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An exact approach to compute physical properties for general multi-electronic-state (MES) systems in
thermal equilibrium is presented. The approach is extended from our recent progress on path integral
molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem.
Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface
is involved. We first define an effective potential function that is numerically favorable for MES-PIMD
and then derive corresponding estimators in MES-PIMD for evaluating various physical properties.
Its application to several representative one-dimensional and multi-dimensional models demonstrates
that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations
for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer
approximation, Condon approximation, and harmonic bath approximation are broken. Published by
AIP Publishing. https://doi.org/10.1063/1.5005059

I. INTRODUCTION

Since Feynman’s pioneering work1 in 1953, the imagi-
nary time path integral has provided an intriguing physical
picture on quantum statistical mechanics.2–4 When the imagi-
nary time path integral is integrated with state-of-the-art Monte
Carlo (MC) or molecular dynamics (MD) techniques [namely,
path integral MC (PIMC) or path integral MD (PIMD)], it also
offers powerful computational tools for studying “real” molec-
ular systems where (nuclear) quantum effects play important
roles.5–17 Since it is not convenient to adjust moves of PIMC
for general complex molecular systems, PIMD often offers a
more practical approach for “real” systems where quantum
exchange effects are not important.

Most imaginary time path integral studies have focused
on systems where the Born-Oppenheimer separation of elec-
tronic and nuclear degrees of freedom is valid. When nona-
diabtic effects become significant, the theoretical framework
of the imaginary time path integral should be reformulated for
multi-electronic-state systems. Most previous investigations
used the diabatic representation of the Hamiltonian because
it is convenient to have a diagonal form of the kinetic energy
operator. The trace operation of the quantum Boltzmann oper-
ator may be expressed as a sum over electronically diabatic
states and an integration over the configurational space for the
nuclear degrees of freedom, as done by Wolynes18 and by Cao,
Minichino, and Voth.19 Such a strategy has later been exten-
sively used in evaluating the partition function for nonadiabatic
systems with path integrals.20–24 Ananth and Miller employed
the Meyer-Miller-Stock-Thoss mapping approach25–27 to pro-
pose an imaginary time path integral method with continu-
ous variables for both the electronic and nuclear degrees of

a)Electronic mail: jianliupku@pku.edu.cn

freedom.28 Instead of the diabatic representation, the adiabatic
one was employed by Schmidt and Tully in 2007 to express the
Boltzmann operator, where each path integral bead was asso-
ciated with a surface index that represents which adiabatic
potential energy surface the bead lies on.29 Lu and Zhou fur-
ther extended the idea to combine PIMD with surface hopping
for sampling thermal equilibrium nonadiabatic systems.30

We have recently proposed a unified thermostat scheme
(the “middle” scheme) that offers a simple, robust, efficient,
and accurate approach for PIMD, irrespective of whether the
thermostat is stochastic or deterministic, when a single poten-
tial energy surface is considered (i.e., only an electronic state is
involved).7,17 The purpose of the paper is to extend our recent
progress on PIMD to develop an indeed practical approach
that in principle leads to exact quantum statistics for gen-
eral multi-electronic-state systems, regardless of whether the
diabatic or adiabatic representation is used. The paper is orga-
nized as follows: Sec. II first describes three splitting schemes
for the Boltzmann operator in the diabatic representation,
proposes an effective potential that is well defined for gen-
eral systems, and then derives multi-electronic-state PIMD
(MES-PIMD) and corresponding estimators for various phys-
ical properties. Section III demonstrates numerical examples
with several one-dimensional or multi-dimensional bench-
mark models. Conclusion remarks are given in Sec. IV. The
adiabatic version of the MES-PIMD approach is also derived in
Appendix A.

II. THEORY
A. Three splitting schemes in the diabatic
representation

Consider an N-electronic-state system with a Hamiltonian
operator in the diabatic representation,
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where V
(
R̂

)
is the symmetric potential energy matrix, M is the

diagonal mass matrix, and R̂ and P̂ are the nuclear coordinate
and momentum operators, respectively. If the system has Natom

atoms, then 3Natom is the total number of nuclear degrees of
freedom. The canonical partition function is

Z = Trne

[
e−βĤ

]
, (2)

and a specific thermodynamic property of interest is〈
B̂
〉
=

1
Z

Trne

[
B̂e−βĤ

]
. (3)

The trace is over both the nuclear and electronic degrees of
freedom in Eqs. (2) and (3). That is,

Trne

[
B̂

]
= Trn

[
Tre

[
B̂

] ]
, (4)

with

Tre

[
B̂

]
=

N∑
n=1

〈n| B̂ |n〉 (5)

and

Trn

[
B̂

]
=

∫
dR 〈R | B̂ |R〉. (6)

Inserting the resolution of the identity

1̂ =
∫

dR
N∑

n=1

|R, n〉 〈R, n| (7)

in Eq. (2) leads to

Z = lim
P→∞

∫
dR1 · · · dRP

×

N∑
n1,· · ·nP=1

P∏
i=1

〈ni, Ri | e
−βĤ/P |ni+1, Ri+1〉, (8)

where nP+1 ≡ n1 and RP+1 ≡ R1.
Various splitting schemes may be introduced to evaluate

the matrix element 〈ni, Ri | e−βĤ/P |ni+1, Ri+1〉 of Eq. (8). In
the paper, we focus on three types of splitting schemes (for

e−βĤ/P) that are feasible for general molecular systems. When
the splitting

e−βĤ/P ≈ e−βV̂/2Pe−βT̂/Pe−βV̂/2P + O

(
β3

P3

)
(9)

is used, the evaluation of the term e−βV̂/2P can be imple-
mented through the diagonalization of the potential energy
matrix V. We denote it the “diagonalization” method.
Alternatively, one may decompose the term e−βV̂/2P into
a product of a diagonal term and an off-diagonal one,
i.e.,

e−βĤ/P ≈ e−βV̂off/2Pe−βV̂diag/2Pe−βT̂/Pe−βV̂diag/2P

× e−βV̂off/2P + O

(
β3

P3

)
. (10)

When the off-diagonal term e−βV̂off/2P is approximated by its
first order Taylor expansion,24,28,31

e−βĤ/P ≈

(
1̂ −

β

2P
V̂off

)
e−βV̂diag/2Pe−βT̂/Pe−βV̂diag/2P

×

(
1̂ −

β

2P
V̂off

)
+ O

(
β2

P2

)
, (11)

it is denoted the “first-order expansion” method. Note that the
off-diagonal matrix V̂off in Eq. (10) is a sum of matrices,

V̂off =

N∑
i=1

i−1∑
j=1

D̂
(ij)

, (12)

where the element in the ith row and jth column of matrix D(ij)

is equal to Vij

(
R̂

)
, so is that in the jth row and ith column,

while all other elements of matrix D(ij) are zero. It is trivial
to verify that the elements of the matrix W(ij) = e−βD̂

(ij)
/2P

are

W(ij)
mn =




1 (m = n , i and m = n , j)

cosh

[
−
β

2P
Vij

(
R̂

)]
(m = n = i or m = n = j)

sinh

[
−
β

2P
Vij

(
R̂

)]
(m = i, n = j or m = j, n = i)

0, otherwise

.

(13)

TABLE I. Parameters [in Eq. (78)] for a two-electronic-state system coupled to a Morse oscillator [unit: atomic
unit (a.u.)].

n ω(n) R(n)
eq D(n) V (n)

0 c(12) α
(12)
1 α

(12)
2 R(12)

(a)
1 9.43 × 10�5 −1.75 4.71 × 10�3 0

6.11 × 10�5 0.05 0.05 1.714
2 9 × 10�5

�0.4274 4.71 × 10�3 9.8 × 10�5

(b)
1 9.43 × 10�5 −1.75 4.71 × 10�3 0

6.11 × 10�5 0.05 0.05 0.923
2 9 × 10�5 0.9226 4.71 × 10�3 9.8 × 10�5

(c)
1 9.43 × 10�5 −1.75 4.71 × 10�3 0

6.11 × 10�5 0.05 0.05 1.260
2 9 × 10�5 2.4976 4.71 × 10�3 9.8 × 10�5
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The off-diagonal term e−βV̂off/2P may then be decomposed into
a product of matrices

{
W(ij)

}
. Equation (10) now becomes

e−βĤ/P ≈

N∏
i=1

i−1∏
j=1

W(ij)
(
R̂

)
e−βV̂diag/2Pe−βT̂/Pe−βV̂diag/2P

×

1∏
i=N

1∏
j=i−1

W(ij)
(
R̂

)
+ O

(
β3

P3

)
, (14)

which is denoted the “hyperbolic function” method. The
decomposition in Eq. (14) was first used in Ref. 30.

One may show that the ascendant order for the error of
the splitting is

diagonalization < hyperbolic function

< first-order expansion. (15)

In the nonadiabatic limit where all off-diagonal elements
V ij(R)→ 0, the three splitting methods are expected to demon-
strate similar numerical performance as the number of beads
P changes. This is because the error in the splitting scheme
[Eqs. (9), (10), or (11)] is also related to the values of the
off-diagonal elements.

It is straightforward to see that the ascendant order for the
numerical cost of the splitting is

first-order expansion < hyperbolic function

< diagonalization. (16)

Because the calculation of the force often takes the dominant
effort for simulating “real” molecular systems, the difference
among the three splitting methods on the computational cost
for these systems is expected to be marginal.

