agen trajectqry can be obtamg d from
descriptions of the dynamics based on trajectories where thethe_ stab|!|ty properties Of the same trajectory._Th_ese, in turn,
guantum force acts only on designated degrees of freedom (e'g_’sans_f_y d|ffer_ent|al_ equations th‘”.’lt involve d_envatl\_/es of t_he
stability matrix familiar from classical mechanics, which require

those corresponding to light particles$ e ; ) .
Considerable effort has been invested in Bohmian dynamics knowledge of derivatives of the quantum potential. This resulting
procedure, which is based on information contained in the

since the late 1990s by several grodps. Much of that work Bohmian trajectory stability (BTS) matrix, leads to an infinite

21? d];cl)csuss?gn?sn ;r'lsdugln'm’:sdtggvaet;gnn?;?tu;n%nr:]gr?éz(lztr?]gf;o'gshierarchy of differential equations whose solution yields simul-
yst . P L taneously the density, quantum potential, and trajectory coor-
for evaluating the required quantum force. The latter is given

by the third derivative of the instantaneous density, and its dinates. This way each quantum trajectory can be propagated

accurate determination has been the stumbling block in Bohmianmdependentlyavmdmg the need for concurrent propagation of

methodology. Most methods have used moving weighted Ieas,[_surrou_ndlng trajectories required for derivative evaluation by
numerical schemes.

Recent work by our group has shown that useful dynamical
* To whom correspondence should be addressed. . e . .
t Department of Chemistry. properties can be cast in initial value representations with smooth
* Department of Physics. integrandg828 so the independent evaluation of quantum
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The Bohmian theory of time evolutiér® is an alternative
formulation of quantum mechanics. The main appeal of
Bohmian dynamics is its formulation in terms of “trajectories”,
a familiar concept from classical physics, which can lead to
insightful pictures of quantum phenomena. The Bohmian
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trajectories in the BTS approach allows the use of Monte Carlo t upon integration according to the equations
methods in order to select initial conditions in Bohmian -
calculations. In practice, however, a solution of these differential X =m P, Pr=-V)— QM) (6)
equations is possible only if the hierarchy terminates. Although o
this occurs naturally in special cases, in most systems, it is with an initial momentum
necessary to truncate the hierarchy by neglecting derivatives _
of the quantum potential beyond a certain order. This procedure Po = So(Xo) (1)
gives rise to approximate Bohmian dynamics whose accuracy . . . . .
depends on the system and the property in question QuantumThe dynamics of the Bohmian trajectories resembles fluid flow,
interference phenomena (which arise from cross terms in the @d the density obeys the following continuity equation:
analogous semiclassical formulation of time-dependent quantum %,
mechanics) are a signature of nonlc_)cality and thus probably p(Xt) = po(Xe) x (8)
cannot be captured by low-order versions of the BTS hierarchy.
On the other hand, truncation of the BTS hierarchy at the second 14 opiain the quantum force at a given point along a quantum
Og(:ggtgl\;ez ngster]utsIoev)\jac::rtdgrug'rlltsuZp;rr?;(r:;(;i:gislzaﬂaarc?fglljlrcmttrajecmry one must know the first three derivatives of the
P bI, I f ) bari i density. Numerical evaluation of these derivatives from the
rez;secz:r;% nyI\I/v%esc::rrirt])gzr-thimfhr(;tgrp tl;':]':je Idneg\}elo s the BTS evolving gfid of Bohmian patrticles (the “Lagrangian field") is

Y P a demanding and often unstable task, as small errors in the

hierarchy. That section also discusses various features of theyetermination of the quantum force can destroy the stability of
BTS scheme and its use in conjunction with Monte Carlo g

i hni | ical | the method. Further, the storage and propagation of the full
sampling techniques. Several numerical examples are presenteg o mign grid is impractical for systems of many particles, where

in section Il1, illustrating the capabilities and limitations of the Monte Carlo methods provide the only option. Recent work has
BTS meth?\?mogy' Finally, some concluding remarks appear jqicated that Bohmian expressions can be cast in an initial value
In section [V. form with a smooth integran®:28 This possibility raises the
question of whether the quantum force necessary to propagate
Il. Theory an individual Bohmian trajectory can be evaluated from the

o i trajectory itself and its stability properties, in the absence of
For simplicity, the theory that follows is presented for a one- jnformation from neighboring trajectories.

dimensional system. Extension of the formalism to many T, proceed, we notice that the continuity equation can be

dimensions is straightforward. exploited to obtain spatial derivatives of the density. Indeed,

For a general (possibly time-dependent) Hamiltonian, the yepeated differentiation of eq 8 and use of the chain rule leads
Bohmian solution to the time-dependent Salinger equation {4 the equations

