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An efficient and accurate method for computing the equilibrium reduced density matrix is
presented for treating open quantum systems characterized by the system-bath model. The
method employs the multilayer multiconfiguration time-dependent Hartree theory for imag-
inary time propagation and an importance sampling procedure for calculating the quantum
mechanical trace. The method is applied to the spin-boson Hamiltonian, which leads to ac-
curate results in agreement with those produced by the multi-electronic-state path integral
molecular dynamics method.
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I. INTRODUCTION

A challenging issue in theoretical chemistry is the
accurate description of many-body quantum effects
for complex systems. Some methods are “numeri-
cally exact” in principle, e.g., approaches that solve
Schrödinger equations or quantum Liouville equations,
or approaches employing Feynman path integral formal-
ism. However, not all these methods give reliable results
in practice. The primary difficulty is the rapid growth
of the size of the Hilbert space (or Liouville space) as
the number of degrees of freedom increases, which ren-
ders a brute-force approach (complete quadrature or full
configuration-interaction) impractical. One thus needs
to seek some smart algorithms to efficiently explore the
relevant subspace in which the solution, though approx-
imate, essentially converges to the true result. If a
method fails to find (all or part of) such subspace, it
will not give correct results even if this algorithm is
based on an exact principle. Therefore, the develop-
ment and testing of reliable numerically exact methods
is essential to obtaining truly accurate results.

The class of problems we would like to investigate
in this work is represented by the system-bath type
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of Hamiltonian, e.g. many models in condensed phase
physics and chemistry for describing open quantum sys-
tems. Techniques developed to solve this class of prob-
lems include, but are not limited to, the numerical path
integral approach [1–5], the numerical renormalization
group method [6–8], the hierarchical equation of motion
method [9–14], and the multilayer multiconfiguration
time-dependent Hartree (ML-MCTDH) theory [15–17].
Different from approximate approaches such as quan-
tum perturbation theories or semiclassical methods, nu-
merically accurate simulations on these model systems
serve the same role as experiments, which is often the
first step in developing a reliable, general theory for de-
scribing the underlying physical processes.

In a system-bath model, the latter represents the en-
vironment that influences the dynamics or thermody-
namics of the former. Within linear response approx-
imation the environment can often be modeled by a
harmonic bath that is coupled linearly to the system
[18, 19]. This makes it possible to integrate out the bath
completely and concentrate only on the system dynam-
ics. The price paid for this reduction is that the influ-
ence functionals or relevant kernels are nonlocal in time,
which makes the study prohibitively expensive when the
system becomes large. A complementary strategy is to
represent the bath by discrete degrees of freedom, i.e.,
the same way as in a discrete numerical quadrature.
One converges the dynamics/thermodynamics for this
finite system-bath composite system by increasing the
number of bath modes. The ML-MCTDH theory [15–
17] employed in this work adopts such a strategy. As an
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added bonus, methods that belong to this group are of-
ten applicable to treating anharmonic baths and other
types of potential energy functions. The practicality of
the ML-MCTDH method lies on its efficient exploration
of the Hilbert subspace, which is achieved by using a
flexible tensor contraction scheme (vide infra).

The purpose of this paper is to present our implemen-
tation of the ML-MCTDH theory to evaluate equilib-
rium reduced density matrix (ERDM) for the system-
bath model and compare the results to those obtained
by the multi-electronic-state path integral molecular dy-
namics (MES-PIMD) approach [20]. The ML-MCTDH
work is a generalization of the previous work on cal-
culating energy eigenstates and other thermodynamic
quantities [21–25]. In Section II we will summarize the
ML-MCTDH theory, followed by a discussion on prac-
tical calculations of ERDM in Section III. Then we will
provide in Section IV a brief introduction to the recently
developed MES-PIMD approach [20]. In Section V we
will present examples on the spin-boson model. Finally,
we conclude with an outlook to future extensions.

II. VARIATIONAL APPROACH TO QUANTUM
DYNAMICS: FROM CONVENTIONAL METHOD TO
ML-MCTDH

A. Conventional approach using static configurations

The numerical solution of the time-dependent
Schrödinger equation using basis sets can be achieved
by employing Dirac-Frenkel variational principle [26] (in
this paper we use atomic units in which ~=1)

⟨δΨ(t)|i ∂
∂t
− Ĥ|Ψ(t)⟩ = 0 (2.1)

In conventional methods the wave function is ex-
pressed as a linear combination of time-independent
configurations

|Ψ(t)⟩ =
∑
j1

∑
j2

...
∑
jf

Aj1j2...jf (t)

f∏
ν=1

|ϕ(ν)
jν
⟩

≡
∑
J

AJ(t)|ΦJ ⟩ (2.2)

where J is a multi-dimensional index that runs through
all the combinations of basis functions ϕ(ν) over ν=1,
2, ..., f -degrees of freedom. If for each degree of free-

dom ν the basis functions ϕ
(ν)
n ’s are orthonormal, the

equations of motion are obtained upon substitution of
Eq.(2.1)

iȦJ(t) = ⟨ΦJ |Ĥ|Ψ(t)⟩ =
∑
L

⟨ΦJ |Ĥ|ΦL⟩AL(t) (2.3)

In this brute-force, full configuration interaction (CI)
approach, the number of expansion terms grows expo-
nentially with respect to the number of degrees of free-
dom.