Substituting Eq. (9), Eq. (11), or Eq. (14) into Eq. (8), one
obtains a unified form for the partition function

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp

−
β

2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)


×Tre



P∏
i=1

O(Ri)
T O (Ri)


, (17)

with ωP =
√

P/β~. When the diagonalization method is
employed, we have

O (R) = e−βV(R)/2P = T (R)e−βΛ(R)/2PT(R)T , (18)

where the orthogonal matrix T(R) and the diagonal matrix
Λ (R) are given by the eigen-decomposition of V(R),

V (R) = T (R)Λ (R) T(R)T . (19)

That is, the diagonal elements {λk (R) , k = 1, · · · , N } of
Λ (R) are the eigenvalues of V(R), which are the adiabatic
potential energy surfaces.

In Eq. (17), we obtain

O (R) =

[
1 −

β

2P
Voff (R)

]
e−βVdiag(R)/2P (20)

for the first-order expansion method and

FIG. 1. Diabatic potential matrix elements for the three two-state models in
Table I.
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FIG. 2. Comparison between the “middle” and conventional thermostat schemes for the first-order expansion method of diabatic MES-PIMD at the inverse
temperature β = 63 000 for model b in Table I. (P = 64 beads are used.) Results for the average potential and kinetic energy, heat capacity, and coherence length
are plotted as functions of the time interval ∆t. Atomic units (a.u.) are used.

O (R) =
N∏

i=1

i−1∏
j=1

W(ij) (R) e−βVdiag(R)/2P (21)

for the hyperbolic function method.
For convenience, we define

Θ (R) = O(R)T O (R) . (22)

We then have

Θ (R) = T (R) e−βΛ(R)/PT(R)T (23)

for the diagonalization method,

Θ (R) = e−βVdiag(R)/2P
[
1 −

β

2P
Voff (R)

]2

e−βVdiag(R)/2P (24)

for the first-order expansion method, and

Θ (R) = e−βVdiag(R)/2P



N∏
i=1

i−1∏
j=1

W(ij) (R)



T

×



N∏
i=1

i−1∏
j=1

W(ij) (R)


e−βVdiag(R)/2P (25)

for the hyperbolic function method.

B. Effective potential function in the diabatic
representation

Tre

[
P∏

i=1
Θ (Ri)

]
is often not positive-definite for general

multi-electronic-state systems, regardless of which one of the
three splitting methods is employed. If an effective potential
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FIG. 3. Results produced by adiabatic MES-PIMD and three methods (diagonalization, hyperbolic function, and first-order expansion) of diabatic MES-PIMD
on different physical properties (average potential and kinetic energy, heat capacity, and coherence length) as functions of the number of path integral beads P
(at the inverse temperature β = 63 000 for model b in Table I). Atomic units (a.u.) are used. Statistical error bars are included. Exact results obtained by DVR
are plotted as the references.

function φ (R1, · · · , RP) is given by

e−βφ(R1,· · · ,RP)
≡

������
Tre



P∏
i=1

Θ (Ri)


������
, (26)

the coordinates that are close to the region where

Tre

[
P∏

i=1
Θ (Ri)

]
changes the sign lead to φ (R1, · · · , RP)→ ∞.

This presents severe numerical problems for the use of MD
for performing imaginary time path integral. [For the same
reason, it is also challenging to implement MC when Eq. (26)
is used for general systems.]

Because Tre

[
P∏

i=1
e−βVdiag(Ri)/P

]
is always positive-definite,

an effective (real-valued) potential functionφ(dia) (R1, · · · , RP)

may be defined by

e−βφ
(dia)(R1,· · · ,RP)

≡ Tre



P∏
i=1

e−βVdiag(Ri)/P


. (27)

[φ(dia) (R1, · · · , RP) has no singularity.] The partition function
[Eq. (17)] may then be expressed as

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp
[
−βU (dia)

eff (R1, · · · , RP)
]

Z̃ (dia) (R1, · · · , RP) ,

(28)
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FIG. 4. Comparison of converged results yielded by MES-PIMD to exact data in a wide range of the inverse temperature from β = 17 000 to β = 63 000 for three
models listed in Table I. Statistical error bars for MES-PIMD results are included. “(a)-MES-PIMD” represents the numerical results produced by MES-PIMD
for model a in Table I; “(a)-exact” stands for the exact quantum results obtained by DVR for model a in Table I, etc.

with the estimator for the partition function

Z̃ (dia) (R1, · · · , RP) =

Tre

[
P∏

i=1
Θ (Ri)

]

Tre

[
P∏

i=1
e−βVdiag(Ri)/P

] (29)

and

U (dia)
eff (R1, · · · , RP) =

1
2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)

+ φ(dia) (R1, · · · , RP). (30)

When the couplings between different diabatic states van-
ish, the estimator Z̃ (dia) (R1, · · · , RP) = 1 and the partition

function for the multi-state system Eq. (A8) is reduced to

Z (no–coup)
(dia) = lim

P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp
[
−βU (dia)

eff (R1, · · · , RP)
]

, (31)

which is a well-defined physical quantity,

Z (no–coup)
(dia) =

N∏
j=1

Z (dia)
j , (32)

where Z (dia)
j is the single-electronic-state partition func-

tion for the jth electronically diabatic state. That is, the
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FIG. 5. Comparison of converged results yielded by MES-PIMD to exact data in a wide range of ∆R = R(2)
eq − R(1)

eq in the suite of models listed in Table I. (Note

that the intersection of two potential energy surfaces R(12) changes as the minimum of that ground state and that of the excited state ∆R = R(2)
eq − R(1)

eq varies.)
Three inverse temperatures are studied. Statistical error bars for MES-PIMD results are included. “beta = 17 000 MES-PIMD” represents the numerical results
produced by MES-PIMD at β = 17 000; “beta = 17 000 exact” stands for the exact quantum results obtained by DVR at β = 17 000; etc.

effective potential in Eq. (30) leads to a well-defined
(physically meaningful) canonical ensemble at the inverse
temperature β.

C. Staging path integral molecular dynamics
for multi-electronic-state systems

Applying the staging transformation13,14,32,33

R1 = ξ1,

Rj = ξj +
j − 1

j
Rj+1 +

1
j
ξ1 (j = 2, · · · , P)

(33)

to Eq. (28) yields

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dξ1 · · · dξP

× exp


−
β

2
ω2

P

P∑
j=1

ξT
j M̄jξj − βφ

(dia) (
ξ1, · · · , ξP

)
× Z̃ (dia) (

ξ1, · · · , ξP
)
, (34)

where

M̄1 = 0,

M̄j =
j

j − 1
M (j = 2, · · · , P).

(35)
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Any thermodynamic property in Eq. (3) is expressed as

〈
B̂
〉
= lim

P→∞

∫ dξ1 · · · dξPB̃(dia) (
ξ1, · · · , ξP

)
exp

[
−
β

2
ω2

P

P∑
j=1
ξT

j M̄jξj − βφ
(dia) (

ξ1, · · · , ξP
)]

∫ dξ1 · · · dξPZ̃ (dia) (
ξ1, · · · , ξP

)
exp

[
−
β

2
ω2

P

P∑
j=1
ξT

j M̄jξj − βφ
(dia) (

ξ1, · · · , ξP
)] , (36)

with B̃(dia) (
ξ1, · · · , ξP

)
as the estimator for operator B̂ in the diabatic representation.

One may employ the MD or MC scheme to perform the integrals in Eq. (36). For instance, inserting fictitious momenta(
p1, · · · , pP

)
into Eq. (34) leads to

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 P∏
j=1

�����
2π
β

M̃j

�����

−1/2 ∫
dξ1 · · · dξPdp1 · · · dpP Z̃ (dia) (

ξ1, · · · , ξP
)

× exp


−β



1
2

P∑
j=1

pT
j M̃

−1
j pj +

1
2
ω2

P

P∑
j=1

ξT
j M̄jξj + φ(dia) (

ξ1, · · · , ξP
)




, (37)

where the fictitious masses are chosen as

M̃1 =M,

M̃j = M̄j (j = 2, · · · , P).
(38)

The effective Hamiltonian for Eq. (37) is

H (dia)
eff

(
ξ1, · · · , ξP; p1, · · · , pP

)
=

1
2

P∑
j=1

pT
j M̃

−1
j pj +

1
2
ω2

P

P∑
j=1

ξT
j M̄jξj

+ φ(dia) (
ξ1, · · · , ξP

)
. (39)

Thus the equations of motion are given by

ξ̇j = M̃
−1
j pj,

ṗj = −ω
2
PM̄jξj −

∂φ(dia)

∂ξj
(j = 1, · · · , P).