2

L0 ~
ih— W(xt) = HOWP(xt 1 0%\? %
050 = HOTED W pi(%) = pb(Xo)(&) + )Oo(xo)a—Xt2
is written in the form
“ 0x%)? 9% 9% 9%
R . |S(x,t)/h " — A v ' _Jv_ v v
W(xt) = R(xt)e 2) pi' (%) = po (Xo)( th) + 3pp(%o) 0% ax? + po(%0) e
HereR(x;t) is a real-valued amplitude (which may be negative)
and the phas&(x;t) satisfies the quantum Hamilton-Jacobi @) @ X%, 4 X%, 282x0
equation Po (%) = Py (%) %, + 6pg (%) x, 8_xt2
_aSxt) _ 1 (8S(x;t))2 . : axg %) Ch
% “aml ax ) TVDFQXD @) pilo| 453+ 3 ﬁ;’ + po(xo%f ©

The latter differs from the ordinary equation of classical o ) _ o
mechanics through the presence of a guantum potentia| prO_Here all derivatives are evaluated SUbJeCt to fixed initial

portional to the local wave function curvature conditions, as specified by eq 7. For a real-valued initial wave
function, pp = 0 and the derivatives are evaluated with fixed
}2 i aZR(x;t) initial momentum. Similar expressions can be obtained for
Quxt) = — 2m R(x;t) —x2 = higher order derivatives.
d The derivatives of the initial density are assumed known. The
K2 LP(%t)p" (X;t) p'(X;t)2 other derivatives are brought into the form of derivatives of
8ml© p(X;t)2 B p(x;t)2 (4) positionx; reached by a trajectory with respect to its initial value
- 2 2 -3
The corresponding quantum force can be written in the form 310 _ 8_Xt ! 3_Xo _ 3_Xt 3_X1
R 2] T VT el !
h2 [pP0xt) _p (xte" (xit) | p'(xit)’ -
—Q(xt) = — -2 + (5) & %2 ox % |[ax )
4m\ p(xt) p(x;t)? p(x:t)® —X;) = —X; - —X‘—X; hal (10)
%, %] Poax, [\

wherep(x;t) = R(x;t)? is the local density. The initial condition
for eq 3 is the phas&(xo) of the initial wave function at the  etc. These equations require knowledge of derivatives of the
coordinatexp. The trajectory reaches the positigrat the time coordinate reached by a quantum trajectory with respect to its
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initial condition. The first of these derivatives is related to one equation hierarchy for the real and imaginary parts of the

of the elements of the stability matrix logarithm of a wave function. These equations are obtained
directly by expressing the evolving wave function in exponential
8_Xt 3_Xt form and substituting in the time-dependent Sclimger equa-
9%y 9P tion. Thus, that approach is an exponential derivative scheme
M,= (12) for propagating a wave function and is (in its more general form)
% % no easier than solving the time-dependent Sdimger equation
%, 9P, in its conventional form. Of course, once the full wave function

has been determined from the solution to the Sdimger
equation, it is a straightforward task to evaluate the quantum
potential and explore the properties of Bohmian trajectories;
but we emphasize that the approach described in ref 29 does
d not solve the Bohmian equations of quantum mechanics as a
G M= TeM, (12) way of generating the desired dynamics.
Solution of the differential equations for the logarithm of a
where wave function is facilitated by adopting a particutarsatzfor
. the evolving function. Some celebrated choices include Gaussian
T,= (0 m ) (13) superpositiond? the time-dependent WKB expansion in powers
=V 0 of &, local quadratic approximatiodsand expansions in powers
of time 32 (The last two of these methods have been implemented
In the last equatioVioi(X;t) = V(X;t) + Q(x;t) is the sum of  in the context of the quantum mechanical propagator.) The
the classical and quantum potentials acting on the Bohmian article by Trahan et al. truncates the hierarchy by neglecting
particle. derivatives of the wave function logarithm beyond a certain
To calculate the required higher order derivatives, we (typically the second) order. The validity of that assumption is
differentiate eq 12 repeatedly with respeckgoThis procedure  debated later in this section, but we note here that the neglect
leads to the following differential equations: of derivatives higher than second order is not necessarily
equivalent to full quantum mechanical propagation subject to a
dM,_ _ oM, 9T, local Gaussiamansatzfor the wave function. The assumed

This matrix is known to satisfy the following differential
equation:

&@ B ‘@ &0 v exponential form implies that the scheme cannot account for
des that develop in th f th luti ith

q ath ath aT, M, ath nodes that develop in the course of the evolution nor can it be