The limitation of the simple expansion scheme in
Eq.(2.2) is due to its unbiased exploration of the en-
tire Hilbert space, which can be demonstrated by con-
sidering a special case where f degrees of freedom are
completely separable. In this case the solution of the
time-dependent Schrödinger equation is given by a di-

rect or Hartree product, |Ψ(t)⟩=
∏f

ν=1 |φ(ν)(t)⟩. How-
ever, even for this uncorrelated case, the expansion in
Eq.(2.2) still requires exponentially many terms, sug-
gesting that most parameters are redundant. That is,
the fact that tensor A with nf terms in the full CI ex-
pansion can be contracted to n×f terms is completely
ignored in Eq.(2.2).

Thus, it is natural to consider a more flexible ap-
proach to describing the dynamics in a reduced, but
nonetheless numerically converged, parameter space.
One may start from the single Hartree description for
the completely uncorrelated dynamics above and grad-
ually build in more time-dependent configurations as
correlation becomes stronger. This is the multicon-
figuration time-dependent Hartree (MCTDH) approach
proposed by Meyer, Manthe, and Cederbaum [27–30].

B. The multiconfiguration time-dependent Hartree
method

Within the MCTDH method the wave function has
the form [27–30]

|Ψ(t)⟩ =
∑
j1

∑
j2

...
∑
jp

Aj1j2...jp(t)

p∏
κ=1

|φ(κ)
jκ

(t)⟩ (2.4)

where the summation is over all combinations of the sin-
gle particle functions (SPFs) |φ(κ)

jκ
(t)⟩ for κ=1, 2, ..., p.

This tensor decomposition is usually called the Tucker
form [31] or N-way singular value decomposition (SVD)
in mathematics, which finds a wide range of applica-
tions [32] apart from MCTDH. One may impose the
orthogonality condition

⟨φ(κ)
n (t)|φ(κ)

m (t)⟩ = δnm (2.5)

via the standard gauge condition

⟨φ(κ)
n (0)|φ(κ)

m (0)⟩= δnm (2.6a)⟨
φ(κ)
n (t) | ∂

∂t
φ(κ)
m (t)

⟩
≡
⟨
φ(κ)
n (t) | φ̇(κ)

m (t)
⟩

=0 (2.6b)

Variations then lead to two sets of coupled MCTDH
equations of motion [27–30]

iȦJ(t)=
⟨
ΦJ (t)

∣∣∣Ĥ∣∣∣Ψ(t)
⟩

=
∑
L

⟨
ΦJ (t)

∣∣∣Ĥ∣∣∣ΦL(t)
⟩
AL(t) (2.7a)

i|φ̇(κ)(t)⟩= [1− P̂ (κ)(t)]

[ρ̂(κ)(t)]−1⟨Ĥ⟩(κ)(t)|φ(κ)(t)⟩ (2.7b)
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Eq.(2.7a) bears some similarity to Eq.(2.3), except

that the Hamiltonian matrix HJL(t)≡⟨ΦJ (t)|Ĥ|ΦL(t)⟩
is now time-dependent. Eq.(2.7b) describes the time-
dependence of the SPFs that does not appear in the
conventional method. Other quantities are defined as

follows: |φ(κ)(t)⟩={|φ(κ)
1 (t)⟩, |φ(κ)

2 (t)⟩, ...}T denotes the
symbolic column vector of the SPFs for the κth single
particle group, ⟨Ĥ⟩(κ)(t) denotes the mean-field opera-
tor, ρ̂(κ)(t) is the reduced density matrix,

⟨Ĥ⟩(κ)nm(t)= ⟨Ψ(κ)
n (t)|Ĥ|Ψ(κ)

m (t)⟩ (2.8a)

ρ(κ)nm(t)= ⟨Ψ(κ)
n (t)|Ψ(κ)

m (t)⟩ (2.8b)

and P (κ)(t) is the single particle space projector for the
κth single particle group,

P (κ)(t) =
∑
m

|φ(κ)
m (t)⟩⟨φ(κ)

m (t)| (2.9)

In the expressions above, the single hole function

|Ψ(κ)
n (t)⟩ for the κth single particle group is defined as

|Ψ(κ)
n (t)⟩ =

∑
j1

...
∑
jκ−1

∑
jκ+1

...
∑
jp

(
Aj1...jk−1njk+1...jp(t)

p∏
λ̸=κ

|φ(λ)
jλ

(t)⟩
)

