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Starting from the position-momentum integral representation,
we apply the correction operator method to the derivation of a
uniform semiclassical approximation for the quantum propaga-
tor and then extend it to approximate the Boltzmann operator.
In this approach, the involved classical dynamics is determined
by the method itself instead of given beforehand. For the
approximate Boltzmann operator, the corresponding classical
dynamics is governed by a complex Hamiltonian, which can be

described as a pair of real Hamiltonian systems. It is demon-
strated that the semiclassical Boltzmann operator is exact for
linear systems. A quantum propagator in the complex time is
thus proposed and preliminary numerical results show that it is
a reasonable approximation for calculating thermal correlation
functions of general systems. © 2018 Wiley Periodicals, Inc.
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Introduction

Compared to the classical analogue, the many-particle quantum
dynamics is hardly reachable because of its nonlocal features.
There has been considerable effort to explore simple yet accu-
rate approximations for the quantum propagator based on local
classical dynamics, which leads to different versions of so called
semiclassical propagators. Of all these semiclassical treatments,
the very first was due to van Vleck[1] who obtained an approxi-
mate quantum propagator or Green’s function by virtue of a
time-dependent Wentzel-Kramers-Brillouin method.[2–4] In van
Vleck’s formula, it is required to calculate the classical trajecto-
ries with the given initial and final positions. This root-search
problem limits van Vleck’s approximation as a useful tool.

To overcome this difficulty, several semiclassical propagators
based on classical trajectories starting from the given initial
position and momentum have initially been proposed by Miller
et al.,[5–11] among which the most popular is the Herman-Kluk
(HK) semiclassical propagator.[11–14] In the HK approximation,
one needs to calculate the classical trajectories associated with
the stability matrices and their contributions by integration over
the phase space. The HK propagator was first suggested as an
approximate alternative of the traditional van Vleck formula
(11), which was later shown to be one of the initial-value repre-
sentation (IVR) variants, displaying an excellent numerical
performance.[12–14] Notwithstanding the good accuracy of the
HK approximation, there were serious debates over whether it
is semiclassically rigorous.[15–18] It was Kay[19] that elaborated an
elegant scheme based on the correction operator method
developed by Pollak and coworkers,[20–22] which led to the deri-
vation of the HK propagator as a uniform semiclassical IVR and
thus finally resolved the debate. Further, the procedure used by
Kay can give the high-order corrections systematically.

When one is interested in quantum thermodynamics or quan-
tum evolution in the imaginary time instead of the real-time
dynamics, the problem of nonlocality seems less severe except
for very low temperatures. Indeed, the numerical path integral

techniques[23–25] have been frequently used to compute
the exact quantum Boltzmann distribution and thus the thermo-
dynamic properties of many-particle systems. However, it becomes
difficult to give convergent results as temperature gets low or the
imaginary time is long. Several approximate methods have also
been developed to evaluate the quantum partition function and
the Boltzmann density matrices.[26–34] These methods can roughly
be classified as two kinds. One is based on the variational principle
in which the system is treated as an effective harmonic oscillator
with the frequency (matrix) to be optimized.[26–28] The other is
based on an approximate imaginary-time evolution. A representa-
tive of the latter is the thermal Gaussian approximation originally
proposed by Metiu,[29] which has been further developed and
applied to the studies of quantum thermodynamics of clusters and
molecular liquids.[30–34]

As the Boltzmann operator can be regarded as a quantum sys-
tem evolving in the imaginary time, it seems that the real-time
IVR for the quantum propagator can directly be extended to the
imaginary time. The HK propagator, for instance, was indeed con-
verted into an imaginary-time version and used to calculate the
Boltzmann matrix.[35] Associated with extending the dynamics to
the imaginary time, the classical momentum is mapped to a
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purely imaginary variable and the corresponding classical
dynamics corresponds to a real time motion on an inverted
potential-energy surface. One may notice that, the so-obtained
imaginary-time HK formula fails to produce the identity operator
as time becomes zero, which corresponds to the infinite
temperature limit. This intrinsic inconsistency is rooted in the non-
existence of the physical coherent state for some complex phase-
space points from the classical evolution in the imaginary time.
This issue, as we will address in the article, is the main obstacle for
developing the imaginary-time semiclassical IVR. We will clarify
and to some extent, how to get rid of the difficulty by using
different representations. One may also develop a scheme using
real momentum and position variables with the current method,
as shown in section “Mixed position-momentum propagator in
imaginary time” of this work. But then the accuracy will be a seri-
ous issue.

We organize the article as follows. In section “Correction
operator approach for deriving semiclassical quantum
propagators,” we will show how to systematically develop the
semiclassical IVR for the quantum propagator, following the
reasoning of Kay. In section “Mixed position-momentum propa-
gator in imaginary time,” we will formally extend the result to
the imaginary-time evolution for the Boltzmann operator, point-
ing out a caveat that a conceptual problem exists in such an
extension. In section “Harmonic oscillator and parabolic barrier,”
we will show that the imaginary-time semiclassical IVR is exact
for harmonic oscillators. In section “Nonlinear systems,” we will
also demonstrate that it gives good results for nonlinear sys-
tems, such as the double-well system and the Eckart potential.