———=T,—+2——+—M, (14) used to propagate excited states. If a locally Gaussian wave

dt 8X02 8x02 Xy 0% 8x02 function approximation is used to generate a quantum potential,

the latter will have only two nonzero derivatives at any point.
etc. These equations require knowledge of derivatives of The BTS approach described in the present paper generates
Vie®t) with respect to its initial positiono. One finds the Bohmian trajectories exclusively from knowledge of the
quantum forces, which are, in turn, obtained from the instan-

ViglXst) V(- 0% taneous stability properties of an individual trajectory. Imple-
%o = Vi) &0 ’ mentation of this scheme requires in most cases of interest the
- ) 5 neglect of high order derivatives of the quantum potential. Note,
I VioXat) — @yt 3_X1 VO (xt 3_X[ 15 however, that no assumptions are made for the form of the wave
8x02 = Vi) %, ot t) 8x02 (15) function, and thus, the present methodology can be used to

propagate excited-state functions with spatial nodes.

and the procedure can be repeated to obtain higher order The question that arises naturally in conjunction with any
derivatives. truncated hierarchy is whether the derivatives of the function
Equations 4, 6, and-815 form a set of differential equations ~ actually exist and, assuming they do, whether they vanish
from which the density, quantum potential, and Bohmian beyond a certain order. A functiofi can be accurately
trajectories can be propagated simultaneously in time. Theserepresented by a Taylor series in the neighborhood of a given
equations are not closed but form an infinite hierarchy. (For POINtXo, provided thaf  * D(R)(x — xo)" * ¥/(n + 1)! (where
examp|e, evaluation of the quantum force according to eq 4 f(k) denotes théth derivative of the function anxllies between
requires knowledge of the first three derivatives of the density; X and xo) is sufficiently small. For smooth functions, this
these, in turn, require knowledge of the fourth derivative of the condition can always be satisfied by constrainingp be as
trajectory position, which obeys a differential equation whose Close toxo as necessary. However, these facts do not imply that
right-hand-side depends on the fifth derivative of the quantum ™ * ¥ vanishes. Although the use of a Taylor expansion of the
potential.) In certain situations the hierarchy terminates at a function througmth order may lead to an excellent approxima-
given order, and the solution of this set of differential equations tion, the neglect of derivatives of order higher tharin a
yields exact Bohmian trajectories. More often, the above differential equation hierarchy may not lead to an accurate
procedure yields an infinite set of equations. Depending on the solution. These remarks apply to the derivative propagation
problem at hand, truncation of these equations may lead tomethod of Trahan et &P. (which truncates the exponent of the
reasonable approximations to the dynamics or to physically €volving wave function) and also to the BTS approach
incorrect results. The remainder of this section discusses thesedeveloped in this paper (which truncates the quantum potential).
situations, and section Il illustrates them with analytic and  Focusing on the formulation presented in this section, whether
numerical examples. derivatives of the quantum potential are small and thus can be
While the present manuscript was in preparation, an article neglected beyond a certain order depends on the physical system
by Trahan et a#? appeared that describes an infinite differential under consideration. Clearly, quadratic Hamiltonians, as well
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as certain special wave functions in nonlinear systems (seeof the stability matrix vanish in this approximation. This leads
section 1llb) are amenable to such truncations without ap- to the following compact expressions for the first two derivatives
proximation. For other situations, such as short duration of the quantum potential:

scattering events, truncation of the quantum potential may lead |3 o\

to excellent approximations to the dynamics. Equations 4, 6, ~ /v, .cv — Arrv -ml 2t iy ) — Oy Ot

and 8-15 allow propagation of an individual quantum trajectory, QeD=Q (XO’O)(BXO) » Q) =Q (XO’O)(E)XO) (17)
without any reference to neighboring trajectory information. Yet,

this set of equations is formally exact precisely because the The position, momentum, and stability matrix elements along
hierarchy is an infinite one. By virtue of Taylor's theorem, each quantum trajectory are obtained by solving the following
knowledge of an infinite set of derivatives at a given point is set of six first-order differential equations:

equivalent to global knowledge of a smooth function. Thus, the

nonlocality of quantum mechanics manifests itself in the infinite d_xt — ol d_pt ==V (x) d_Mt =T:M, (18)
hierarchy of coupled equations in the present formalism: the dt Po ot ol g ot

infinite set of sensitivity characteristics of a Bohmian trajectory . )