(2.10a)

so that

|Ψ(t)⟩ =
∑
n

|φ(κ)
n (t)⟩|Ψ(κ)

n (t)⟩ (2.10b)

The expansion in the MCTDH approach, Eq.(2.4),
resembles the full CI expression in Eq.(2.2), i.e., the to-
tal number of time-dependent configurations still scales
exponentially versus the total number of single particle
groups p. However the MCTDH method is applica-
ble to more complex systems for two reasons: (i) the
base of the exponential in the MCTDH approach, i.e.
the number of physically important SPFs, is usually
much smaller than the number of time-independent ba-
sis functions in the conventional approach; and (ii) each
single particle group may contain several physical de-
grees of freedom so that the number of the single parti-
cle groups (p) is usually much less than the number of
physical degrees of freedom (f). The method recovers
the single Hartree limit naturally for separable systems
and systematically requires more configurations as cor-
relation effects become more important.

The main limitation of the MCTDH approach out-
lined above lies in its way of constructing the SPFs,
which is based on another full CI expansion employing
the static Hartree products in the single particle sub-

space

|φ(κ)
n (t)⟩=

∑
I

Bκ,n
I (t)|uκ

I ⟩

≡
∑
i1

∑
i2

...
∑
iF (κ)

Bκ,n
i1i2...iF (κ)

(t)

F (κ)∏
q=1

|ϕκ,q
iq
⟩

(2.11)

The ML-MCTDH theory [15] successfully circumvents
this bottleneck by using a hierarchical, dynamic con-
traction of the basis functions that constitute the orig-
inal SPFs. This gives a flexible representation of the
overall wave function and significantly increases the
number of degrees that can be treated.

C. Multilayer multiconfiguration time-dependent Hartree
theory

To begin with, the SPFs |φ(κ)
jκ

(t)⟩ in MCTDH can
again be cast into a time-dependent multiconfiguration
expansion

|φ(κ)
n (t)⟩=

∑
I

Bκ,n
I (t) |uκ

I (t)⟩

≡
∑
i1

∑
i2

...
∑
iQ(κ)

Bκ,n
i1i2...iQ(κ)

(t)

Q(κ)∏
q=1

|v(κ,q)iq
(t)⟩

(2.12)

For notation purpose we refer to the single particles in-
troduced in the previous MCTDH section as the level
one (L1), which in turn contains several level two (L2)

single particles. An L1-SPF |φ(κ)
n (t)⟩ is expanded in

the time-dependent L2-SPFs as in Eq.(2.12). The ex-
pansion of a two-layer ML-MCTDH wave function can
thus be written in the form

|Ψ(t)⟩=
∑
j1

∑
j2

...
∑
jp

Aj1j2...jp(t)

p∏
κ=1

[∑
i1

∑
i2

...

∑
iQ(κ)

Bκ,jκ
i1i2...iQ(κ)

(t)

Q(κ)∏
q=1

|v(κ,q)iq
(t)⟩

 (2.13)

for which Dirac-Frenkel variational principle can be
split into

⟨δΨ(t)|i ∂
∂t
− Ĥ|Ψ(t)⟩top coefficients = 0 (2.14a)

⟨δΨ(t)|i ∂
∂t
− Ĥ|Ψ(t)⟩L1 SPFs = 0 (2.14b)

⟨δΨ(t)|i ∂
∂t
− Ĥ|Ψ(t)⟩L2 SPFs = 0 (2.14c)

The first two parts give equations that are in the same
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form as Eqs. (2.7a) and (2.7b),

iȦJ(t) =
∑
L

⟨
ΦJ(t)

∣∣∣Ĥ∣∣∣ΦL(t)
⟩
AL(t) (2.15a)

i|φ̇(κ)(t)⟩L2 coefficients = [1− P̂ (κ)(t)][ρ̂(κ)(t)]−1

⟨Ĥ⟩(κ)(t)|φ(κ)(t)⟩ (2.15b)

Here, the symbolic notation on the left hand side of
Eq.(2.15b) means that the time derivative of the L1-
SPFs is only taken with respect to the L2 expansion
coefficients Bκ,n

I and does not act on the L2 config-

uration |uκ
I (t)⟩=

Q(κ)∏
q=1

|v(κ,q)iq
(t)⟩ in Eq.(2.12). In ML-

MCTDH the configurations |ΦJ(t)⟩, the Hamiltonian

matrix HJL(t)=⟨ΦJ(t)|Ĥ|ΦL(t)⟩, the L1 mean-field op-

erator ⟨Ĥ⟩k(t), and the L1-SPFs |φ(κ)(t)⟩, all depend
on the L2-SPFs |v(κ,q)iq

(t)⟩. These quantities need to be

built explicitly from the bottom layer SPFs and basis
functions.