Correction Operator Approach for Deriving
Semiclassical Quantum Propagators
Propagator in the position-momentum representation

Miller first showed that the semiclassical evolution may be
expressed in the mixed position-momentum (PM) integral repre-
sentation.[7,8] The semiclassical propagator may also directly be
derived with path integral, which is one of the earliest semiclas-
sical IVR in the PM representation.[36,37] To demonstrate Kay’s
scheme, we first work out the PM-IVR in real time with correction
operator method and then to acquire the imaginary-time ver-
sion. Because Kay intended to give a proof of the semiclassical
rigorousness of the Herman-Kluk IVR, he started from an integral
coherent-state representation for the propagator. His procedure
consists of two key steps. One is to use the correction operator
method[20–22] to find an equivalent Schrödinger equation and
the other is to make a semiclassical expansion for the Schrödin-
ger equation. To derive the PM-IVR, we will start from a mixed
position-momentum integral representation. Moreover, unlike
Kay, we will not assume the rules or equations of motion for clas-
sical dynamics beforehand, instead, we will derive them accord-
ing to the requirement that the correction operator should
vanish for reproducing an exact quantum propagator. To be
specific, let us consider an N-dimensional system described by

the time-independent Hamiltonian Ĥ¼ p̂T 2Mð Þ−1p̂+ V q̂ð Þ with
M being the mass matrix. Suppose the quantum propagator

U tð Þ¼ e− iĤt=ℏ assumes the following form in a mixed position-
momentum integral representation,

UPM tð Þ¼ 1

2πℏð ÞN=2
ð
dqdpRt j ptihq j , ð1Þ

where the integration is over the “phase space” described by
(q, p). Here, the scalar function Rt and the phase-space point (qt,
pt) are the functions of time t and the starting point (q, p), which
are yet to be determined. However, the position-momentum
integral representation of eq. 1 involves the position eigenstate
at time zero and the momentum eigenstate at time t. It is also
required that UPM(t) satisfies the correct initial condition, that is,
UPM(0) = I. Now, we can define the correction operator

Ĉ tð Þ� iℏ∂UPM=∂t− ĤUPM,
[20] which measures the deviation of

the quantum propagator UPM(t) from the exact one and can be
used to find a systematic improvement when UPM is an approxi-

mate one. Given the expression of UPM tð Þ, Ĉ tð Þ now reads

Ĉ tð Þ¼ 1

2πℏð ÞN=2
ð
dqdpRt iℏ

_Rt
Rt

− _pt � q̂−
1
2
pT
t M

−1pt −V q̂ð Þ
� �

j ptihq j ,

ð2Þ

where in the derivation the relation

∂

∂t
j pti¼

i
ℏ
_pt � q̂ jpti

is used. Further, when the potential energy operator V q̂ð Þ is
expanded around the position qt at time t and substituted into
eq. 2, there yields

Ĉ tð Þ¼ 1

2πℏð ÞN=2
ð
dqdpRtF̂t jptihq j , ð3Þ

where the operator F̂t in the integrand is

F̂t ¼ iℏ
_Rt
Rt

− _pt � q̂−
1
2
pT
t M

−1pt −V qtð Þ−rqt V qtð Þ � q̂−qtð Þ

−
1
2
q̂−qtð ÞTrqtrT

qt
V qtð Þ q̂−qtð Þ−V1 q̂,qtð Þ ð4Þ

with V1 q̂,qtð Þ being the high-order contributions to V q̂ð Þ. To go

further, we regard the operator F̂t as a sum of the series of
q̂−qt . Note that an exact propagator means a vanishing correc-

tion operation Ĉ and vice versa. To obtain an exact propagator,
therefore, it is required that all coefficients of the powers of
q̂−qt in eq. 4 vanish. This seems to provide a straight way
toward a systematic semiclassical approximation whenever the
functions Rt, qt and pt are known. Leaving aside the zero-order
term for the moment, we first consider the linear term in q̂−qt .
As its coefficient becomes 0, there is

_pt ¼ −rqt V qtð Þ, ð5Þ

which gives one of the equations of motion for the phase-space
point (qt, pt). Of course, one needs the other independent
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equation to fully determine the “classical evolution.” Although
it cannot be provided by the vanishing first-order term and
may take different forms, a simple and convenient choice is

_qt ¼M−1 _pt: ð6Þ

We thus obtain the traditional classical dynamics (qt, pt)
described by the Hamilton’s equation. It should be pointed out
that if one starts from the coherent state representation in
eq. 2 as in the derivation of the Herman-Kluk propagator by
Kay, then one may naturally obtain the Hamilton’s equation
from the requirement that the coefficients of q̂−qt in the cor-

rection operator Ĉ tð Þ vanish. This observation will also be clari-
fied when we analyze the position-coherent-state semiclassical
propagator[12,13,38] in the next section. We now consider to find
the expressions of powers of q̂−qt acting on the “basis” jptihqj,
which can conveniently be dealt with later. To this end, we use
the relation

rp qjpth i¼ i
ℏ
rppT

t q qjpth i

to establish the following one

rp jpti
�
q j¼ i

ℏ
rppT

t q̂ jpt
�hq j ,

or

q̂ j pti
�
q j¼ − iℏ rppT

t

� �−1rp j pt
�hq j ,

which can be viewed as the expression of the position operator
in the mixed position-momentum representation. With this
result, we introduce the classical action St and define
At ≡ St − qt � pt to obtain