(i.e., all derivatives of the typ&™x/axg") contains information S_everal examples presented in th_e next section show that the
equivalent to that carried by all other Bohmian trajectories and Simple 2nd order BTS approximation often provides a reason-
the underlying quantum potential. In strongly nonlinear systems @Ply accurate and inexpensive approximation to the dynamics.
where strong interference is observed, the dynamics cannot be EXtension of the BTS methodology to multidimensional
made local by truncating the differential equation hierarchy. systems is in principle s_tra|ghtforward. D_erlvatlon_of the reIevar_lt
Truncation of such schemes will in such cases lead to significant €duations can be easily performed with the aid of symbolic
errors in the propagation of the Bohmian trajectories and a loss &/9€bra software. For a system l¥fdegrees of freedom, the
of important quantum interference. Dynamical observables that 2Nd order BTS methodology leads td\% + 2N coupled

exhibit strong quantum interference effects are not described différential equations; this is the same number of equations
accurately by low-order versions of the BTS methodology.  'eduired by phase space semiclassical formulatidagiere all
On the other hand, trajectories generated via the BTS elements of the stability matrix must be propagated concur-

methodology can penetrate classically forbidden regions. Propa—(rje.mly)’ _andlthusi the |nt¢t%rat|on of E:jTS ;rajetctonest_ln m?':;

gation of a Gaussian wave packet in a parabolic barrier gives imensional systems (with a second or er truncation of the
rise to a quadratic quantum potential, and thus, the BTS schemeduantum potential) should not be computationally prohibitive.

truncates rigqrously at the second potential derivatiye in this., IIl. Examples

case. BTS trajectories can also penetrate nonquadratic potential dratic Hamiltoni It is al instructive
barriers and can lead to reasonable (albeit not exact) descriptions (a)_ dQua ra|_|c i am|fon|ans. Itsh a(le\;ays Ins “IJC Lve o

of tunneling effects. The ability of the truncated BTS scheme consiger application ot a hew method 1o a simple harmonic

to account for tunneling is an important practical advantage of oscillator

the methodology described in this paper and can be exploited B 1

to allow barrier penetration for select light particles in a mixed H= 2p_ + ér‘r\a)2>“<2 (29)
quantum-semiclassical (or quantum-classical) calculation on a m

polyatomic system. Here we choosm = o = 1. First we consider a Gaussian initial

Assuming that neglect of high order deriva_ltives_is possible, state described by the wave function
the BTS method decouples the quantum trajectories from one
another and thus can be implemented in conjunction with Monte W(x) = (01)1/4 F( a 2)

. . X)=|=| exg—5X-— 20

Carlo methods. Such methods provide the only viable approach o) 4 2 x=x) (20)
for evaluating integrals of high dimension and their use willbe L .
necessary in order to apply Bohmian dynamics to polyatomic It is easy to sth that the quantum potential is at_aII times a
systems such as molecuisurface scattering. Recent papers by duadratic function in this case, and thus, the hierarchy of
our group®28 have derived initial value representations for differential equations terminates at the second derivative of the
observables and time correlation functions that are ideally suited0t@! potential. _ , , _ ,
to Monte Carlo integration. For example, the expectation value F19uré 1 shows quantum trajectories obtained with various

of a coordinate-dependent operafois given by the expres- values ofa. for the initial condition specified by, = 4. These
Siorgé trajectories were propagated independently of one another by

using the methodology presented in section II. The Bohmian
. 5 trajectory corresponding to the center of the Gaussian wave
A= WOIAWHE= [ d|Pe00)°AX)  (16) packet evolves completely classically, oscillating about the
potential minimum. Whe. = mw/h, the wave packet oscillates
This exact quantum mechanical result has a deceptively simplerigidly about the potential minimum, and the Bohmian trajec-
quasiclassical appearance, where the dynamical observable ofories display the simple behavior observed in Figure 1b.oFor
interest evaluated at a point along a Bohmian trajectory is = mw/h, there is an additional “breathing” motion, where the
averaged with respect to a distribution specified by the initial width of the wave packet exhibits an oscillatory pattern about
wave function density. Equation 16 does not contain oscillatory the ground-state value, and the quantum trajectories exhibit more
phase factors, and thus, the integrand is a smooth functioncomplex behaviors.
suitable for integration by Monte Carlo techniques. Implementa-  The observable of interest is the width (root-mean-square
tion of such methods is entirely straightforward since the deviation) of the evolving Gaussian wave packet
sampling function given by the initial densit¥o(xo)|? is by
definition readily available. w(t) = IQZQ_ &:F (21)
Below we summarize the equations that are propagated in
the 2nd order BTS scheme. It is easy to show that all derivativesas a function of time. The expectation values entering this
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Figure 1. Quantum trajectories for a displaced Gaussian state withh @)1/10mw/h, (b) o = mw/h, (c) o = 2mw/h, and (d)o. = 10mw/h. One
of these trajectories in each figure is shown as a dashed line for clarity. Notice the different scale in d.