Variation with respect to the L2-SPFs leads to an
expression similar to Eq.(2.15b)

i|v̇(κ,q)(t)⟩ = [1− P̂
(κ,q)
L2 (t)][ϱ̂(κ,q)(t)]−1

⟨Ĥ⟩(κ,q)(t)|v(κ,q)(t)⟩ (2.16)

Again |v(κ,q)(t)⟩={|v(κ,q)1 (t)⟩, |v(κ,q)2 (t)⟩, ...}T denotes
the symbolic column vector of (the coefficients of) the

L2-SPFs and P̂
(κ,q)
L2 (t)≡

∑
l

|v(κ,q)l (t)⟩⟨v(κ,q)l (t)| the pro-

jection operator in the L2-SP space. The second layer
reduced density matrix and mean-field operator are
given with the aid of the second layer hole functions
defined by

|φk
n(t)⟩ =

∑
r

|v(κ,q)r (t)⟩ |g(κ,q)n,r (t)⟩ (2.17)

and the first layer reduced density matrix and mean-
field operator in Eq.(2.8). The expressions are

ϱ(κ,q)rs (t)=
∑
n

∑
m

ρ(κ)nm(t)⟨g(κ,q)n,r (t)|g(κ,q)m,s (t)⟩ (2.18a)

⟨Ĥ⟩(κ,q)rs (t)=
∑
n

∑
m

⟨g(κ,q)n,r (t)|⟨Ĥ⟩(κ)nm(t)|g(κ,q)m,s (t)⟩

(2.18b)

The two-layer ML-MCTDH, Eqs. (2.15a), (2.15b),
and (2.16), can be recursively generalized to include
an arbitrary number of layers by expanding the overall

wave function via a hierarchical tensor contraction

|Ψ(t)⟩=
∑
j1

∑
j2

...
∑
jp

Aj1j2...jp(t)

p∏
κ=1

|φ(κ)
jκ

(t)⟩

(2.19a)

|φ(κ)
jκ

(t)⟩=
∑
i1

∑
i2

...
∑
iQ(κ)

(
Bκ,jκ

i1i2...iQ(κ)
(t) ·

Q(κ)∏
q=1

|v(κ,q)iq
(t)⟩
)

(2.19b)

|v(κ,q)iq
(t)⟩ =

∑
α1

∑
α2

...
∑

αM(κ,q)

(
Cκ,q,iq

α1α2...αM(κ,q)
(t) ·

M(κ,q)∏
γ=1

|ξ(κ,q,γ)αγ
(t)⟩
)

(2.19c)

...

and the equations of motion can be derived by the same
way as above for the two layer case using mathematical
induction and they all have the same form [15–17]. The
multilayer hierarchy is terminated at a particular level
by expanding the SPFs in the deepest layer in terms of
time-independent configurations.

The introduction of the recursive, dynamically opti-
mized layering scheme in the ML-MCTDH wave func-
tion provides a great deal of flexibility in the trial wave
function, which results in a tremendous gain in one’s
ability to study large many-body quantum systems.
This is demonstrated by many applications on simulat-
ing quantum dynamics of ultrafast electron transfer re-
actions in condensed phases [33–49]. The ML-MCTDH
work of Manthe has introduced an even more adap-
tive formulation based on a layered correlation discrete
variable representation [21, 50]. The form of the ML-
MCTDH wave function in Eq.(2.19) has also received
much attention recently in applied mathematics [51].

III. CALCULATING EQUILIBRIUM REDUCED
DENSITY MATRIX FOR THE SYSTEM-BATH MODEL
USING ML-MCTDH

The applicability of ML-MCTDH theory is not lim-
ited to real time quantum dynamics. By a trivial ex-
tension to imaginary time τ=−it, ML-MCTDH can be
used to evaluate the Boltzmann operator [35], thermal
rate constant [52, 53], or eigenstates of the Hamiltonian
[25]. Here we describe a procedure for calculating equi-
librium reduced density matrix (ERDM) for the system-
bath model.

Starting from the generic Hamiltonian

H = HS +HB +HSB (3.1)

where HS is the Hamiltonian for the system, HB for the
bath, and HSB for the system-bath coupling. ERDM ρ̂β
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is defined by tracing out the bath from the Boltzmann
operator

ρβnm =
1

ZB
tr[e−βĤ |n⟩⟨m|] (3.2a)

ZB =tr[e−βĤB ] (3.2b)

Here β=1/kBT , and |n⟩ denotes the basis states for the
system, i.e.