(40)

The term ∂φ(dia)/∂ξj in Eq. (40) is obtained by the chain
rule,

∂φ(dia)

∂ξ1
=

P∑
i=1

∂φ(dia)

∂Ri
,

∂φ(dia)

∂ξj
=
∂φ(dia)

∂Rj
+

j − 2
j − 1

∂φ(dia)

∂ξj−1
(j = 2, · · · , P) ,

(41)

and

∂φ(dia)

∂Rj
=

1
P

Tre

[
∂Vdiag(Rj)

∂Rj

P∏
i=1

e−βVdiag(Ri)/P

]

Tre

[
P∏

i=1
e−βVdiag(Ri)/P

] . (42)

Equation (36) then becomes

〈
B̂
〉
= lim

P→∞

∫ dξ1 · · · dξPdp1 · · · dpPB̃(dia) (
ξ1, · · · , ξP

)
exp

[
−βH (dia)

eff

(
ξ1, · · · , ξP; p1, · · · , pP

)]

∫ dξ1 · · · dξPdp1 · · · dpPZ̃ (dia) (
ξ1, · · · , ξP

)
exp

[
−βH (dia)

eff

(
ξ1, · · · , ξP; p1, · · · , pP

)] . (43)

Use the bracket 〈〉H(dia)
eff

to represent the phase space average with the probability distribution exp
[
−βH (dia)

eff

(
ξ1, · · · , ξP; p1, · · · ,

pP
)]

. For example, the denominator and numerator of Eq. (43) are denoted
〈
Z̃ (dia) (

ξ1, · · · , ξP
)〉

H(dia)
eff

and〈
B̃(dia) (

ξ1, · · · , ξP
)〉

H(dia)
eff

, respectively. Eq. (43) is then recast as

〈
B̂
〉
= lim

P→∞

〈
B̃(dia) (

ξ1, · · · , ξP
)〉

H(dia)
eff〈

Z̃ (dia) (
ξ1, · · · , ξP

)〉
H(dia)

eff

. (44)

Below we show the expression of the estimator B̃(dia) in Eq. (36) or Eq. (43) for various physical properties. When B̂ is an
operator dependent on the nuclear coordinate and the electronic state, the estimator is

B̃(dia) (R1, · · · , RP) =

1
P

Tre

(
P∑

k=1

{ [
k−1∏
i=1
Θ (Ri)

]
O(Rk)T B (Rk) O (Rk)

[
P∏

i=k+1
Θ (Ri)

]})
Tre

[
P∏

j=1
e−βVdiag(Rj)/P

] , (45)
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where B(R) is an N × N matrix-valued function of the nuclear coordinate R. For instance, the estimator for the potential energy
is

Ṽ (dia) (R1, · · · , RP) =

1
P

Tre

(
P∑

k=1

{ [
k−1∏
i=1
Θ (Ri)

]
O(Rk)T V (Rk) O (Rk)

[
P∏

i=k+1
Θ (Ri)

]})
Tre

[
P∏

j=1
e−βVdiag(Rj)/P

] . (46)

When B̂ = 1
2 P̂

T
M−1P̂ is the nuclear kinetic energy operator,

the primitive estimator is

K̃ (dia)
prim (R1, · · · , RP)

= Z̃ (dia)


3NatomP
2β

−
1
2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)


(47)

and the virial version is

FIG. 6. Diabatic potential matrix elements for the seven-state model in
Table II of Appendix D. Panel (a): diagonal elements; panel (b): four typical
off-diagonal elements (other off-diagonal elements not shown).

K̃ (dia)
vir (R1, · · · , RP) =

3Natom

2β
Z̃ (dia) −

1
2β

P∑
j=1

(
Rj − R∗

)T

×

∂

∂Rj

{
Tre

[
P∏

i=1

[
O(Ri)T O (Ri)

] ]}
Tre

[
P∏

i=1
e−βVdiag(Ri)/P

] ,

(48)

where

R∗ = Rc ≡
1
P

P∑
i=1

Ri (49)

or R∗ can be any one of the P beads, i.e.,

R∗ = Rk , (50)

where k ∈ {1, 2, · · · , P} and k is a fixed number in Eq. (48).
In Eq. (48), it is easy to obtain the analytic expression of

∂O/∂R for the first-order expansion method from Eq. (20) or
for the hyperbolic function method from Eq. (21). When the
diagonalization method is used, we may numerically evaluate
∂O/∂R with the Taylor series,

∂O
∂R
=

∞∑
m=1

1
m!

(
−
β

2P

)m m−1∑
j=0

V(R)j ∂V
∂R

V(R)m−j−1

= T (R)



∞∑
m=1

1
m!

(
−
β

2P

)m m−1∑
j=0

Λ(R)j
[
T(R)T ∂V

∂R
T (R)

]

× Λ(R)m−j−1
}

T(R)T . (51)

It is, however, difficult to numerically converge the calcula-
tion when {| βλk (R) /2P | , k = 1, · · · , N } are large. A trick
to solve this problem is to first evaluate ∂

∂R e−βV(R)/2P/2L

instead, where L is an integer that is large enough such
that

{���βλk (R) /2P/2L ��� , k = 1, · · · , N
}

are small enough
to guarantee the numerical convergence of Eq. (51) for
∂
∂R e−βV(R)/2P/2L

. We then employ

∂

∂R
e−εV(R) =

[
∂

∂R
e−εV(R)/2

]
e−εV(R)/2

+ e−εV(R)/2
[
∂

∂R
e−εV(R)/2

]
(52)

recursively (i.e., L times) to obtain ∂O
∂R =

∂
∂R e−βV(R)/2P.
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FIG. 7. Same as Fig. 2, but for the 1-D seven-state model in Table II of Appendix D at T = 70 K. (P = 64 beads are used.)

The primitive and virial estimators for the heat capacity
CV =

∂
∂T

〈
Ĥ

〉
may be derived by extending the work in Ref. 34

for multi-electronic-state systems. It is straightforward to show
that the primitive estimator is

Cprim
V = −

3
2

NatomPkB

+
kB β

2〈
Z̃ (dia)

〉
H(dia)

eff

*...
,

2
β

〈
K̃ (dia)

prim

〉
H(dia)

eff

+
〈
K̃primK̃ (dia)

prim

〉
H(dia)

eff

+ 2
〈
K̃primṼ (dia)

〉
H(dia)

eff

−

〈
Ẽ(dia)

prim

〉2

H(dia)
eff〈

Z̃ (dia)
〉

H(dia)
eff

+///
-

+
kB β

2〈
Z̃ (dia)

〉
H(dia)

eff

× 〈
θ1 (R1, · · · , RP) + θ2 (R1, · · · , RP)

Tre

[
P∏

j=1
e−βVdiag(Rj)/P

] 〉
H(dia)

eff

, (53)

where K̃prim represents

K̃prim (R1, · · · , RP) =
3NatomP

2β
−

1
2
ω2

P

P∑
i=1

(Ri − Ri+1)T

×M (Ri − Ri+1), (54)

Ẽ(dia)
prim is the primitive estimator for the total energy,

Ẽ(dia)
prim = K̃ (dia)

prim + Ṽ (dia), (55)

and θ1 and θ2 are given by

θ1 (R1, · · · , RP) =
2

P2
Tre

*.
,

P∑
j=1

P∑
k=j+1






j−1∏
i=1

Θ (Ri)



×O
(
Rj

)T
V

(
Rj

)
O

(
Rj

) 

k−1∏
i=j+1

Θ (Ri)



×O(Rk)T V (Rk) O (Rk)


P∏
i=k+1

Θ (Ri)





+
-

(56)
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and

θ2 (R1, · · · , RP) =
1

P2
Tre

*.
,

P∑
k=1






k−1∏
i=1

Θ (Ri)

O(Rk)T V(Rk)2O (Rk)



k−1∏
i=j+1

Θ (Ri)






+/
-

. (57)

The virial estimator for the heat capacity is

Cvir
V =

kB β
2〈

Z̃ (dia)
〉

H(dia)
eff

*...
,

〈
K̃primK̃ (dia)

vir

〉
H(dia)

eff

+
〈
K̃primṼ (dia)

〉
H(dia)

eff

−

〈
Ẽ(dia)

vir

〉
H(dia)

eff

〈
Ẽ(dia)

prim

〉
H(dia)

eff〈
Z̃ (dia)

〉
H(dia)

eff

+
3Natom

2β

〈
Ṽ (dia)

〉
H(dia)

eff

+
1
β

〈
K̃ (dia)

vir

〉
H(dia)

eff

+///
-

+
kB β

2〈
Z̃ (dia)

〉
H(dia)

eff 〈
θ1 + θ2 + θ3 (R1, · · · , RP) + θ4 (R1, · · · , RP) + θ5 (R1, · · · , RP)

Tre

[
P∏

j=1
e−βVdiag(Rj)/P

] 〉
H(dia)

eff

, (58)

where Ẽ(dia)
vir is the virial estimator for the total energy,

Ẽ(dia)
vir = K̃ (dia)

vir + Ṽ (dia), (59)

θ1 and θ2 are given by Eqs. (56) and (57), θ3, θ4 and θ5 are

θ3 (R1, · · · , RP) = −
1

2βP
Tre




P∑
j=1

j−1∑
k=1

*
,



k−1∏
i=1

Θ (Ri)


×O(Rk)T V (Rk) O (Rk)



j−1∏
i=k+1

Θ (Ri)



+/
-



(
Rj − R∗

)T ∂Θ
(
Rj

)
∂Rj





P∏
i=j+1

Θ (Ri)






, (60)

θ4 (R1, · · · , RP) = −
1

2βP
Tre

*.
,

P∑
j=1



j−1∏
i=1

Θ (Ri)



{(
Rj − R∗

)T ∂

∂Rj

[
O

(
Rj

)T
V

(
Rj

)
O

(
Rj

)]} 

P∏
i=j+1

Θ (Ri)



+/
-

, (61)

and

θ5 (R1, · · · , RP) = −
1

2βP
Tre

*.
,

P∑
j=1

P∑
k=j+1






j−1∏
i=1

Θ (Ri)





(
Rj − R∗

)T ∂Θ
(
Rj

)
∂Rj



×



k−1∏
i=j+1

Θ (Ri)


O(Rk)T V (Rk) O (Rk)



P∏
i=k+1

Θ (Ri)





+/
-

. (62)