q̂−qtð Þ jptihq j¼ − iℏ rppT
t

� �−1
e−

i
ℏAtrp e

i
ℏAt jptihqj

h i
: ð7Þ

Therefore, the operator q̂−qtð Þ acting on jptihqj can be
replaced by an alternative displayed above. This result shows
that the operation of powers of q̂−qtð Þ on the basis jptihqj
brings about contributions of high orders in ℏ, which may be a
suitable starting point for a systematic perturbation treatment.
For instance, the second-order term reads

q̂−qtð ÞTrqtrT
qt
V qtð Þ q̂−qtð Þ jptihq j

¼ − iℏe−
i
ℏAtTr rqtrT

qt
V qtð Þ rppT

t

� �−1rpqT
t

n o
e

i
ℏAt jptihqj

h i
−ℏ2e−

i
ℏAtTr rqtrT

qt
V qtð Þ rppT

t

� �−1rp e−
i
ℏAt rppT

t

� �−1rp

h iT� 	
e

i
ℏAt jptihqj

h i
:

ð8Þ

Upon substituting all the results for powers of q̂−qtð Þ into
eq. 3, the correction operator assumes the following form

Ĉ tð Þ¼ 1

2πℏð ÞN=2
ð
dqdpe−

i
ℏAt RtGt rp

� �
e

i
ℏAt jptihqj

h i
, ð9Þ

where the operator function Gt is a sum of a series of the gradi-
ent operator rp and other given functions, whose explicit
expression can in principle be worked out by repeated use of
eq. 7. Then, we take integration by parts for eq. 9 and assume
that jptihqj vanish at the infinite boundaries to obtain

Ĉ tð Þ¼ 1

2πℏð ÞN=2
ð
dqdpe−

i
ℏAt RtGt

�
−r p

�
e

i
ℏAt jptihqj

h i
, ð10Þ

where r p denotes the gradient operation on the function to
the left. For an exact quantum propagator, there must be

Ĉ tð Þ¼ 0, which means a vanishing integrand in eq. 10 and fur-
ther results in

Gt −rp
� �

Rte
− i
ℏAt ¼ 0: ð11Þ

This is an alternative Schrödinger equation for the quantum
propagator based on the mixed position-momentum integral
representation, defined by eq. 2. We would like to stress again
that we may explicitly obtain the operator Gt(−rp) and then
make a rigorous semiclassical treatment for eq. 11 as Kay did.
But here for simplicity, we only consider the operator Gt con-
taining terms up to the first-order in ℏ. Then eq. 11 becomes

iℏ
_Rt
Rt

+ _At +
1
2
iℏTr rqtrT

qt
V qtð Þ rppT

t

� �−1rpqT
t

h i� 	
Rte

− i
ℏAt ¼ 0:

ð12Þ

Suppose Rt ¼ e
i
ℏAteRt . Inserting into eq. 12, we readily obtain

the equation for eRt ,
1eRt
∂

∂t
eRt ¼ −

1
2
Tr rqtrT

qt
V qtð Þ rppT

t

� �−1rpqT
t

h i

¼ 1
2
d
dt
Tr ln rppT

t

� �
: ð13Þ

With the initial condition R0¼ expð− iq �p=ℏÞ½eR0¼ 1�, eq. 13
gives

eRt ¼ det rppT
t

� �
 �1=2
:

However, the equation of motion method can be used to cal-
culate the stability matrix elements in Rt,

rp _qt ¼M−1rppt , ð14Þ
rp _pt ¼ −rptrT

pt
V qtð Þrpqt ð15Þ

with the initial condition rpq0 = 0 and rpp0 = I. Substituting Rt
into eq. 1, we finally obtain the semiclassical position-momentum
propagator,

UPM tð Þ¼ 1

2πℏð ÞN=2
ð
dqdp det rppT

t

� �
 �1=2
e

i
ℏ St −qt �ptð Þ jptihq j :

ð16Þ

With the same procedure we can also find a similar semiclas-
sical propagator based on the momentum (at time 0) -position
(at time t) integral representation, namely,
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UPM,1 tð Þ¼ 1

2πℏð ÞN=2
ð
dqdp det rqtq

T
t

� �
 �1=2
e

i
ℏ St + qt �ptð Þ j qtihp j :

ð17Þ

Mixed position-coherent-state semiclassical propagator

Before turning to the semiclassical approximation in the imagi-
nary time, we will discuss the issue of the classical dynamics
in the semiclassical propagator in a mixed position-coherent-
state representation.[12,13,38] We now consider the quantum
propagator in the position-coherent-state representation,
that is