ρ̂β ≡
∑
n

∑
m

|n⟩ρβnm⟨m| (3.3a)

ĤS≡
∑
n

∑
m

|n⟩ϵnm⟨m| (3.3b)

Once ERDM is obtained, other relevant quantities can
also be derived. For example, the system partition func-
tion

Zs = tr[ρ̂β ] =
∑
n

ρβnn =
Z

ZB
(3.4)

with the total partition function

Z = tr[e−βĤ ] (3.5)

the system internal energy

Us = −
∂lnZs

∂β
= ⟨H⟩β − ⟨HB⟩β (3.6)

with the internal energies

⟨H⟩β =
1

Z
tr[e−βĤĤ] (3.7a)

⟨HB⟩β =
1

ZB
tr[e−βĤBĤB] (3.7b)

It should be emphasized that as long as the interaction
between the system and the bath does not vanish, it is
not possible to separate the “system” unambiguously
from the “bath” thermodynamically. The above defini-
tion is a subjective classification that is often used in
qualitative analysis.

Practical evaluation of ERDM and other properties
employs ML-MCTDH for the imaginary time prop-
agation and an importance sampling procedure for
Eq.(3.2). To do so we first introduce a zeroth-order
Hamiltonian H0 that can be diagonalized either analyt-
ically or numerically

e−βĤ0 =
∑
α

e−βEα |χα⟩⟨χα| (3.8)

and insert it into the ERDM expression Eq.(3.2)

ρβnm =
1

ZB
tr[e−βĤ |n⟩⟨m|]

=
1

ZB
tr[e−βĤ0 eβĤ0/2e−βĤ/2|n⟩⟨m|e−βĤ/2eβĤ0/2]

=
Z0

ZB

1

Z0

∑
α

(
e−βEα⟨χα|e−β(Ĥ−Eα)/2

|n⟩⟨m|e−β(Ĥ−Eα)/2|χα⟩
)

(3.9)

where we have defined the partition function

Z0 = tr[e−βĤ0 ] (3.10)

The quantummechanical trace in Eq.(3.2) is obtained
from importance sampling according to the weighting
function e−βEα/Z0 which is defined by a zeroth-order
Hamiltonian H0. The choice of H0 is flexible as long as
it is not too far away from H and can be diagonalized.
For the system-bath Hamiltonian, an often good choice
is H0=HS+HB. Sometimes it is also useful to define H0

in a more localized region to enhance the importance
sampling [52]. Once the initial state |χα⟩ is selected, it
is propagated in the imaginary time via ML-MCTDH

to give e−β(Ĥ−Eα)/2|n⟩. The final ERDM is calculated
according to Eq.(3.9).

IV. MULTI-ELECTRONIC-STATE PATH INTEGRAL
MOLECULAR DYNAMICS

The recently developed multi-electronic-state path
integral molecular dynamics (MES-PIMD) approach
[20] in principle offers a practical tool in either of the
diabatic or adiabatic representations for studying exact
quantum statistics of general MES systems when the
Born-Oppenheimer approximation, Condon approxima-
tion, and harmonic bath approximation break down.
The MES-PIMD approach employs a unified efficient
thermostat scheme (the “middle” scheme) for PIMD (or
MD) which applies to either stochastic or deterministic
thermostats [53–57].

A. Imaginary time path integral formulation for
multi-electronic-state systems

Consider a Hamiltonian with N electronic states in
the diabatic representation Ĥ=T̂+ V̂, where V̂=V(R̂)
is the N×N symmetric potential energy matrix as a
function of the nuclear coordinate R and T̂ the (diag-
onal) kinetic energy matrix. The canonical partition
function is

Z = trne[e
−βĤ] (4.1)

and a specific physical property of interest is

⟨B̂⟩ = 1

Z
trne[e

−βĤB̂] (4.2)

In Eq.(4.1) and Eq.(4.2) the trace is over both the nu-
clear and electronic degrees of freedom. That is,

tre[B̂] =

N∑
n=1

⟨n|B̂|n⟩ (4.3)

and

trn[B̂] =

∫
dR⟨R|B̂|R⟩ (4.4)
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Inserting the resolution of the identity into Eq.(4.1)
yields

Z = lim
P→∞

∫
dR1...dRP

N∑
n1,··· ,nP=1

P∏
i=1

⟨Ri, ni|e−βĤ/P |Ri+1, ni+1⟩ (4.5)

Eq.(4.5) then becomes

Z = lim
P→∞

∣∣∣∣ PM

2πβ~2

∣∣∣∣P/2 ∫
dR1...dRP

exp

[
−β

2
ω2
P

P∑
i=1

(Ri −Ri+1)
TM(Ri −Ri+1)

]

×Tre

[
P∏
i=1

O(Ri)
TO(Ri)

]
(4.6)

where O(Ri) depends on the splitting scheme used for

expressing the element ⟨Ri, ni|e−βĤ/P |Ri+1, ni+1⟩ in
Eq.(4.5). We have proposed three splitting schemes,
namely the “diagonalization”, “first-order expansion”,
and “hyperbolic function” methods, the details of which
are described in Ref.[20].