We then consider the electronic state density matrix, which is a kind of reduced density matrix because the nuclear
degrees of freedom are integrated out in Eq. (36). The estimator for the electronic state density matrix element in the diabatic
representation ρ(ds)

ij is

ρ̃(dia−ds)
ij (R1, · · · , RP) =

1
P

Tre

(
P∑

k=1

{ [
k−1∏
l=1
Θ (Rl)

]
O(Rk)Tρ(ds)

ij O (Rk)

[
P∏

l=k+1
Θ (Rl)

]})
Tre

[
P∏

l=1
e−βVdiag(Rl)/P

] , (63)

where

ρ(ds)
ij =

1
2

(|i〉 〈j | + |j〉 〈i|) , (64)

with |i〉 and |j〉 as the ith and jth electronically diabatic states in the representation for the Hamiltonian equation (1).
When the diagonalization method is employed, it is possible to evaluate the electronic state density matrix element in the

adiabatic representation. The transformation between the density matrix in the diabatic representation and that in the adiabatic
representation is

ρ(ads) (R) = T(R)Tρ(ds)T (R) . (65)

The estimator for the electronic state density matrix element in the adiabatic representation ρ(ads)
mn is then given by

ρ̃(dia−ads)
mn (R1, · · · , RP) =

1
P

*.
,
Tre



P∏
j=1

e−βVdiag(Rj)/P


+/
-

−1

×Tre
*
,

P∑
k=1






k−1∏
i=1

Θ (Ri)


T (Rk) e−β[λm(Rk )+λn(Rk )]/2Pρ(ads)
mn (Rk) T(Rk)T



P∏
i=k+1

Θ (Ri)





+
-

, (66)
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FIG. 8. Same as Fig. 3, but for the 1-D seven-state model in Table II of Appendix D at T = 70 K.

where

ρ(ads)
mn (R) =

1
2

(|m (R)〉 〈n (R)| + |n (R)〉 〈m (R)|) , (67)

with |m (R)〉 and |n (R)〉 as the mth and nth electronically
adiabatic states when the nuclear coordinate is R.

The coherence length of the electronic state density35,36

may be defined by

Lcoh =

(
N∑

i,j=1

���ρij
���

)2

N
N∑

i,j=1

���ρij
���
2

. (68)

It measures the extent of the off-diagonal elements of the
electronic state density matrix.35–37 It is easy to verify that

Lcoh → 1 in the high-temperature limit, Lcoh → N in the
complete coherence limit, and Lcoh→ 1/N for a pure basis state
of the employed representation.37 The value of Lcoh depends
on whether the diabatic or adiabatic representation is used.
(See Appendix C.)

In Appendix A, we derive the adiabatic version of MES-
PIMD and the corresponding estimators for the same physical
properties. (Although we employ staging PIMD for demon-
stration in the paper, it is trivial to follow the same proce-
dure to develop normal-mode PIMD for multi-electronic-state
systems.)

D. Thermostat schemes for PIMD

Note that Eq. (40) must be coupled to a thermostatting
method to ensure a proper canonical distribution. Equation
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FIG. 9. Comparison of converged results yielded by MES-PIMD to exact data at the temperature in the range T = 50-250 K for the 1-D seven-state model in
Table II of Appendix D. Statistical error bars for MES-PIMD results are included.

(40) may be decomposed into

*
,

ξ̇j

ṗj

+
-
= *

,

M̃
−1
j pj

0
+
-︸     ︷︷     ︸ +

*..
,

0

−ω2
PM̄jξj −

∂φ(dia)

∂ξj

+//
-︸                      ︷︷                      ︸

(j = 1, · · · , P) .

(69)

The phase space propagator eL∆t (for a finite time interval
∆t) for PIMD with the effective Hamiltonian equation (39) is
approximated as

eL∆t ≈ eL
Middle∆t = eLp∆t/2eLξ∆t/2eLT∆teLξ∆t/2eLp∆t/2 (70)

in the “middle” scheme.7,17 Here the phase space propagator
eLT∆t for the thermostat part is placed in the middle of the con-
ventional velocity-Verlet algorithm. The relevant Kolmogorov
operators of eLξ∆t and eLp∆t are

LξP = −pT M̃
−1 ∂P
∂ξ

, (71)

LpP =
(
∂U
∂ξ

)T
∂P
∂p

, (72)

where the phase space density distribution P ≡ P (ξ, p),
the mass matrix M̃ ≡ diag

{
M̃j, j = 1, P

}
, and U (ξ)

= 1
2ω

2
P

P∑
j=1
ξT

j M̄jξj+φ
(dia) (

ξ1, · · · , ξP
)

withξ ≡
{
ξj, j = 1, P

}
.

When Langevin dynamics is employed as the ther-
mostat in Eq. (70), its relevant Kolmogorov operator
LT is

LTP =
∂

∂p
· (γpP) +

1
β

∂

∂p
·

(
γM̃

∂P
∂p

)
, (73)

where γ is the friction coefficient.7,17,38 It was derived in
Ref. 7 that the relevant Kolmogorov operator for the Andersen
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FIG. 10. Results produced by adiabatic MES-PIMD and three methods (diagonalization, hyperbolic function, and first-order expansion) of diabatic MES-PIMD
on different physical properties (average potential and kinetic energy, heat capacity, and coherence length) as functions of the number of path integral beads P
at the inverse temperature β = 1 for spin-boson model I in Table III of Appendix E. Atomic units (a.u.) are used.

thermostat39 is

LTP = ν
[
ρMB (p)

∫ ∞
−∞

P (ξ, p) dp − P (ξ, p)

]
, (74)

where ρMB (p) is the Maxwell (or Maxwell-Boltzmann)
momentum distribution and ν is the collision frequency that
specifies the coupling strength between the system and the
heat bath. All phase space propagators in Eq. (70) may then
be exactly obtained.7

In addition to the decomposition equation (69), another
decomposition of Eq. (40) often used for PIMD15,17,33,40

is

*
,

ξ̇j

ṗj

+
-
=

*.
,

M̃
−1
j pj

−ω2
PM̄jξj

+/
-︸         ︷︷         ︸ +

*..
,

0

−
∂φ(dia)

∂ξj

+//
-︸       ︷︷       ︸

(j = 1, · · · , P). (75)

Lharm and Lφ are the relevant Kolmogorov operators for
the first and second terms in the right-hand side (RHS)
of Eq. (75), respectively. The phase space propagator
eL∆t (for a finite time interval ∆t) for PIMD with the
effective Hamiltonian equation (39) is then approximated
as

eL∆t ≈ eL
Middle

(harm) ∆t
= eLφ∆t/2eLharm∆t/2eLT∆teLharm∆t/2eLφ∆t/2

(76)
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FIG. 11. Same as Fig. 10, but for spin-boson model II in Table III of Appendix E at the inverse temperature β = 50.

in the “middle” thermostat scheme17 and

eL∆t ≈ eL
Side∆t = eLT∆t/2eLφ∆t/2eLharm∆teLφ∆t/2eLT∆t/2

(77)

in the conventional “side” thermostat scheme.15,17,33,40 Here
the two phase space propagators eLφ∆t and eLharm∆t may also
be analytically solved. It has been demonstrated that the con-
ventional “side” scheme equation (77) is less accurate and less
efficient than the “middle” scheme equation (70) [or Eq. (76)]
when only one electronic state is involved.7,17 [Eq. (70) is exact
in the harmonic limit, while Eq. (76) or Eq. (77) only does so in
the free particle limit.17] In addition to stochastic thermostats,
the conclusion is similar for deterministic thermostats such as
Nosé-Hoover chains41 or the Nosé-Hoover thermostat42,43 for
performing PIMD.7

It is trivial to extend the thermostat algorithms of the
“middle” or “side” scheme in Refs. 7 and 17 for the

effective Hamiltonian equation (39) for multi-electronic-state
systems, for which we will compare the performance of
the two thermostat schemes [i.e., Eqs. (70) and (77)] for
MES-PIMD.

III. NUMERICAL EXAMPLES

In this section, we use several benchmark models to inves-
tigate the performance of the three splitting methods of diabatic
MES-PIMD (proposed in Sec. II) and that of the adiabatic
version of MES-PIMD (derived in Appendix A).

A. Multi-electronic-state system coupled to a single
nuclear degree of freedom

The simplest non-trivial benchmark model is perhaps a
multi-electronic-state system coupled to a one-dimensional
Morse oscillator. (3Natom = 1 in this case.) The diabatic
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FIG. 12. Same as Fig. 10, but for spin-boson model III in Table III of Appendix E at the inverse temperature β = 50.

potential matrix elements of the Hamiltonian equation (1)
are

Vnn (R) = D(n)
*.
,
1 − exp


−

√
Mω2

(n)

2D(n)

(
R − R(n)

eq

)

+/
-

2

+ V (n)
0 ,

Vmn (R) = c(mn) exp
[
−α(mn)

1

(
R − R(mn)

)2
]

× cos
[
α(mn)

2

(
R − R(mn)

)]
(m , n) ,

(78)

where M is the mass,
{
ω(n), D(n), R(n)

eq , V (n)
0

}
are the fre-

quency, relative dissociation energy, displacement, and
minimum potential value of the Morse oscillator of the
nth electronically diabatic state, respectively, R(mn) is the

intersection of the mth and nth diabatic potential energy
surfaces,

{
c(mn), α(mn)

1 , α(mn)
2

}
are three parameters for the

potential coupling term Vmn. Because there is no guaran-
tee in general systems that the coupling term Vmn should
maintain the same sign for any values of the nuclear coor-
dinate, a cosine term is used in Eq. (78). When Vmn(R)

changes the sign as R varies, Tre

[
P∏

i=1
Θ (Ri)

]
is not always

positive-definite (even in a two-state system), leading to the
failure of the definition of an effective potential term by using
Eq. (26).