3 —— 20

15
10
52
0 R

x(1)

-5
-10

-15
) S S -20
0 5 10 15 20
ot
Figure 2. Width of a Gaussian wave packet with= 4mw/h, Xo = 4 Figure 3. Quantum trajectories for a displaced excited state of a

in a harmonic potential. Solid circles: Monte Carlo results obtained harmonic potential (cf. eq 22). The dotted line shows the trajectory of
with 5000 BTS trajectories. The error bars are smaller than the size of the center, for which the quantum force vanishes.
the markers. The solid line shows the exact quantum mechanical result.
R with oo = 2mw/h andxy = 4. This function corresponds to the

expression were obtained from eq 16 wah= X or X% This first excited state for a harmonic potential with frequenay 2
initial value representation of Bohmian dynami€sq 16, i and a minimum a%o. Again, truncation of the quantum potential
an exact result that can be straightforwardly extended to at the second order leads to exact dynamics. It is easy to show
multidimensional systems. Figure 2 shows the oscillating width that the Bohmian force of a displaced harmonic oscillator state
of the wave packet centered>at= 4 in the casex = 4mw/h is identical to the one corresponding to a shifted Gaussian of
obtained via Monte Carlo integration of eq 16 with the initial the same width. Figure 3 shows the quantum trajectories for
probability density as the sampling function. These results were this wave function. Excluding nodes, which lead to zero
obtained with 5000 BTS trajectories. denominators and thus cannot be propagated, all other trajec-

Finally, we demonstrate the application of this methodology tories were propagated using a straightforward application of
to the evolution of a non-Gaussian state. The initial wave the BTS scheme. It can be seen from Figure 3 that the BTS
function has the form trajectories do not pass through the nodal line.

3 (b) Eigenstates of Anharmonic SystemsEigenstates of a

_ |4 v F( a 2) general time-independent Hamiltonian give rise to Bohmian
Pl = ( b4 ) (=) ex 2 (x=x) (22) forces that precisely cancel their classical counterparts. To see
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this, consider a Bohmian wave function whose amplitude 3 . .
function att = O satisfies the time-independent Satirger
equation 2
h2 1
— =—R'(x,0) + V(X)R(x;0) = ER(x;0) (23) o
2m % oFfF J
It follows thatR(x;t) = R(x;0) andS(x;t) = —Et. The Bohmian 1
potential is
2
K% R'(xt)
Qxt) =—5-— ~ =E— V() (24) } :
2m R(xt) %0 5 10 15 20

ot
Thus,V(x) + Q(xt) = E, and the total force equals zero. As a Figure 4. BTS trajectories corresponding to the first excited state of

result, the thmlan F?a”'c'e_s dq nc_>t evolve. However, .these an anharmonic oscillator with the potential given in eq 25. The quantum
features require a delicate (in principle, exact) cancellation of potential was truncated at the fourth order.

classical and quantum forces, and thus, the propagation of
eigenstates in anharmonic potentials using methods based orf x,, which is subsequently refined by propagating trajectories
numerical derivatives encounters similar challenges to thoseon a finer grid spanning the vicinity of that coordinate value.
discussed in the Introduction. The same procedure can be implemented within a Monte Carlo
Because the quantum potential equals exactly the negativesetting. Once the critical position is found, calculation of the
of the classical one, these two functions must have the sametransmission probability involves evaluating an integral of a
Taylor series expansion (with opposite signs). One can thus time-independent positive function
truncate the quantum potential at any given order, and provided
that the classical potential is also truncated at the same order, _ [ 2
the forces will balance exactly, leading to correct time evolution. Pe(®) = f Xdiv Wo(a)l” 0%
These features are illustrated by propagating the first excited
state of a strongly anharmonic oscillator corresponding to the which in the present case of a Gaussian density is given by an
potential error function and more generally can be evaluated by quadra-
ture or conventional Monte Carlo procedures. We emphasize
V(%) =1m2X2+ 0.1 (25) _again that_ sampl_ing is straightforward and eff_icient, as th_e
2 integrand is positive everywhere and the sampling function is
given by the initial density.
Below we present results for an Eckart barrier

(29)

with m = w = 1. The excited state wave function and its
derivatives were evaluated via a basis set expansion. The BTS
scheme was applied with the quantum potential truncated at

the fourth order, consistent with the quartic form of the classical V(X) = 0 (30)
potential. The BTS trajectories displayed in Figure 4 are seen cosh(alx)2

to be perfectly straight lines, a consequence of exact cancellation

between classical and quantum forces. with a = 1.3624 awfo = 0.016 au= 0.425 eV, and mass =

(c) Barrier Transmission. As a third paradigm, we consider 1061 au. These parameters correspond roughly to theht
transmission through a one-dimensional barrier. The transmis-reaction and have been employed in model calculations by other

sion coefficientP(E) at a given translational enerdy was groups. The imaginary frequency at the barrier topvis=

calculated from the expression (2a2Vo/m)¥2, The initial wave packet has a Gaussian form
P(E) = lim P(t) (26) o)\ L4 o i

e w0 = (] e~ 50— %)+ g pal—x) (D)