Because Tre

[
P∏
i=1

O(Ri)
TO(Ri)

]
is often not

positive-definite for general MES systems, regard-
less of which splitting scheme is employed. It
is then not numerically favorable to use either

Tre

[
P∏
i=1

O(Ri)
TO(Ri)

]
or its absolute value to

define an effective (real-valued) potential function
ϕ(R1, · · · ,RP ) for performing PIMD. A reasonable
way to define the effective potential [20] is

e−βϕ(dia)(R1,··· ,RP ) = Tre

[
P∏
i=1

e−βVdiag(Ri)/P

]
(4.7)

because the right-hand side (RHS) of Eq.(4.7) is always
positive-definite. Here Vdiag(R) is a diagonal matrix,
the diagonal elements of which are the same as those
of the potential energy matrix V(R). The partition
function (Eq.(4.6)) may then be evaluated by

Z = lim
P→∞

∣∣∣∣ PM

2πβ~2

∣∣∣∣P/2 ∫
dR1...dRP

exp
[
−βU (dia)

eff (R1, · · · ,RP )
]
Z̃(dia)(R1, · · · ,RP )

(4.8)

with the estimator for the partition function

Z̃(dia)(R1, · · · ,RP ) =

Tre

[
P∏
i=1

O(Ri)
TO(Ri)

]

Tre

[
P∏
i=1

e−βVdiag(Ri)/P

] (4.9)

and

U
(dia)
eff (R1, · · · ,RP ) =

1

2
ω2
P

P∑
i=1

(Ri −Ri+1)
T ·

M(Ri −Ri+1) + ϕ(dia)(R1, · · · ,RP )(4.10)

Any physical property in Eq.(4.2) can be expressed
as

⟨B̂⟩= lim
P→∞

A
B

(4.11)

A=

∫
dR1...dRP exp

[
−βU (dia)

eff (R1, · · · ,RP )
]

B̃(dia)(R1, · · · ,RP )

B=
∫

dR1...dRP exp
[
−βU (dia)

eff (R1, · · · ,RP )
]

Z̃(dia)(R1, · · · ,RP )

with B̃(dia)(R1, · · · ,RP ) as the estimator for operator

B̂ in the diabatic representation

B̃(dia)(R1, · · · ,RP ) =
C

Tre

[
P∏
i=1

e−βVdiag(Ri)/P

] (4.12)

C = 1

P
Tre

{
P∑

k=1

[(
k−1∏
i=1

O(Ri)
TO(Ri)

)
O(Rk)

TB(Rk)

O(Rk)

(
P∏

i=k+1

O(Ri)
TO(Ri)

)]}
For instance, the estimator for the potential energy

is

B̃(dia)(R1, · · · ,RP ) =
D

Tre

[
P∏
i=1

e−βVdiag(Ri)/P

] (4.13)

D =
1

P
Tre

{
P∑

k=1

[(
k−1∏
i=1

O(Ri)
TO(Ri)

)
O(Rk)

TV(Rk)

O(Rk)

(
P∏

i=k+1

O(Ri)
TO(Ri)

)]}
and that for the electronic state density matrix element
in the diabatic representation ρdsij is

ρ̃
(dia-ds)
ij (R1, · · · ,RP ) =

E

Tre

[
P∏
i=1

e−βVdiag(Ri)/P

]
(4.14)

E =
1

P
Tre

{
P∑

k=1

[(
k−1∏
i=1

O(Ri)
TO(Ri)

)
O(Rk)

Tρ
(ds)
ij

O(Rk)

(
P∏

i=k+1

O(Ri)
TO(Ri)

)]}
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where

ρ
(ds)
ij =

1

2
(|i⟩⟨j|+ |j⟩⟨i|) (4.15)

with |i⟩ and |j⟩ as the i-th and j-th electronically dia-
batic states in the representation for the Hamiltonian
Ĥ.

B. Multi-electronic-state path integral molecular
dynamics

One may employ the MD or Monte Carlo scheme to
perform the integrals in Eq.(4.11). Inserting fictitious
momenta (p1, · · · ,pP ) into each integral of Eq.(4.11)
produces

⟨B̂⟩= lim
P→∞

F
G

(4.16)

F =

∫
dR1...dRP

∫
dp1...dpP exp

[
−βH(dia)

eff

(R1, · · · ,RP ;p1, · · · ,pP )
]
B̃(dia)(R1, · · · ,RP )

G=
∫

dR1...dRP

∫
dp1...dpP exp

[
−βH(dia)

eff(
R1, · · · ,RP ; p1, · · · ,pP )

]
Z̃(dia)(R1, · · · ,RP )

where the effective Hamiltonian for Eq.(4.16) is

H
(dia)
eff (R1, · · · ,RP ;p1, · · · ,pP ) =

1

2

P∑
j=1

pT
j M̃

−1
j pj + U

(dia)
eff (R1, · · · ,RP ) (4.17)

with the fictitious masses M̃j . It is trivial to ver-
ify that Eq.(4.16) is identical to Eq.(4.11) by perform-
ing the Gaussian integral over the fictitious momenta
(p1, · · · ,pP ) in the former. Thus the MES-PIMD equa-
tions of motion are given by