By diagonalizing the diabatic potential matrix Eq. (78),
the adiabatic potential energy surfaces {λm (R)} and the
overlap matrix C (Rl, Rl+1) (defined in Appendix A) may
be analytically obtained in one-dimensional systems before
performing adiabatic MES-PIMD. Note that the element in
the lth row and mth column of C (Ri, Ri+1) is the overlap
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FIG. 13. Same as Fig. 10, but for spin-boson model IV in Table III of Appendix E at the inverse temperature β = 2.5.

between the lth adiabatic state with the nuclear coordinate
Ri and the mth adiabatic state with the nuclear coordinate
Ri+1.

The first suite of examples involves a two-electronic-state
system with Eq. (78). Table I presents the three typical sets
of parameters, for which the corresponding potential matrix
elements in Eq. (78) are plotted as functions of the nuclear
coordinate in Fig. 1. We first compare the “middle” and “side”
thermostat schemes for the first-order expansion method of
diabatic MES-PIMD. As demonstrated in Fig. 2, the “middle”
scheme increases the accuracy by an order of magnitude over
the conventional “side” one, or the “middle” scheme increases
the time interval ∆t by a factor of 5–10 for the same accuracy.
Similar behaviors exist in the other splitting methods of dia-
batic MES-PIMD and in adiabatic MES-PIMD. (Results are
not shown.)

Figure 3 demonstrates the results (for the average poten-
tial, kinetic energy, heat capacity, and coherence length) of

adiabatic MES-PIMD and the three splitting methods of dia-
batic MES-PIMD as functions of the number of the path
integral beads P. (Use model b of Table I as an example.) When
P is sufficiently large, all four approaches lead to converged
results that reproduce the exact data obtained by discrete vari-
able representation (DVR). In the three splitting methods of
diabatic MES-PIMD when evaluating most physical proper-
ties, the diagonalization method converges the fastest when
P is reasonably large, while the first-order expansion method
converges the slowest. This is consistent with the ascendant
order of the error in Eq. (15). Adiabatic MES-PIMD yields
similar results to those produced by the diagonalization
method of diabatic MES-PIMD because they share the same
splitting scheme of the Boltzmann operator [Eq. (9)], irrespec-
tive of whether the diabatic or adiabatic effective potential term
[Eq. (27) or Eq. (A7)] is employed for performing PIMD. Inter-
estingly adiabatic MES-PIMD and the three splitting methods
of diabatic MES-PIMD demonstrate very similar performance
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FIG. 14. Same as Fig. 10, but for spin-boson model V in Table III of Appendix E at the inverse temperature β = 10.

as the number of beads P varies when evaluating the kinetic
energy.

Figure 4 or Fig. 5 demonstrates the results as the temper-
ature or the difference between the minimum of that ground
state and that of the excited state ∆R = R(2)

eq − R(1)
eq varies. It

is shown that MES-PIMD is capable to reproduce the exact
results.

The second suite of examples involves a seven-state sys-
tem with Eq. (78). While the sets of parameters are described
in Table II of Appendix D, the diabatic potential matrix ele-
ments are plotted as functions of the nuclear coordinate in Fig.
6. Use the first-order expansion method (of diabatic PIMD) for
demonstration for the comparison between the “middle” and
“side” thermostat schemes in Fig. 7. It is shown that the “mid-
dle” thermostat scheme greatly improves over the “side” one,
consistent with what Fig. 2 suggests. Since it is rather tedious to

obtain the electronically adiabatic states and potential energy
surfaces for the seven-state system, we focus on the numerical
performance of diabatic PIMD. Figure 8 demonstrates that all
the three splitting methods behave similarly for this system
in evaluating the potential energy, the kinetic energy, and the
heat capacity. [This suggests that in the seven-state system the
off-diagonal elements of the potential matrix (in the diabatic
representation) are relatively small, i.e., in the nonadiabatic
limit.] The coherence length of the electronic state density is
an exception—the diagonalization method always converges
faster than the other two methods. We then investigate the
seven-electronic-state system at different temperatures. Fig-
ure 9 shows that the MES-PIMD results agree well with the
exact ones produced by DVR. For example, the turn-over
behavior in the heat capacity as a function of the temperature
is well reproduced by MES-PIMD in Fig. 9(c).
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FIG. 15. Same as Fig. 10, but for spin-boson model VI in Table III of Appendix E at the inverse temperature β = 1.

Figures 2 and 7 demonstrate that the “middle” thermo-
stat scheme also performs much better than the “side” one
when the multi-electronic-state system is investigated. This
is mainly because the effective potential term behaves like
a single potential energy surface—the conclusion for PIMD
in Refs. 17 and 7 should hold for the MES-PIMD approach
as well. We then focus on employing the “middle” scheme for
MES-PIMD to study the multi-electronic-state system coupled
to many nuclear degrees of freedom.

B. Multi-electronic-state system coupled to many
nuclear degrees of freedom

A simple case for the multi-electronic-state system cou-
pled to many nuclear degrees of freedom is the popular
spin-boson (SB) model of a two-electronic-state nonadiabatic
process in a condensed phase environment.44 In the SB model,

each nuclear degree of freedom is described by an independent
harmonic oscillator. The diabatic potential matrix elements
are

Vnn (R) = V (n)
0 +

∑
j

1
2

M(j)ω
2
(j,n)

(
R(j) − R(n)

eq,(j)

)2
,

Vmn (R) = ∆(mn) (m , n),

(79)

where R(j) is the jth element of the nuclear coordinate
vector R, M(j) is the mass for the jth nuclear degree of
freedom,

{
ω(j,n), R(n)

eq,(j)

}
are the frequency and displace-

ment of the jth harmonic oscillator on the nth electroni-
cally diabatic state, respectively, ∆(mn) is the constant cou-
pling between the mth and nth diabatic states, and V (n)

0 is
the minimum of the nth diabatic potential energy surface.
We focus on a suite of six SB models that were used to
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FIG. 16. Results produced by adiabatic MES-PIMD and three methods (diagonalization, hyperbolic function, and first-order expansion) of diabatic MES-PIMD
on different physical properties (average potential and kinetic energy, heat capacity, and coherence length) as functions of the number of path integral beads P
for the seven-state model in Appendix F at T = 100 K.

show the subtle difference between the diabatic and adia-
batic versions of the symmetrical quasiclassical Meyer-Miller
approach45 when the second-derivative coupling terms are
ignored. (The parameters are listed in Table III of Appendix E.)
For the SB models, the adiabatic potential energy surfaces
{λm (R)} and the overlap matrix C (Rl, Rl+1) may be analyti-
cally obtained.

Figures 10–15 then employ the six SB models to com-
pare the adiabatic version with the three methods in the dia-
batic representation on the performance of convergence as a
function of the number of beads P. Adiabatic MES-PIMD
and the three methods of diabatic MES-PIMD behave simi-
larly in evaluating the kinetic energy. When thermodynamic
properties such as the potential energy and the heat capacity
are estimated, the first-order expansion and hyperbolic func-
tion methods (in the diabatic version) perform analogously

to the diagonalization method and the adiabatic version.
This is because that the nonadiabatic coupling constant ∆(mn)

= 0.1 a.u. (m , n) in the six SB models is relatively small
(i.e., in the nonadiabatic limit). In the nonadiabatic limit, the
differences between the three splitting methods are greatly
reduced. Panels (d) of Figs. 10–15 suggest that adiabatic
MES-PIMD and the diagonalization method (of the diabatic
version) always perform significantly better than the first-
order expansion and hyperbolic function methods in evaluating
the coherence length. The converged results generated by the
adiabatic version [with the effective Hamiltonian Eq. (A14)]
agree well with those obtained by the diabatic version
[with the effective Hamiltonian Eq. (39)] of MES-PIMD in
Figs. 10–15. This indicates that adiabatic MES-PIMD offers
a practical tool without necessitating the second-derivative
coupling terms.
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We then study a multidimensional seven-state model, in which each nuclear degree of freedom is described by an independent
Morse oscillator, i.e., the diabatic potential matrix elements are

Vnn (R) = V (n)
0 +

∑
j




D(j,n)
*..
,
1 − exp


−

√√
M(j)ω

2
(j,n)

2D(j,n)

(
R(j) − R(n)

eq,(j)

)

+//
-

2


,

Vmn (R) =
∑

j

{
c(mn)

(j) exp
[
−α(mn)

1,(j)

(
R(j) − R(mn)

(j)

)2
]

cos
[
α(mn)

2,(j)

(
R(j) − R(mn)

(j)

)]}
(m , n),

(80)

where V (n)
0 is the minimum of the nth diabatic potential energy

surface, M( j) is the mass for the jth nuclear degree of freedom,{
ω(j,n), D(j,n), R(n)

eq,(j), V (n)
0,( j)

}
are the frequency, relative disso-

ciation energy, displacement, and minimum potential value of

the Morse oscillator of the nth electronically diabatic state,
respectively, R(mn)

(j) is the intersection of the mth and nth dia-
batic potential energy surfaces in the jth nuclear degree of
freedom,

{
c(mn)

(j) , α(mn)
1,(j) , α(mn)

2,(j)

}
are three parameters for the

FIG. 17. Same as Fig. 8, but for the 1-D seven-state model in Table II of Appendix D except that the couplings between different electronic states are increased
by a factor of 10. [That is,

{
c(mn) = H(mn)

FMO (m , n)
}

are ten times their original values in the first equation in Table II of Appendix D.] The temperature is also
T = 70 K.
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potential coupling term Vmn in the j-th nuclear degree of free-
dom. The parameters are listed in Appendix F. As it involves
tedious work to yield the electronically adiabatic states and
potential energy surfaces for the seven-state system from its
diabatic representation Eq. (80), we concentrate on the three
splitting methods of diabatic PIMD in the investigation.