UAF tð Þ¼ 1

2πℏð ÞN πℏð ÞN=4 detΓð Þ−1=4
ð
dqdpRt j g qt ,ptð Þihq j , ð18Þ

where the wave function of the coherent-state is defined by

xjg q,pð Þh i¼ 1

πℏð ÞN=4
det Γð Þ1=4e− 1

2ℏ x−qð ÞTΓ x−qð Þ+ i
ℏp� x−qð Þ

with Γ being the positive, diagonal Gaussian width matrix. With
this expression we can, of course, utilize Kay’s scheme to find a
semiclassical expression of Rt. Here we will not repeat the whole
procedure, but only focus on how to derive the classical dynam-
ics in the approximation which was presumably chosen as the
traditional one in Kay’s work. As described above, we first find the

expression for the correction operator Ĉ tð Þ� iℏ∂UAF=∂t− ĤUAF

and then expand the potential energy operator V q̂ð Þ around qt.
As explained in the previous section for the PM semiclassical
propagator, it is required that the first-order contribution of
q̂−qt in the integrand of the correction operator is 0. Then, we
obtain

iΓ _qt− _pt − iΓM−1pt −rqt V qtð Þ¼ 0: ð19Þ

If we assume that the position qt and momentum pt are real,
then eq. 19 immediately results in the Hamilton’s equation
represented by eqs. 5 and 6. In this case one obtains

Rt ¼ det rp pT
t − iΓq

T
t

� �
 �� 1=2
e

i
ℏSt , ð20Þ

which leads to the semiclassical position-coherent-state propa-
gator. If, however, we do not impose the real domain on qt and
pt, one may obtain different approximate propagators. Because
the semiclassical IVR for the imaginary, as well as the complex-
time evolution will be our focus, we will not explore this inter-
esting issue in the article, although it does deserve a further
investigation.

Mixed Position-Momentum Propagator in
Imaginary Time

We have so far explained how to systematically derive semiclas-
sical IVR series for the quantum propagator, following the deri-
vation of HK approximation by Kay. Although the higher order

contributions are not shown and analyzed here, they can in
principle be obtained. No matter how accurate these semiclassi-
cal IVRs are, they are appealing in the sense that the involved
classical dynamics is genuine Newtonian. Now we may wonder
whether the semiclassical IVR is also valid by making a change
of variables t = − iℏβ for the imaginary time propagator or the
Boltzmann operator (Here, β = 1/kBT is the inverse temperature
with kB being the Boltzmann constant). It seems that the imagi-
nary time result comes out naturally whenever the time t is
replaced by −iℏβ in the expression of the semiclassical IVR. But
doing so results in a classical evolution with complex trajecto-
ries. To see this point clearly, we formally apply the procedure
in the previous section to the Boltzmann operator.

The Boltzmann operator ρ βð Þ¼ e−βĤ may be viewed as a

quantum system Ĥ evolving in the imaginary time t = −iℏβ.
The analogue of ρ(β) to eq. 1 is

ρPM βð Þ¼ 1

2πℏð ÞN=2
ð
dqdpRβ j pβihq j : ð21Þ

The Boltzmann operator obeys the Bloch equation,

that is, ∂ρ=∂β¼ − Ĥρ. The corresponding correction operator

Ĉ βð Þ¼ ∂ρPM=∂β + ĤρPM then reads

Ĉ βð Þ¼ 1

2πℏð ÞN=2
ð
dqdpRβ

_Rβ
Rβ

+
i
ℏ
p
:
β � q̂+

1
2
pT
βM

−1pβ + V q̂ð Þ
� �

j pβihq j :
ð22Þ

From here, the dot sign : denotes the derivative with respect
to the imaginary time β. The correction operator has been used
to develop a frozen Gaussian evolution for the Boltzmann oper-
ator.[39] Although the thermal frozen Gaussian evolution can be
regarded as an imaginary time IVR, it is not obtained from a
direct extension of the real-time counterpart and a unified IVR
for both the real and imaginary time is not studied. Here, we
adopt a method that may deal with the real and imaginary time
on the same footing, which can hopefully lead to a more con-
sistent unified semiclassical approximation with high accuracy.
To the correction operator given by eq. 22, we can repeat what
we did above for the real time evolution, the result for the
imaginary time evolution may have different physical interpre-
tation. For instance, the derived “classical” equation under the
requirement of vanishing linear term of q̂−qβ in the integrand

of the correction operator is

_pβ ¼ iℏrqβV qβ
� �

: ð23Þ

It is no longer the Hamilton’s equation with a real potential
energy. However, if we introduce a complex HamiltonianeH¼ − iℏH, then we may formally reobtain one of the conven-
tional Hamilton’s equations,

_pβ ¼ −rqeH: ð24Þ

In this case, the counterpart of eq. 6 may be chosen as
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q
:
β ¼ − iℏM−1pβ ¼rpeH: ð25Þ

As a consequence, the action Sβ becomes

Sβ ¼
ð− iℏβ

0
dt0

1
2
_qTt0Mq

:
t0 −V qt0ð Þ

� �

¼ iℏ
ðβ
0
dτ

1

2ℏ2
_qTτM _qτ + V qτð Þ

� �

¼ − iℏ
ðβ
0
dτ

1
2
pT
τM

−1pτ−V qτð Þ
� �

:

ð26Þ

Now it becomes clear that as time changes from the real to
the imaginary, the involved “classical” dynamics extends from
the real to the complex space. Here we should stress that this
result is a formal consequence of the starting ansatz eq. 21 and
its validity is a subtle issue. Before proceeding, we also like to
point out that if we begin with the position-coherent-state
semiclassical propagator or the HK propagator, the correspond-
ing eq. 19 that determines the equations of classical motion
will, upon setting t = − iℏβ, become