HerePg(t) is the time-dependent transmission probability at the

translational energf with o = 4, xin = —1, andpi, = (2mEY2
Bohmian trajectories were propagated in time according to
P.(t)= [~ |1W¥ 1) dx. = “ |y 1)1°h(x) dx, = the 2nd order BTS methodology described in the previous
e ‘/; eI c f’“ P ?Aﬂhgxtzmz; section, along with the stability matrix elements, their deriva-
Wole™he "W, 0(27) tives, and the density. The time-dependent transmission prob-

) _ _ _ ~ ability for E=0.002 au is shown in Figure 5 and compared to
whereh(x) is a step function. Using again eq 16, the transmission accurate quantum mechanical results.

probability takes the form Figure 6 shows the transmission coefficient as a function of
- ) translational energy for the one-dimensionalHHH; model
Pe(t) = fiw [W (%) | “h(x)dX, (28) specified above. The transmission probability varies by a factor

of 300 over the energy range displayed in the figure. It is seen
This expression integrates the initial probability density over that the 2nd order BTS results are in reasonable agreement with
the coordinate interval that leads to reactive trajectories. Sincethose obtained through exact quantum mechanical propagation.
there is no recrossing for this simple barrier problem, it suffices The same figure also compares the results to those for a
to find the coordinatey, which separates Bohmian trajectories parabolic barrier with the same curvature xat= 0. The
that cross the barrier from those that remain nonreactive. This transmission probability obtained with the parabolic approxima-
can be done iteratively with a small number of trajectories: tion differs significantly from that of the Eckart potential. One
initially, one sets up a sparse grid to find an approximate value observes that the 2nd order BTS scheme leads to reasonably
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Figure 5. Transmission probability as a function of time for the Eckart 35 T
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Figure 6. Transmission probability as a function of energy for the 3000 - ]
Eckart barrier described in eq 30. Solid line: basis set results. Solid
squares: results of the 2nd order BTS scheme. Hollow circles: classical =
results obtained from eq 33. Chain-dotted line and triangles: position- % 000 L J
space classical results using eq 28 with classical trajectories. The dashed
line shows the transmission probability for a parabolic barrier with the
same curvature at the potential maximum. 1000 - ]
©
accurate results for barrier transmission even though the effects
of potential anharmonicity are quite sizable. 0 ' '
The finite width of the wave packet leads to a momentum 0 10 15 20
t (fs)

spread. The probability distribution in momentum space for the
initial Gaussian wave function is given by the expression

— N 2
B(p)? = Vak’ exp(— %) (32)
shows a steep rise at a translational energy that satisfies the

The classical transmission probability is given by the expression energy conservation relati@+ V(x») = Vo (which corresponds
. to E~ 0.012 au). This result resembles an S-shape curve when
P,(E) = j; |¥(py)|°h(p*/2m + V(%)) — Vo) dp, (33) plotted on a linear scale. (The deviation of this classical result
from a step function can be attributed to the energy spread of
One can see from Figure 6 that the results of eq 33 underestimatéhe wave packet.) The results of this classical positigpace
the transmission probability by almost 2 orders of magnitude treatment are also inferior to those obtained via the 2nd order
at low energies. BTS approximation, as they underestimate the transmission
In a recent papet, it was shown that a stationary phase probability at low energies and overestimate it at higher energies.
evaluation of the semiclassical expression for an expectationBoth sets of trajectories start from the same positions and
value leads to an alternative classical expression identical to egqmomenta for a given value of the translational energy; yet, the
28 but where the coordinatgis the value reached by a classical proper fraction of BTS trajectories reach the product side of
trajectory. The results of this classical approximation are of the barrier at low energies, where the vast majority of classical
particular interest here, as any differences from the BTS resultstrajectories are nonreactive (and the converse is true at high
must reveal the role of the approximate quantum potential on energies). Apparently, inclusion of the approximate BTS
the trajectories. Figure 6 also shows this position space classicapotential can guide trajectories to the appropriate long-time
result for the same system. This classical transmission coefficientdistribution.