Figure 16 compares the three methods of diabatic MES-
PIMD on the performance of convergence as a function of the
number of beads P. It is demonstrated that the three methods of
diabatic MES-PIMD lead to the same converged results when
P is sufficiently large. As the number of beads P varies, the
three methods yield similar results for the kinetic energy. The
results for other physical properties of the seven-electronic-
state system suggest that the diagonalization method demon-
strates the best numerical performance in converging the
calculations.

In the nonadiabatic limit where all off-diagonal elements{
Vij (R)

}
(in the diabatic representation) are relatively small,

the difference among the three splitting methods (first-order
expansion, hyperbolic function, and diagonalization) of dia-
batic MES-PIMD is expected to be small as well. Some typical
examples are demonstrated in Figs. 8 and 10–15. In MES sys-
tems where off-diagonal elements

{
Vij (R)

}
are reasonably

large (e.g., in Figs. 3 and 16), the three splitting methods
may show considerably different numerical behaviors. We
may present another example to demonstrate this. Consider
the seven-state model system of Fig. 8. We increase the off-
diagonal elements in matrix HFMO of the first equation in
Table II of Appendix D [i.e., c(mn) =H (mn)

FMO (m, n)] by a factor
of 10 while keeping the diagonal elements and other parame-
ters unchanged in the model. We then plot the results for the
modified seven-state system as functions of the number of the

FIG. 18. The model system and all parameters are the same as those of Fig. 3. We use the diagonalization method to sample configurations of the path integral
beads. The estimators derived in all the three splitting methods are employed for evaluating the same physical property. Since the configurational distribution of
the beads is the same, the comparison demonstrates the numerical behaviors of the different estimators.
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path integral beads P in Fig. 17. In contrast to Fig. 8
(in the nonadiabatic limit), Fig. 17 shows that the behav-
iors of the three splitting methods are more different
when the couplings between different electronic states are
larger.

When the number of path integral beads P is fixed, the
three splitting methods often yield different estimators for
the same physical property as well as different configura-
tional distributions of the beads. Use the two-electronic-state
model system of Fig. 3 as an example. In Fig. 18, we first
use the diagonalization method to sample the path integral
beads and then employ the different estimators derived in the
three splitting methods to evaluate the same physical property.
Figure 18 shows that the different estimators lead to signif-
icantly different results even when the same configurational
distribution of the beads is used. The kinetic energy is an
exception. This is because its estimators derived in the three

splitting methods are the same. The same numerical behav-
iors are observed in Fig. 19, where the first-order expansion
method is employed to sample the beads, while the different
estimators yielded by the three splitting methods are used to
compute the same physical property. Comparison of Fig. 19
to Fig. 18 suggests that the numerical performance is much
more sensitive to the estimator rather than to the configura-
tional distribution of the beads (at least for the model system
in Figs. 18 and 19). Regardless of whether the most inaccurate
configurational distribution of the beads (produced by the first-
order expansion method) or the most accurate one (obtained
by the diagonalization method) is used, the same estimator
yields similar results for a physical property (e.g., the poten-
tial energy, heat capacity, or coherence length of the electronic
state density). As shown in most test cases [Figs. 3(b), 8(b),
and 10(b)–15(b)], the three splitting methods produce similar
results for the kinetic energy (when the same parameters are

FIG. 19. Same as Fig. 18. But the configurational distribution of the path integral beads is obtained by the first-order expansion method instead. The figure
should be compared to Figs. 18 and 3.
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used). This is because the estimators (for the kinetic energy)
in the three methods share the same expression. It should be
stressed that the configurational distribution of the beads may
also become important. For instance, the three splitting meth-
ods lead to noticeably different results for the kinetic energy in
Fig. 16(b).

Because the coherence length involves the elements of the
electronic state density, it is very sensitive to the accuracy of the
splitting scheme (including both the accuracy of the estimator
and that of the configurational distribution of the beads). In all
cases (even those in the nonadiabatic limit), the diagonalization
method is significantly superior to the first-order expansion or
hyperbolic function method.

IV. CONCLUSION REMARKS

In the paper, we extend the unified theoretical frame-
work for MD/PIMD thermostats7,17 to derive a novel prac-
tical PIMD approach for studying exact quantum statistics
of general multi-electronic-state systems in thermal equilib-
rium. Both diabatic and adiabatic versions of MES-PIMD are
presented (see Appendix A). We propose the effective poten-
tial term given in Eq. (27) in the diabatic representation [or
Eq. (A7) in the adiabatic representation] which avoids singu-
larity and is then always well defined (see more discussion in
Appendix B). This yields numerically stable PIMD trajecto-
ries for sampling the canonical ensemble when two or more
electronic states are involved. It is shown that in the MES-
PIMD approach the “middle” thermostat scheme is much more
efficient than the conventional schemes such as the “side”
one.

Three splitting methods are proposed for diabatic MES-
PIMD. While the estimators for the same physical property in
the three splitting methods are often different, their estimators
for the kinetic energy are the same. This is the main reason why
in most of the benchmark examples the three splitting meth-
ods perform similarly in evaluating the kinetic energy but may
show considerably different behaviors in converging the results
for other physical properties. While the first-order expansion
method often converges slowly and the hyperbolic function
method improves the convergence performance, the diago-
nalization method employs the least number of path integral
beads to obtain converged results. Since the major compu-
tational effort often comes from the evaluation of the force
∂V (R)/∂R in a “real” system, the diagonalization method is
the most economic as long as the number of electronic states
is not large.

Adiabatic MES-PIMD performs similarly to the diagonal-
ization method because they involve the same splitting scheme
of the Boltzmann operator. While propagation in adiabatic
MES-PIMD does not need even the first-derivative coupling
terms, evaluation of physical properties through adiabatic
MES-PIMD does not require the second-derivative coupling
terms even for the virial estimators. It is then expected that
adiabatic MES-PIMD offers a useful approach for studying
thermal equilibrium MES molecular systems on the fly with
modern quantum chemistry calculations.

While a few theoretical approaches have been success-
fully developed for studying quantum statistics for specific

types of multi-electronic-state models (e.g., especially when
the nuclear degrees of freedom are described by harmonic
bath models),37,46–48 the diabatic or adiabatic version of
MES-PIMD offers a feasible exact approach for more gen-
eral complex/large systems in thermal equilibrium when the
Born-Oppenheimer approximation, Condon approximation,
and harmonic bath approximation are broken. The MES-
PIMD approach will also be useful for preparing the neces-
sary initial condition (e.g., initial nuclear configurations) for
various multi-state real time dynamics methods,25–27,45,48–64

as well as for a number of nonadiabatic reaction rate
theories,18–21,23,65 for studying nonadiabatic processes in
condensed phase.
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APPENDIX A: MULTI-ELECTRONIC-STATE PIMD
IN THE ADIABATIC REPRESENTATION

When the diagonalization method (in the diabatic repre-
sentation) is employed, we have

Tre



P∏
i=1

Θ (Ri)

= Tre



P∏
i=1

e−βΛ(Ri)/PC (Ri, Ri+1)

, (A1)

with C (Ri, Ri+1) ≡ T(Ri)T T (Ri+1). It is easy to show that the
element in the lth row and mth column of matrix C (Ri, Ri+1)
is simply the overlap between the two electronically adiabatic
states 〈l (Ri)| m (Ri+1)〉. Here |l (Ri)〉 and |m (Ri+1)〉 are the
lth (electronically) adiabatic state with the nuclear coordinate
Ri and mth adiabatic state with the nuclear coordinate Ri+1,
respectively. When the adiabatic representation is employed, it
is possible to evaluate matrix C (Ri, Ri+1) without the knowl-
edge of the orthogonal transformation matrix T(R). In the
adiabatic representation, the trace over the electronic degrees
of freedom is

Tre

[
B̂

]
=

N∑
m=1

〈m (R)| B̂ |m (R)〉 (A2)

and the resolution of the identity is

1̂ =
∫

dR
N∑

m=1

|R, m (R)〉 〈R, m (R)|. (A3)



102319-25 X. Liu and J. Liu J. Chem. Phys. 148, 102319 (2018)

Equation (A1) now becomes

Tre



P∏
i=1

Θ (Ri)

=

N∑
m1,· · ·mP=1



P∏
i=1

e−βλmi (Ri)/P

× 〈mi (Ri)| mi+1 (Ri+1)〉

]
. (A4)

Note that the summations in the RHS of Eq. (A4) are
over the electronically adiabatic states instead. The partition
function [Eq. (17)] may then be expressed in the adiabatic
representation as

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp

−
β

2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)


×

N∑
m1,· · ·mP=1



P∏
i=1

e−βλmi (Ri)/P 〈mi (Ri)| mi+1 (Ri+1)〉

.