−
Γ
ℏ
_qβ−

i
ℏ

_pβ − iΓM−1pβ−rqβV qβ
� �¼ 0: ð27Þ

When real trajectories are required, we readily obtain
_qβ ¼ −ℏΓ−1rqβV qβ

� �
and _pβ ¼ −ℏΓM−1pβ , that is, the position

and momentum evolve independently. However, the equation
of the motion for the position is similar to that discussed in the
method of thermal Gaussian evolution.[32] Moreover, the

momentum assumes an analytic solution, pβ ¼ e−ℏΓM
−1βp. We

can go further to have the Bloch equation in the coherent-
state-position representation, as explained before for the real
time propagator. Unlike the corresponding Schrödinger equa-
tion, however, the so obtained Bloch equation denies a straight
semiclassical expansion (with ℏ being the small parameter).
Conversely, we could not find a position-coherent-state IVR
approximation with real dynamics for the Boltzmann operator.

Return to the PM-IVR. A complex trajectory, of course, is not
physically appealing. But it can fortunately be transformed into
a pair of real trajectories.[40,41] To this end, we decompose the

complex Hamiltonian eH and the trajectories (qβ, pβ) into real

and imaginary parts in such a way that eH¼H1 + iH2,
q¼ q1 + ip2, and p = p1 + iq2. It is straightforward to transform
a general Hamiltonian H = pT(2M)−1p + V(q) to the complex one

−iℏH and to obtain H1¼ℏpT
1M

−1q2 +ℏ V q1 + ip2ð Þð Þ. According
to the Hamilton’s equations and the Cauchy-Riemann condition,
we readily derive two pairs of new Hamilton’s equations,

q
:
1 2ð Þ ¼rp1 2ð Þ

eH1, ð28Þ

p
:
1 2ð Þ ¼ −rq1 2ð Þ

eH1, ð29Þ

where only the real (or imaginary) part of the complex Hamilto-
nian is needed. The stability matrix can be calculated similarly.
With the complex Hamiltonian a formal development for the
semiclassical approximation is straightforward and parallel to

what we have done for the real time UPM(t), which yields the
thermal density matrix

x0jρPM βð Þjxh i¼ 1

2πℏð ÞN=2
ð
dp det rppT

β

� �h i1=2
e

i
ℏ Sβ + x0 −xβð Þ�pβ½ �:

ð30Þ

Note that the classical evolution starts from real variables x and
p. Consequently, the integration in eq. 30 is carried out over the
real axis. However, the variables xβ and pβ become complex for
finite temperatures. This may cause a convergence problem in
numerical implementation because of the oscillatory integrand.
To reduce the difficulty, we can use hermicity of the Boltzmann

operator e−βĤ to have a symmetric version of eq. 30, namely

x0jρPM βð Þjxh i¼
ð
dq x0jρPM β=2ð Þjqh i qjρ†PM β=2ð Þjx� �

¼ 1

2πℏð ÞN
ð
dqdpdp det rppT

β=2

� �h i1=2
det rpp

T
β=2

� �*
� �1=2

e
i
ℏ



Sβ=2 −S

*
β=2 + x0−qβ=2ð Þ�pβ=2− x−qβ=2ð Þ�pβ=2

�
:

ð31Þ

Here, a pair of trajectories starting from (q, p) and q,pÞð ,
respectively, are launched and they evolve for a duration of
β/2, ending at (qβ/2, pβ/2) and ðqβ=2;pβ=2Þ with actions Sβ/2 and

Sβ=2. Compared to eq. 30, eq. 31 entails an integration in triple

dimensions.
We would like to point out a caveat in the PM-IVR approxi-

mation eq. 21 of the Boltzmann operator in which jpβi is implic-
itly assumed to be the eigenstate of the momentum operator.
This assumption may be questionable and needs to be further
scrutinized when pβ is complex. In Ref. [42], Zhao and Miller
suggested a semiclassical position representation for the
Boltzmann operator where the equation of motion is eqs. 23
and 25, but with a pure imaginary momentum variable qβ.
Although the position variable qβ is real in their scheme and it
is free from the conceptual problem to regard jqβi as the eigen-
state of the position operator, the integration with respect to p
is performed over the imaginary axis and one may notice that
the semiclassical approximation fails to produce the exact Boltz-
mann operator for the quantum harmonic oscillator.

Now, we show that the PM density operator leads to the clas-
sical Boltzmann distribution in the limit ℏ ! 0. To this end, we
should transform the PM operator into the Wigner function that
may be viewed as a quasi-distribution in quantum phase space
and demonstrate the latter gives the classical Boltzmann distri-
bution as ℏ! 0. Although eq. 30 is equally eligible, here eq. 31
is used to evaluate the Wigner distribution function of the
Boltzmann operator ρ, which is defined by

ρW qc ,pcð Þ� 1

2πℏð ÞN
ð
dre

i
ℏr�pc qc−

r
2
j ρjqc +

r
2

D E
: ð32Þ

Replacing ρ by ρPM, we may obtain the PM approximation for
the Wigner distribution, namely
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ρW ,PM qc ,pcð Þ� 1

2πℏð ÞN
ð
drdqe

i
ℏr�pc qc−

r
2
j

D
ρPM β=2ð Þjqi q j ρ†PM β=2ð Þjqc +

r
2

D E
:

ð33Þ

In the classical limit (ℏ ! 0), we readily work out the trajec-
tory and the action associated with the initial point (q, p), keep-
ing up to the first order in ℏ,

qβ=2¼q−
i
2
βℏM−1p,

pβ=2¼ p+
i
2
βℏrqV qð Þ,

and

Sβ=2¼ −
i
2
βℏ

1
2
pTM−1p−V qð Þ

� �
,

and that with the initial point q,pÞð . These relations and a
straightforward algebra allow us to obtain the following results

rppT
β=2≈ I,

rpp
T
β=2≈ I

and

Sβ=2−S
*
β=2 + qc−

r
2
−qβ=2

� �
�pβ=2− qc +

r
2
−qβ=2

� �
�pβ=2

¼ i
2
βℏ pTM−1p+pTM−1p

� �
+ iβℏV qð Þ+ qc−qð Þ

� p−p+ iβℏrqV qð Þ
 �
−
r
2
p+pÞ:ð

Inserting into the PM approximation eq. 31 and substituting
the result into eq. 33, we obtain

ρW ,PM qc ,pcð Þ¼ 1

2πℏð Þ2N
ð
dqdpdpδ

½pc−ðp+pÞ=2�ei
ℏ qc −qð Þ� p−p+ iβℏrqV qð Þ�


e−
1
4β pT M−1p+pT M−1pÞ−βV qð Þð ð34Þ

after finishing the integration over r. The remaining integration
can be completed by making of change of variables such asep1¼ p+ pÞ=2ð and ep2¼ p−pÞ=2ð , and the classical result
(ℏ! 0) is

ρW ,PM qc ,pcð Þ¼ e−
1
2βp

T
c M

−1pc −βV qcð Þ ¼ e−βH qc ,pcð Þ, ð35Þ

which is the classical Boltzmann distribution except for the
unconsidered normalization constant.

Harmonic Oscillator and Parabolic Barrier

We use the semiclassical imaginary-time propagator eq. 30 to
calculate the Boltzmann operator of the harmonic oscillator

defined by Ĥ¼ p̂2= 2mð Þ+mω2q̂2=2. In this case, one readily

obtains H1 = ℏq2p1/m + ℏmω2q1p2. As a consequence, the
equations of motion read

_q1¼ℏ
q2
m
, _q2¼ℏmω2q1,

_p1¼ −ℏmω2p2, _p2¼ −ℏ
p1
m
,

with the initial condition q1 = x, p1 = p, and q2 = p2 = 0. There lin-
ear differential equations assume the following analytic solutions

q1,β ¼ x cosh ℏωβð Þ, q2,β ¼mωx sinh ℏωβð Þ,

p1,β ¼ pcosh ℏωβð Þ, p2,β ¼ −p
sinh ℏωβð Þ

mω
,

and the corresponding action Sβ is

Sβ ¼ i
4mω

sinh 2ℏωβð Þ m2ω2x2−p2
� �

+ xpsinh2 ℏωβð Þ:

Inserting these results into eq. 30 and noticing that qβ = q1,β
+ ip2,β and pβ = p1,β + iq2,β, we readily carry out the integration
and obtain

x0jρPM βð Þjxh i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω

2πℏsinh ℏωβð Þ
r

exp −
mω

2ℏsinh ℏωβð Þ x2 + x02
� �

cosh ℏωβð Þ−2xx0
 �� 	
,

ð36Þ

which is exact.

For the parabolic barrier described by Ĥ¼ p̂2= 2mð Þ
−mω2q̂2=2, the corresponding trajectory and the action can be
calculated similarly,

q1,β ¼ x cos ℏωβð Þ, q2,β ¼ −mωx sin ℏωβð Þ,

p1,β ¼ pcos ℏωβð Þ, p2,β ¼ −p
sin ℏωβð Þ

mω
,

and

Sβ ¼ −
i

4mω
sin 2ℏωβð Þ m2ω2x2 + p2

� �
−xpsin2 ℏωβð Þ:

As these expressions are inserted into eq. 30, we find that
only if 2ℏωβ < π or β < π/(2ℏω), the integrand (of variable p) is
bounded, which gives a finite result for the integral over p,

x0jρPM βð Þjxh i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω

2πℏsin ℏωβð Þ
r

exp −
mω

2ℏsin ℏωβð Þ x2 + x02
� �

cos ℏωβð Þ−2xx0
h i� 	

:

ð37Þ

When β > π/(2ℏω), however, the integrand on the right-hand
side of eq. 30 is unbounded and the integral is divergent. This
means that the expression is no longer valid. To obtain the
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correct result in this case, we may resort to the Trotter expan-

sion[43] to divide β into K pieces such that β� β=K < π= 2ℏωð Þ
and for each imaginary time β, we can apply eq. 37.

Nonlinear Systems

To check the applicability of the semiclassical imaginary-time
propagator for nonlinear systems, we first investigate the one-
dimensional systems with the potential

V qð Þ¼ −
λ

2
q2 1−

λq2

8

� �
, ð38Þ

where λ is a parameter indicating a double-well system (λ = 1)
or a single-well one (λ = − 1).