Figure 7. Time-dependent quantum correction factor for the
Eckart model. Solid line: exact quantum mechanical results. Dashed
line: 2nd order BTS results. (a) = 1000 K. (b) T = 300 K. (c)

T =200 K.
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In conclusion, the 2nd order BTS results show a much better accurately evaluated by finite difference using a total of o
agreement with the exact quantum mechanical results comparedralues symmetrically placed around the barrier top. Differentia-
to both the momentum-based and position-based classicaltion with respect to the “final” position, was performed using
approximations. More elaborate phase space formulations (e.g.a 5-point least-squares interpolation formula and requires
the Wigner prescriptioR336 recently rederived3¢ through propagation of only a few Bohmian trajectories that remain in
linearization of the semiclassical expression and forward the vicinity of the barrier region. Finally, we note that propaga-
backward semiclassical approximatiéhsmust be used to  tion of a “thermal wave function” to the longest desired time
improve the accuracy of the classical results. When comparedcontains all of the necessary information to allow evaluation of
to the results of these phase space representations for the samthe correlation function at many intermediate time points.
system, the 2nd order BTS results generally show small BTS trajectories for three thermal wave functions correspond-
improvements. Such comparisons are discussed in more detaiing tox; values symmetrically placed with respect to the barrier
in the next subsection. However, phase space formulationstop were integrated for the Eckart potential described above. In
require the integration of oscillatory functions, which poses the present case, the first term in eq 37 vanishes due to potential
significant challenges to Monte Carlo methd@&urther, phase ~ symmetry. We calculate the time dependent quantum correction
space representations of the quantum density are availablefactor, obtained by dividing the time-integrated fubtux
analytically only in simple cases where the wave function has autocorrelation function by the classical transition state theory
a Gaussian form and more generally require numerical evalu-value
ation of a Wigner or coherent state transform, which can be

very demanding task8. By contrast, the 2nd order BTS =(e 0)1 t N

methodology is implemented fully in position space (where the k() 27hp ﬂ) Cq(t') dt (38)
density is readily available) and involves evaluation of positive _ ) o _ _
definite integrals. at various temperatures. The long-time limit of this quantity

(d) Thermal Flux Correlation Functions. Last, we focus yields the quantum correction factor to the thermal rate constant.
on the calculation of flux correlation functions, which can be Figure 7 showsk(t) obtained with the second-order BTS

used to obtain thermal rate constants. The flflux auto- approximation and compares to accurate quantum mechanical
correlation functiof? can be written in several forms, one of results obtained through a basis set method at various temper-
which is*3 atures. The BTS results are seen to be nearly quantitative at
1000 K and give an error of about 30% at the lowest temperature

Co(t) = Tr(e—ﬁH/Zﬁe—ﬁH/ZeiHt/hf:e—iﬂt/h) (34) considered where the quantum mechanical effects are very large.

Although the 2nd order BTS approximation does not capture
accurately all quantum dynamical features of the motion in this
strongly anharmonic system, its performance is still remarkably

A HA good given the computational advantages discussed earlier,

F Zﬁ[H,h] (35) namely, the coordinate space representation of BTS and the

absence of integrals with oscillatory functions, which lead to

whereh is a projection operator corresponding to the Heaviside results with small numbers of trajectories. Quasiclassical ap-
Step function h(x) =1forx>0 On|y)' The time integra| of proximations, most notably the Wigner formulation of time
the flux—flux autocorrelation function yields the thermal rate Correlation function®3¢ (recently rederivetl-* through a
constant for the reaction. Evaluating the trace in the coordinate linearization of the semiclassical expression) and forward
representation and inserting a complete set of position statesPackward semiclassical dynamics (FBSD) techniuedso

Heres = 1/kgT is the inverse temperature and

eq 34 becomes avoid highly oscillatory phase factors associated with quantum
or semiclassical dynamics, but the numerical evaluation of the

— . —iAVAE | — A2 i g JRVRE B2 phase space transform and the lack of a positive definite

C(® fdx fdx e Fe XTIX|eTFe X0 integrand can be major obstacles in their application. The 2nd
(36) order BTS results shown in Figure 7, which were obtained with

o . ) ) 2 x 5+ 1 = 11 trajectories, are slightly closer to the exact
Each factor in this expression requires propagation of the staterggyits than those obtained with the most accurate implementa-
Fe~/"2|xCforward (or backward) to time a task that is to be tjon of the Wigner method for the same systéwhich required
performed using the Bohmian methodology. Before proceeding, mych |arger numbers of trajectories for convergence. In light

one can exploit the presence of the flux operators in eq 36 t0 4f this performance, the 2nd BTS methodology appears to

eliminate both integrals. Simple algebra leads to the final ,qyide an attractive (though still approximate) alternative.
expression