(A5)

This is equivalent to the expression obtained by Schmidt and
Tully.29

A more compact form of Eq. (A5) is

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp

−
β

2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)


×Tre



P∏
i=1

e−βΛ(Ri)/PC (Ri, Ri+1)

. (A6)

For the same reason discussed in Sec. II B, it is
doomed to fail for general systems when the abso-

lute value of Tre

[
P∏

i=1
e−βΛ(Ri)/PC (Ri, Ri+1)

]
is used to

define an effective potential term for PIMD (or PIMC).

Instead, Tre

[
P∏

i=1
e−βΛ(Ri)/P

]
is always positive-definite, which

leads to an effective (real-valued) potential function
φ(adia) (R1, · · · , RP) defined by

e−βφ
(adia)(R1,· · · ,RP)

≡ Tre



P∏
i=1

e−βΛ(Ri)/P

, (A7)

where φ(adia) (R1, · · · , RP) has no singularity. Equation (A6)
then becomes

Z = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp
[
−βU (adia)

eff (R1, · · · , RP)
]

Z̃ (adia) (R1, · · · , RP),

(A8)

with the estimator for the partition function

Z̃ (adia) (R1, · · · , RP) =

Tre

[
P∏

i=1
e−βΛ(Ri)/PC (Ri, Ri+1)

]

Tre

[
P∏

i=1
e−βΛ(Ri)/P

]

(A9)

and

U (adia)
eff (R1, · · · , RP) =

1
2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)

+ φ(adia) (R1, · · · , RP). (A10)

When the couplings between different adiabatic states van-
ish, the estimator Z̃ (adia) (R1, · · · , RP) = 1 and the partition
function for the multi-state system Eq. (A8) are reduced to

Z (no−coup) = lim
P→∞

�����
PM

2π β~2

�����

P/2 ∫
dR1 · · · dRP

× exp
[
−βU (adia)

eff (R1, · · · , RP)
]
, (A11)

which is a well-defined physical quantity,

Z (no−coup) =

N∏
j=1

Z (adia)
j , (A12)

where Z (adia)
j is the single-electronic-state partition function

for the jth electronically adiabatic state.

Evaluation of any physical property [Eq. (3)] in the adiabatic representation is given by

〈
B̂
〉
= lim

P→∞

∫
dR1 · · · dRP exp

[
−βU (adia)

eff (R1, · · · , RP)
]

B̃(adia) (R1, · · · , RP)∫
dR1 · · · dRP exp

[
−βU (adia)

eff (R1, · · · , RP)
]

Z̃ (adia) (R1, · · · , RP)
, (A13)

with B̃(adia) (R1, · · · , RP) as the estimator for operator B̂ in
the adiabatic representation. It is trivial to apply the same
procedure in Sec. II C to derive MES-PIMD in the adiabatic
representation for Eq. (A13).

Define the effective Hamiltonian in the adiabatic repre-
sentation [with the staging coordinates of Eq. (33)]

H (adia)
eff

(
ξ1, · · · , ξP; p1, · · · , pP

)
=

1
2

P∑
j=1

pT
j M̃

−1
j pj +

1
2
ω2

P

P∑
j=1

ξT
j M̄jξj

+ φ(adia) (
ξ1, · · · , ξP

)
. (A14)
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Its equations of motion are

ξ̇j = M̃
−1
j pj

ṗj = −ω
2
PM̄jξj −

∂φ(adia)

∂ξj
(j = 1, · · · , P).

(A15)

The term ∂φ(adia)/∂ξj in Eq. (40) is given by the chain rule,

∂φ(adia)

∂ξ1
=

P∑
i=1

∂φ(adia)

∂Ri
,

∂φ(adia)

∂ξj
=
∂φ(adia)

∂Rj
+

j − 2
j − 1

∂φ(adia)

∂ξj−1
(j = 2, · · · , P) ,

(A16)

and

∂φ(adia)

∂Ri
=

1
P

Tre

[
∂Λ (Ri)
∂Ri

P∏
j=1

e−βΛ(Rj)/P
]

Tre

[
P∏

j=1
e−βΛ(Rj)/P

] . (A17)

Equation (A13) then becomes

〈
B̂
〉
= lim

P→∞

〈
B̃(adia) (

ξ1, · · · , ξP
)〉

H(adia)
eff〈

Z̃ (adia) (
ξ1, · · · , ξP

)〉
H(adia)

eff

, (A18)

where the bracket 〈〉H(adia)
eff

corresponds to the phase

space average with the probability distribution
exp

[
−βH (adia)

eff

(
ξ1, · · · , ξP; p1, · · · , pP

)]
, e. g.,〈

B̃(adia) (
ξ1, · · · , ξP

)〉
H(adia)

eff

=

∫
dξ1 · · · dξPdp1 · · · dpPB̃(adia) (

ξ1, · · · , ξP
)

× exp
[
−βH (adia)

eff

(
ξ1, · · · , ξP; p1, · · · , pP

)]
. (A19)

We then consider the expression of the estimator B̃(adia) in
Eq. (A13) or Eq. (A18) for different physical properties. When
B̂ is an operator dependent on the nuclear coordinate and the
electronic state, the estimator is

B̃(adia) (R1, · · · , RP) =
1
P

*
,
Tre



P∏
i=1

e−βΛ(Ri)/P


+
-

−1

Tre
*
,

P∑
k=1






k−1∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)

× e−βΛ(Rk )/2PB (Rk) e−βΛ(Rk )/2PC (Rk , Rk+1)


P∏
i=k+1

e−βΛ(Ri)/PC (Ri, Ri+1)





+
-

, (A20)

where B(R) is an N × N matrix-valued function of the nuclear coordinate in the adiabatic representation. For instance, the
estimator for the potential energy is

Ṽ (adia) (R1, · · · , RP) =
1
P

*
,
Tre



P∏
i=1

e−βΛ(Ri)/P


+
-

−1

Tre
*
,

P∑
k=1






k−1∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)

× e−βΛ(Rk )/2PΛ (Rk) e−βΛ(Rk )/2PC (Rk , Rk+1)


P∏
i=k+1

e−βΛ(Ri)/PC (Ri, Ri+1)





+
-

. (A21)

When B̂ = 1
2 P̂

T
M−1P̂ is the nuclear kinetic energy operator, the primitive estimator is

K̃ (adia)
prim (R1, · · · , RP) = Z̃ (adia)



3NatomP
2β

−
1
2
ω2

P

P∑
i=1

(Ri − Ri+1)T M (Ri − Ri+1)


, (A22)

and the virial version is

K̃ (adia)
vir (R1, · · · , RP) =

3Natom

2β
Z̃ (adia) −

1
2β

P∑
j=1

(
Rj − R∗

)T

∂

∂Rj

{
Tre

[
P∏

i=1
e−βΛ(Ri)/PC (Ri, Ri+1)

]}
Tre

[
P∏

i=1
e−βΛ(Ri)/P

] , (A23)

where R∗ is given by either Eq. (49) or Eq. (50). The derivative term in the RHS of Eq. (A23) may be expressed as

∂

∂Rj




Tre



P∏
i=1

e−βΛ(Ri)/PC (Ri, Ri+1)




= Tre



*.
,

j−2∏
i=1

e−βΛ(Ri)/PC (Ri, Ri+1)+/
-

e−βΛ(Rj−1)/PΦ(kin)
(
Rj−1, Rj, Rj+1

)

×
*.
,

P∏
i=j+1

e−βΛ(Ri)/PC (Ri, Ri+1)+/
-


, (A24)



102319-27 X. Liu and J. Liu J. Chem. Phys. 148, 102319 (2018)

where the element in the mth row and nth column of matrix Φ(kin)
(
Rj−1, Rj, Rj+1

)
is

Φ
(kin)
mn

(
Rj−1, Rj, Rj+1

)
=

N∑
k=1




〈
m

(
Rj−1

) �������

∂k
(
Rj

)
∂Rj

〉
e−βλk(Rj)/P

〈
k
(
Rj

) ��� n
(
Rj+1

)〉

−
β

P

〈
m

(
Rj−1

) ���k
(
Rj

) 〉 ∂λk

(
Rj

)
∂Rj

e−βλk(Rj)/P
〈

k
(
Rj

) ��� n
(
Rj+1

)〉
+

〈
m

(
Rj−1

) ���k
(
Rj

) 〉
e−βλk(Rj)/P

〈
∂k

(
Rj

)
∂Rj

�������
n
(
Rj+1

)〉


. (A25)

The primitive estimator for the heat capacity CV =
∂
∂T

〈
Ĥ

〉
is

Cprim
V = −

3
2

NatomPkB +
kB β

2〈
Z̃ (adia)

〉
H(adia)

eff

*...
,

2
β

〈
K̃ (adia)

prim

〉
H(adia)

eff

+
〈
K̃primK̃ (adia)

prim

〉
H(adia)

eff

+ 2
〈
K̃primṼ (adia)

〉
H(adia)

eff

−

〈
Ẽ(adia)

prim

〉2

H(adia)
eff〈

Z̃ (adia)
〉

H(adia)
eff

+///
-

+
kB β

2〈
Z̃ (adia)

〉
H(adia)

eff 〈
θ(adia)

1 (R1, · · · , RP) + θ(adia)
2 (R1, · · · , RP)

Tre

[
P∏

j=1
e−βΛ(Rj)/P

] 〉
H(adia)

eff

, (A26)

where K̃prim is given in Eq. (54) and Ẽ(adia)
prim is the primitive estimator for the total energy,

Ẽ(adia)
prim = K̃ (adia)

prim + Ṽ (adia), (A27)

and θ(adia)
1 and θ(adia)