For nonlinear systems, an analytic examination as we show
for the harmonic and parabolic potentials will be difficult and
tedious even if not impossible. Thus, we adopt an analysis for
the applicability of the method based on numerical solutions
for eqs. 26, 28, and 29. The simulations are done with a unit
mass m = 1. Further, the Planck constant ℏ is set to unit. We
first check the momentum dependence of the exponential fac-
tor in the integrand of eq. 30,

Wβ,x,x0 pð Þ¼ i Sβ + x0−xβ
� � �pβ
 � ð39Þ

which is essentially the regulated action determining the con-
vergence of the integration. Interestingly, the regulated action
Wβ,0,0(p) is real for systems with potential eq. 38. Figure 1
depicts these quantities in the calculation of the matrix element
h0| ρPM(β)| 0i at different temperatures for the single-well
potential in eq. 38 with λ = − 1. We observe that the regulated
action as a function of the initial momentum may be well-
approximated with a quadratic form at a temperature as high
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Figure 1. The regulated action i(Sβ − xβ pβ) as a function of the initial
momentum p for calculating the matrix element h0| ρPM(β)| 0i at different
temperatures. The potential is x2(1 + x2/8)/2 and all quantities are in
arbitrary unit. [Color figure can be viewed at wileyonlinelibrary.com]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5 0 2.5 5

(x
,x

)

x

(a) (b)

(c) (d)

(e) (f)

QM
SC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5  0  2.5  5

(x
,x

)

x

QM
SC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5  0  2.5  5

(x
,x

)

x

QM
SC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5  0  2.5  5

(x
,x

)

x

QM
SC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5  0  2.5  5

(x
,x

)

x

QM
SC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -2.5  0  2.5  5

(x
,x

)

x

QM
SC

Figure 2. The principal-diagonal matrix
elements of the density operator for the
potential V(x) = x2(1 + x2/8)/2 at different
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from 0.2 to 1.2 in step of 0.2. [Color figure can
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as 10, which corresponds to the results for a certain harmonic
oscillator. In calculating hx| ρPM(β)| xi(x 6¼ 0), the regulated
action assumes complex contributions, while its real part is still
of an approximately quadratic form. When temperature
decreases, the regulated action gradually deviates the quadratic
form and are no longer bounded when β ≥ 0.2. It indicates that,
strictly speaking, the integration in eq. 30 only converges for
β ≤ 0.2 when using the PM-IVR approximation. However, we
should keep in mind that the semiclassical method is only an
effective theory which works well for weak anharmonicities. For
a nonlinear and bounded system, a trajectory starting with a
larger momentum could reach the position with higher poten-
tial energy and feel a stronger effective nonlinearity. Conse-
quently, the semiclassical approximation may fail for a
trajectory with a large initial momentum.

However, the most significant population distribution locates
around the bottom part of the potential well. Because the aver-

age energy at equilibrium is Eeq¼ Ĥe−βĤ
D E

=Zβ , only the density

matrix elements hx| ρ(β)| xi with V(x) − V(xmin) < 2Eeq assume
significant values. Here, xmin is the position corresponding to
the minimum potential energy. As a result, we may obtain rea-
sonable approximations by integrating over the initial momen-

tum with the range −2
ffiffiffiffiffiffiffiffiffiffi
mEeq

p
, 2

ffiffiffiffiffiffiffiffiffiffi
mEeq

p
 �
instead of [−∞, ∞].

As we have used a harmonic approximation for the potential in
the derivation of the semiclassical propagator, we use the clas-
sical and harmonic approximation to Eeq, resulting in Eeq ≈ 1/β.
Thus, we can use the small momentum approximation for the
upper and the lower limits of the integration in eq. 30, namely,

replacing the integration range with −2
ffiffiffiffiffiffiffiffiffi
m=β

p
, 2

ffiffiffiffiffiffiffiffiffi
m=β

ph i
.

With this treatment, we may obtain reliable density operators
for lower temperatures. Calculated results for the full density
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Figure 3. Symmetric (left) and antisymmetric
(right) parts of the density matrix for the
potential V(x) = − x2(1 − x2/8)/2. From top to
bottom, β changes from 0.4 to 0.8 in step
of 0.2. [Color figure can be viewed at
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matrix reveal that the largest errors occur along the principal-
diagonal direction. Following Ref. [39], we will scrutinize the
principal diagonal hx| ρPM(β)| xi and the off-diagonal hx|
ρPM(β)| −xi matrix elements of the thermal density matrix. To
demonstrate the applicability at low temperatures, we show
the results for the principal-diagonal matrix elements of the
density operator in Figure 2. The matrix elements for the

regions beyond the two outmost points assume anomalous
results due to the convergence issue and are not shown in the
plots. The exact quantum mechanical calculations are also pre-
sented to verify the semiclassical approximation. One observes
that the semiclassical results agree well with the exact ones up
to β = 1.2 for the bottom part of the potential. It is also noticed
that the reliable range shrinks as the temperature decreases.
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The PM semiclassical propagator can be applied to systems
with stronger nonlinearity, for example, the double-well sys-
tems which serve as prototypes to describe the quantum
tunneling. Here, parameters λ = 1 is chosen for describing the
potential energy in eq. 38. In this case, there are two eigen-
states below the barrier height. When β is larger than three,
95% of the population is distributed among the two lowest
eigenstates. For this system, the initial-momentum dependence
of the regulated action behaves similarly with that depicted in
Figure 1. That is, the exponential factor in the integration of
eq. 30 becomes unbounded for β ≥ 0.2, and we should carefully
deal with the integration there. With the same argument and
treatment for the single-well potential, we may overcome this
limitation and obtain reliable results for lower temperatures.
The results for the principal diagonal and off-diagonal matrix
elements are presented in Figure 3. The deviations from the
exact results are small for β = 0.4. The differences become
larger for β = 0.6, but the maximum relative error is still less
than 7.5%. Even for a lower temperature of β = 0.8, we still can
obtain qualitative results for the density operator with the PM-
IVR approximation.