Ṙj = M̃−1
j pj

ṗj = −
∂U

(dia)
eff (R1, · · · ,RP )

∂Rj
(j = 1, · · · , P )

(4.18)

Note that Eq.(4.18) must be coupled to a thermostat-
ing method to ensure a proper canonical distribution.
For many thermostats, the integration in one time step
∆t can be split into three parts [20, 53–57], the steps for
updating coordinates, momenta, and thermostat, de-
noted as “R”, “p”, and “T”, respectively. In this case
the “equations of motion” may be expressed as[

dR
dp

]
=

[
M̃−1p

0

]
dt︸ ︷︷ ︸

R

+

[
0

−∇RU
(dia)
eff (R)

]
dt︸ ︷︷ ︸

p

+
[
thermostat

]︸ ︷︷ ︸
T

(4.19)

For convenience we denote R≡(R1, · · · ,RP ) and
p≡(p1, · · · ,pP ) in Eq.(4.19) and thereafter in this sec-
tion.

A useful approach is to employ the forward Kol-
mogorov equation to express the evolution of the density
distribution in the phase space [20, 53–57] P(R,p).

∂

∂t
P =LP

=(LR + Lp + LT)P
(4.20)

The relevant Kolmogorov operators for the 1st and 2nd
terms of the RHS are

LRP =−pTM̃−1∇RP (4.21)

LpP =∇RU
(dia)
eff (R) · ∇pP (4.22)

respectively. The definition of LT depends on the spe-
cific thermostat. The phase space propagators for a
time interval ∆t for the three parts are eLR∆t, eLp∆t,
and eLT∆t, respectively.

The propagation in each time step with the velocity
Verlet (VV) algorithm in the “middle” scheme [20, 53–
57] reads

eL∆t ≈ eLp∆t/2eLR∆t/2eLT∆teLR∆t/2eLp∆t/2 (4.23)

The phase space propagator for the thermostat part
eLT∆t is designed in the middle of the propagation. The
numerical algorithm for Eq.(4.23) is

Update momenta for half a step:

p← p−
∂U

(dia)
eff

∂R

∆t

2
Update coordinates for half a step:

R← R+ M̃−1p
∆t

2

Thermostat for a full time step: thermostat step

Update coordinates for another half step:

R← R+ M̃−1p
∆t

2
Update momenta for another half step:

p← p−
∂U

(dia)
eff

∂R

∆t

2

where thermostat step represents the thermostat pro-
cess for a time interval ∆t, which is determined ac-
cording to the stochastic or deterministic thermostat
method of choice [20, 53–57].

Note that PIMD with the “middle” thermostat
scheme is often more efficiently performed by employ-
ing the staging transformation of path integral beads
[20, 53, 55] or the normal-mode transformation [59].

In the present paper we use the MES-PIMD approach
[20] in the way that takes no advantage of the specific
form of the system-bath model. It should be stressed
that one could design a much more efficient method for
performing MES-PIMD when the Condon approxima-
tion and harmonic-bath approximation are valid.
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V. NUMERICAL EXAMPLE: THE SPIN-BOSON
MODEL

A. Model

We consider practical application of our method to
the spin-boson model that has been widely used in the
context of electron transfer theory [60, 61]. This is a
relatively simple system-bath type Hamiltonian where
the system comprises only two electronic states (|ϕ1⟩
and |ϕ2⟩) that are linearly coupled to a bath of har-
monic oscillators. Using mass-weighted coordinates the
Hamiltonian reads

H = −ϵσz +∆σx +
1

2

N∑
j=1

(p2j + ω2
j q

2
j ) + σz

N∑
j=1

cjqj (5.1)

where σx and σz are Pauli matrices

σx = |ϕ1⟩⟨ϕ2|+ |ϕ2⟩⟨ϕ1| (5.2a)

σz = |ϕ1⟩⟨ϕ1| − |ϕ2⟩⟨ϕ2| (5.2b)

The properties of the bath that influence the dynamics
of the two-state subsystem are specified by the spectral
density function [60, 61]

J(ω) =
π

2

∑
j

c2j
ωj

δ(ω − ωj) (5.3)

Different forms of J(ω) provide different models of the
phonon bath. In the examples below we use two forms:
an Ohmic (linear) spectral density with an exponential
cutoff

J(ω) = ηω e−ω/ωc (5.4a)

and an Ohmic spectral density with a Lorentzian cutoff

J(ω) = ηω
1

1 +

(
ω

ωc

)2 (5.4b)

where η is the dimensionless system-bath coupling
strength and ωc is the cutoff frequency of the bath.
The continuous bath spectral density of Eq.(5.4) can
be discretized to the form of Eq.(5.3) via the relation
[15, 62]

c2j =
2

π
ωj

J(ωj)