Cy(t) = IV. Concluding Remarks

_h 8
2m? %
R 9
2R 0%,0%,

We have presented a procedure for obtaining the quantum
force in the Bohmian formulation of quantum mechanics
concurrently with the instantaneous density and the stability
0[0|e—iﬂt/he—ﬁﬂlz|o|] (37) properties alopg a given quantum tra_jectory. The quantities_ of

interest are given from an infinite hierarchy of coupled dif-

ferential equations. The scheme does not require knowledge of
To evaluate eq 37, the “thermal wave function” (i.e., the the density or other properties of surrounding trajectories, and
x-representation) corresponding to the staté™gis con- thus, the BTS may appear to become a local methodology.
structed and used as required to propagate the BohmianHowever, just as an infinite set of derivatives of an analytic
equations to the desired time. Because only low-order derivatives(Taylor-expandable) function at a given point fully specifies
are involved, differentiation with respect tq in eq 37 is the entire function, knowledge of the stability characteristics

0

0 e—th/he—ﬂH/z O -2
| | 1D]xroaxz

—iAth _—pH/2
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of a trajectory toall orders can provide sufficient nonlocal (5) Gindensperger, E.; Meier, C.; Beswick, J.JAChem. Phys200Q

information to reproduce exactly quantum interference effects. 113(2)3’?3-[“18“5 erger. E.: Meier. C.: Beswick J.JAChem. Phy002
Truncation of the quantum potential at a specific order closes 114'g. perger. £ T T b

the hierarchy, leading to a local and practical approximate (7) Guiang, C. S.; Wyatt, R. El. Chem. Phys200Q 112, 3580.
scheme for calculating the quantum force and density along a  (8) Lopreore, C. L.; Wyatt, R. EJ. Chem. Phys2002 116, 1228.

. (9) Dey, B. K.; Askar, A.; Rabitz, HJ. Chem. Physl1998 109, 8770.
quantum trajectory. The truncated BTS scheme makes no (10) Lopreore, C. L.. Wyatt, R. EPhys. Re. Lett. 1999 82, 5190.

assumptions for the time-dependent wave function or density. (11) Mayor, F. S.; Askar, A.; Rabitz, H. Al. Chem. Phys1999 111,
In many situations, the numerical solution of the coupled BTS 2423.

equations with low-order truncations of the quantum potential 83 ‘é‘%ﬁg} RE- %%h%méihysh;%tggggl&l%?lgg
leads to accurate approximations to the dynamics. However, (14) Wyatt"R_'E_;' Kouri, D. J.; Hoffman, D. KI. Chem. Phys200Q

the truncated BTS hierarchy generally cannot reproduce inter- 112, 10730.

ference effects of a purely quantum mechanical nature. (15) Lopreore, C. L.; Wyatt, R. EChem. Phys. Let200Q 325, 73.

. . s (16) Nerukh, D.; Frederick, J. HChem. Phys. Let00Q 332, 145.
The independent nature of the BTS trajectories invites the (17) Wyatt, R. E.: Bittner, E. RJ. Chem. Phys200Q 113 8898.

use of Monte Carlo methods to sample initial conditions. Recent  (18) Prezhdo, O. V.; Brooksby, ®hys. Re. Lett. 2001, 86, 3215.
work has shown that initial value representations of expectation  (19) Wang, Z. S.; Darling, G. R.; Holloway, 8. Chem. Phys2001,

; ; ; ; 115 10373.
values or time correlation functions are possible and take a (20) Maddox, J. B.: Bittner, E. R1. Chem. Phys2001, 115, 6309.

particularly simple form, with integrands that are smooth (21) Maddox, J. B.: Bittner, E. RPhys. Re. E 2002 65, 026143.
functions, free of rapidly oscillatory phase factors. In the present  (22) Wyatt, R. E.; Na, KPhys. Re. E 2002 65, 016702.

paper, we have demonstrated the first use of Monte Carlo (23) Wyatt, R. EJ. Chem. Phys2002 117, 9569.

. - (24) Burghardt, I.; Cederbaum, L. $.Chem. Phys2001, 115 10303.
methods to calculate time-dependent observables using the (25) Garashchuk. S.; Rassolov, V. @hem. Phys. Let2002 364 562.

Bohmian formulation of quantum mechanics. The results  (26) zhao, Y.; Makri, N.J. Chem. Phys2003 119, 60. o
presented in section Il are very encouraging and indicate that  (27) Holland, P. RThe quantum theory of motipGambridge University

; ; ; ; Press: Cambridge, 1993.
!oy\_/-order BTS approximations with Monte Carlo sampling of (28) Makri, NQJ_ Phys. Chem. 2004 108
initial conditions provide a useful, often more accurate and more  (29) Trahan, C. J.; Hughes, K.; Wyatt, R. E.Chem. Phy2003 118
economical alternative to quasiclassical methods based on phase9ii.
(31) Friesner, R. A.; Levy, R. MJ. Chem. Phys1984 80, 4488.
(32) Makri, N.; Miller, W. H.J. Chem. Phys1989 90, 904.
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