We further apply the PM-IVR approximation to the Eckart
potential

V xð Þ¼ V0 sech
2 x

a

� �
, ð40Þ

where V0 = 8/π and a¼ 3=
ffiffiffi
π
p

are the parameters controlling
the height and the width of the potential barrier, respectively.
Compared to the potentials with quadruple nonlinearity, the
regulated action for the Echart potential shows a different tem-
perature and initial-momentum dependence. Strictly speaking,
according to Figure 4 the integration to calculate h0| ρβ| 0i will
diverge for β ≥ 0.05. However, the restriction of the integration
range of the momentum yields reasonable results for lower
temperatures. As depicted in Figure 5, for β = 0.4 the PM-IVR
results agree well with the quantum mechanical ones. When
the temperature decreases, for example, β = 0.6, the semiclassi-
cal approximation only slightly deviates from the exact one for
a small top part of the potential and produces almost exact
results for the rest part. For an even lower temperature, β = 0.8,
the deviation around the top becomes bigger but is still accept-
able as a semiclassical approximation.

The good approximation of the density matrix at high tem-
peratures allows us to simulate the reaction rate for the barrier
crossing. Here, the rate constant will be calculated in light of
the side-side correlation function[44] defined as

Cs tð Þ¼ −Tr h − ŝð ÞeiĤt*c =ℏh ŝð ÞeiĤtc=ℏ
h i

,

or

Cs tð Þ¼
ð∞

0
ds
ð0
−∞

ds0 s0je− iĤtc=ℏjs
D E��� ���2,

where tc = t − iℏβ/2 and the h(q) is the Heaviside step function,
h(q) = 1 for q > 0 and h(q) = 0 for q < 0. With the partition

function Q of the reactant, the reaction rate constant k can be
computed according to

kQ¼ lim
t!∞

d
dt
Cs tð Þ:

When applying the PM semiclassical propagator, we may
choose a specific path for the complex time from tc = 0 to
tc = t − iℏβ/2. For simplicity, we let the time t0 first go from tc = 0
only on an imaginary clock to tm = −iℏβ/2 and then go only
on a real clock to tc = t − iℏβ/2 with fixed imaginary time.

The results for the reaction rate constants are presented in
Figure 6. Through the plots, we find that the PM-IVR approxima-
tion for both the imaginary- and real-time yields a rate close to
the exact one when β = 0.2. At lower temperatures, for example,
β = 0.4, the derivative of the side-side correlation function based
on the pure PM-IVR treatment does not approach to a plateau
for reading a reaction rate. To check the reason of the deviation
and to verify the applicability of the imaginary-time PM method,
we also show the results with a semiclassical propagation at the
imaginary time and a quantum mechanical evolution at the real
time. Figure 6 depicts that this hybrid approach gives identical
results to the pure quantum mechanical calculations both at
β = 0.2 and β = 0.4. Further simulations demonstrate that the
hybrid approach can provide reaction rate constants with errors
smaller than 5% up to β = 1.6. Supplemented to the above
results, we further perform the quasiclassical trajectory (QCT) sim-
ulations with the quantum mechanical density matrices. In the
QCT calculations, density matrix is transformed to the Wigner
function and the rate constant is calculated in the light of side-
side correlation function. The results show that the rate constants
calculated with the QCT method are significantly smaller than
the quantum mechanical results, which indicates the importance
of the quantum effect for the current Eckart potential model.

Summary

The semiclassical methods are powerful tools to approximate
the real-time dynamics and have been extended to the imagi-
nary time for calculating the Boltzmann operator. In developing
rigorous semiclassical approximations of the quantum Boltz-
mann operator, there are two important issues to hold, namely,
the recovery of the identity operator at the zero imaginary-time
and the exactness for the quantum harmonic oscillator. The
available approaches in the literature may fail to satisfy one or
the other requirement, which limits the applications of the
imaginary-time semiclassical approximations. In this article, we
have first derived a position-momentum and a mixed coherent-
state-position representation for the quantum propagator bas-
ing on the correction operator method. In the derivation, the
equations of motion for the classical dynamics are determined
by the condition of the vanishing first-order correction instead
of a set of preselected ones. The same reasoning has been
applied to derive a consistent semiclassical position-momentum
representation for the Boltzmann operator which produces the
identity operator at the zero imaginary-time. The suggested
semiclassical Boltzmann operator is exact for the quantum
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harmonic oscillator and correct for the quantum parabolic bar-
rier down to a critical temperature. Numerical simulations show
that the semiclassical approximation is reliable for high to inter-
mediate temperatures for nonlinear systems. Combined with
the real-time propagation, the obtained semiclassical Boltz-
mann operator can be used to calculate the reaction rate con-
stants of chemical reactions.
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