ρ(ωj)
(5.5)

in which the density of frequencies ρ(ω) is defined from
the integral relation∫ ωj

0

dω ρ(ω) = j, j = 1, ..., N (5.6a)

In this work, ρ(ω) is chosen as

ρ(ω) = s
J(ω)

ω
(5.6b)

FIG. 1 Equilibrium reduced density matrix for a spin-boson
model. An Ohmic spectral density with an exponential
cutoff is employed. The parameters are: ϵ=∆=60 cm−1,
ωc=100 cm−1, and η=0.3. The lines are intended as guide
to the eye.

with Eq.(5.6a) enforced to obtain the scaling factor
s. To model the condensed phase environment in the
ERDM simulation, the number of bath modes N in the
discretization is a convergence parameter and needs to
be sufficiently large to represent the continuum for the
property of interest. In this work N has been chosen in
the range of a few tens to a few hundred. This number
is somewhat smaller than a normal quantum dynamics
simulation on a similar spin-boson model, suggesting
ERDM is easier to converge than the real time quan-
tum dynamics.

B. Results

We first consider a model for an Ohmic spectral den-
sity with an exponential cutoff, Eq.(5.4a). The pa-
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rameters are given as: ϵ=∆=60 cm−1 in Hamiltonian
(Eq.(5.1)), ωc=100 cm−1 and η=0.3 in spectral density
(Eq.(5.4a)). FIG. 1 shows all the elements of ERDM
over the temperature range 20−300 K. Despite using
completely different numerical strategies, ML-MCTDH
and MES-PIMD produce results in agreement over the
entire temperature range, for both diagonal and off-
diagonal elements of ERDM. This is encouraging be-
cause both methods are seen to be capable of capturing
the high temperature (classical) and low temperature
(quantum) limits. It also provides benchmark results
to test other methodologies. As mentioned in the intro-
duction, a method that is accurate in principle may not
be so in practice. The comparison here offers a reliable
and unbiased test for both methods.

The example above is in the relatively weak coupling
regime where both methods are easy to converge. For
ML-MCTDH simulations only two layers are needed,
with a few thousand configurations per layer to obtain
accurate results. For MES-PIMD calculations the num-
ber of beads ranges from 32 at 300 K to 256 at 20 K,
which also has moderate computational cost. The er-
ror bar for each method is smaller than the size of the
symbols in FIG. 1.

Next we consider a model with the spectral density
function (Eq.(5.4b)). A symmetric two-level system is
studied here, ϵ=0. The parameters and physical vari-
ables are scaled with respect to the tunneling splitting
of the bare two-level system 2∆, i.e. 2∆→2∆/(2∆)=1,
ωc→ωc/(2∆), ω→ω/(2∆), β→(2∆)β. The parameters
are given as: ∆=0.5 in Hamiltonian (Eq.(5.1)), ωc=0.5,
and η=1 in spectral density (Eq.(5.4b)). We note that
the Hamiltonian

H = −ϵσx +∆σz +
1

2

N∑
j=1

(p2j + ω2
j q

2
j ) + σx

N∑
j=1

cjqj

(5.7)

and that in Eq.(5.1) share the same thermodynamic
properties of the total system such as the internal en-
ergy.

The results of ERDM agree between ML-MCTDH
and MES-PIMD simulations. In addition, we consider
a different property, the internal energy of the system
as defined in Eq.(3.6). As shown in FIG. 2, the results
from the two methods again agree well with each other.
Since this example has a stronger coupling strength as
well as a quantity (internal energy) more difficult to con-
verge, both methods require more computational effort.
ML-MCTDH requires 2−3 layers, with ∼105 configura-
tions for the top layer; whereas MES-PIMD requires
128 beads (β=0.5) to 2048 beads (β=5). We note that
both methods employ different sets of convergence pa-
rameters. The estimate of errors is about a few percent
within each method’s self check. This confirms again
the reliability of both methods.

FIG. 2 System internal energy, Eq.(3.6), for a spin-boson
model. An Ohmic spectral density with a Lorentzian cutoff
is employed. The parameters are: ϵ=0, ∆=0.5, ωc=0.5, and
η=1. The lines are intended as guide to the eye.

VI. CONCLUDING REMARKS

The ML-MCTDH and the MES-PIMD methods were
both derived from exact principles. Both have been ap-
plied in other contexts and verified many times against
available benchmark results. In this paper, we ex-
tended the methods and presented our implementations
for computing reduced density matrices of system-bath
models at equilibrium. We tested our approaches on
the spin-boson model with two different spectral densi-
ties. Excellent agreement is achieved between the two
methods. We have also found agreement between our
methods for other parameter regimes. All this demon-
strates the reliability of the two methods.

One advantage of both methods is that they are not
restricted to treating a harmonic bath. It would be in-
teresting to extend our implementation to treat anhar-
monic potential functions. This will provide a useful
way to go beyond linear response model and investigate
new physics and chemistry therein.
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