2 are given by

θ(adia)
1 (R1, · · · , RP) =

2

P2
Tre

*.
,

P∑
j=1

P∑
k=j+1






j−1∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
Λ

(
Rj

)
e−βΛ(Rj)/PC

(
Rj, Rj+1

)

×



k−1∏
i=j+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
Λ (Rk) e−βΛ(Rk )/PC (Rk , Rk+1)



P∏
i=k+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)




+
-

(A28)

and

θ(adia)
2 (R1, · · · , RP) =

1

P2
Tre

*
,

P∑
k=1






k−1∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
Λ(Rk)2 e−βΛ(Rk )/PC (Rk , Rk+1)

×



P∏
i=k+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)




+
-

. (A29)

The virial estimator for the heat capacity is

Cvir
V =

kB β
2〈

Z̃ (adia)
〉

H(adia)
eff

*...
,

〈
K̃primK̃ (adia)

vir

〉
H(adia)

eff

+
〈
K̃primṼ (adia)

〉
H(adia)

eff

−

〈
Ẽ(adia)

vir

〉
H(adia)

eff

〈
Ẽ(adia)

prim

〉
H(adia)

eff〈
Z̃ (adia)

〉
H(adia)

eff

+
3Natom

2β

〈
Ṽ (adia)

〉
H(adia)

eff

+
1
β

〈
K̃ (adia)

vir

〉
H(adia)

eff

+///
-

+
kB β

2〈
Z̃ (adia)

〉
H(adia)

eff

× 〈
θ(adia)

1 + θ(adia)
2 + θ(adia)

3 (R1, · · · , RP) + θ(adia)
4 (R1, · · · , RP) + θ(adia)

5 (R1, · · · , RP)

Tre

[
P∏

j=1
e−βΛ(Rj)/P

] 〉
H(adia)

eff

, (A30)

where Ẽ(adia)
vir is the virial estimator for the total energy,

Ẽ(adia)
vir = K̃ (adia)

vir + Ṽ (adia), (A31)
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θ(adia)
1 and θ(adia)

2 are given by Eqs. (A28) and (A29), θ(adia)
3 , θ(adia)

4 and θ(adia)
5 are

θ(adia)
3 (R1, · · · , RP) = −

1
2βP

P∑
j=1

(
Rj − R∗

)T
Tre

*.
,

j−1∑
k=1






k−1∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
Λ (Rk) e−βΛ(Rk )/P

×



j−2∏
i=k

(
C (Ri, Ri+1) e−βΛ(Ri+1)/P

)
Φ(kin)

(
Rj−1, Rj, Rj+1

) 

P∏
i=j+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)




+/
-

, (A32)

θ(adia)
4 (R1, · · · , RP) = −

1
2βP

P∑
j=1

(
Rj − R∗

)T
Tre

*.
,



j−2∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
e−βΛ(Rj−1)/P

×Φ(theta)
(
Rj−1, Rj, Rj+1

) 

P∏
i=j+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)

+/
-

, (A33)

and

θ(adia)
5 (R1, · · · , RP) = −

1
2βP

P∑
j=1

(
Rj − R∗

)T
Tre

*.
,

P∑
k=j+1






j−2∏
i=1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)
e−βΛ(Rj−1)/P

×Φ(kin)
(
Rj−1, Rj, Rj+1

) 

k−1∏
i=j+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)

×Λ (Rk) e−βΛ(Rk )/PC (Rk , Rk+1)


P∏
i=k+1

(
e−βΛ(Ri)/PC (Ri, Ri+1)

)




+
-

, (A34)

with the element in the mth row and nth column of matrix Φ(theta) (Ri−1, Ri, Ri+1) [of Eq. (A33)] given by

Φ
(theta)
mn

(
Rj−1, Rj, Rj+1

)
=

N∑
k=1


〈m

(
Rj−1

) �������

∂k
(
Rj

)
∂Rj

〉
λk

(
Rj

)
e−βλk(Rj)/P

〈
k
(
Rj

) ���n
(
Rj+1

)〉

+
〈
m

(
Rj−1

) ���k
(
Rj

) 〉 ∂λk

(
Rj

)
∂Rj

[
1 −

β

P
λk

(
Rj

)]
e−βλk(Rj)/P

〈
k
(
Rj

) ��� n
(
Rj+1

)〉
+

〈
m

(
Rj−1

) ���k
(
Rj

) 〉
λk

(
Rj

)
e−βλk(Rj)/P

〈
∂k

(
Rj

)
∂Rj

�������
n
(
Rj+1

)
〉




. (A35)

The estimator for the element in the mth row and nth column of the electronic state density matrix in the adiabatic
representation ρ(ads)

mn is then given by

ρ̃(adia−ads)
mn (R1, · · · , RP) =

1
P

*.
,
Tre



P∏
j=1

e−βΛ(Rj)/P


+/
-

−1

Tre
*
,

P∑
k=1






k−1∏
i=1

e−βΛ(Ri)/PC (Ri, Ri+1)


× e−β[λm(Rk )+λn(Rk )]/2Pρ(ads)
mn (Rk) C (Rk , Rk+1)



P∏
i=k+1

e−βΛ(Ri)/PC (Ri, Ri+1)





+
-

, (A36)

with ρ(ads)
mn (R) defined by Eq. (67).

Although we started from Eq. (A1) that was obtained
in the diabatic representation, Eqs. (A6)–(A36) demonstrated
that multi-electronic-state PIMD may be performed in the
adiabatic representation without any knowledge of the dia-
batic states. Not less importantly, when the primitive estima-
tor is involved, evaluation of the physical properties such as
the average total energy, kinetic energy, heat capacity, etc.,
requires only the overlap matrix, C (Ri, Ri+1), of which the
element in the lth row and mth column is the overlap of
the adiabatic states 〈l (Ri)|m (Ri+1)〉. Even when the virial

estimator is employed, we only need C (Ri, Ri+1) and the
first-derivative coupling elements such as

〈
∂l(Ri)
∂Ri

��� m (Ri+1)
〉
.

That is, no second-derivative nonadiabatic coupling terms are
needed in the adiabatic version of the MES-PIMD approach
for studying exact quantum statistical mechanics. This then
offers a practical tool to perform MES-PIMD simulations with
ab initio electronic structure calculations for “real” molecular
systems.

Note that the diagonalization method in the diabatic
representation is not equivalent to the adiabatic version of
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MES-PIMD derived above. The orthogonal transformation
matrix T(R) is necessary in Eqs. (51) and (52) for efficiently
evaluating the force term Eq. (42) and the estimators in the
diabatic representation. In contrast, T(R) is not required in
the adiabatic version. When the transformation matrix T(R)

between the adiabatic and diabatic states is available, it is pos-
sible to evaluate in adiabatic MES-PIMD the diabatic state
density matrix. For example, Eq. (65) yields the estimator for
the element in the ith row and jth column of the electronic state
density matrix in the diabatic representation ρ(ds)

ij which is

ρ̃(adia−ds)
mn (R1, · · · , RP) =

1
P

*.
,
Tre



P∏
j=1

e−βΛ(Rj)/P


+/
-

−1

Tre
*
,

P∑
k=1






k−1∏
l=1

e−βΛ(Rl)/PC (Rl, Rl+1)


× e−βΛ(Rk )/2PTT (Rk) ρ(ds)
ij (Rk) T (Rk) e−βΛ(Rk )/2PC (Rk , Rk+1)



P∏
l=k+1

e−βΛ(Rl)/PC (Rl, Rl+1)





+
-

,

(A37)

with ρ(ds)
ij given by Eq. (64).

It is straightforward to follow Sec. II D to generate efficient algorithms in the “middle” thermostat scheme for the adiabatic
version of MES-PIMD.

APPENDIX B: OTHER CHOICES FOR AN EFFECTIVE POTENTIAL TERM

For general multi-electronic-state systems in the diabatic representation, Tre

[
P∏

i=1
e−βVdiag(Ri)/P

]
is always positive-definite,

while Tre

[
P∏

i=1
Θ (Ri)

]
is often not. Instead of Eq. (27), another effective (real-valued) potential function φ(dia)

mod (R1, · · · , RP) may

be defined by

e−βφ
(dia)
mod (R1,· · · ,RP)

≡




c2

(
Tre

[
P∏

i=1
e−βVdiag(Ri)/P

])2

+

(
Tre

[
P∏

i=1
Θ (Ri)

])2

c2 + 1




1/2

, (B1)

where c is a positive real constant. φ(dia)
mod (R1, · · · , RP) is well defined as long as c is finite. As c → ∞, the effective poten-

tial function φ(dia)
mod (R1, · · · , RP) approaches the one defined by Eq. (27) for diabatic MES-PIMD in Sec. II. In another limit

c→ 0, φ(dia)
mod (R1, · · · , RP) approaches the potential term defined by Eq. (26) that may meet severe numerical problems. When

the value of the parameter c is chosen in a reasonable region, the potential function φ(dia)
mod (R1, · · · , RP) given by Eq. (B1) may

lead to a more efficient sampling for diabatic MES-PIMD.
Similarly, in the adiabatic representation, an effective (real-valued) potential function φ(adia)

mod (R1, · · · , RP) may be well
defined by

e−βφ
(adia)
mod (R1,· · · ,RP)

≡




c2

(
Tre

[
P∏

i=1
e−βΛ(Ri)/P

])2

+

(
Tre

[
P∏

i=1
e−βΛ(Ri)/PC (Ri, Ri+1)

])2

c2 + 1




1/2

. (B2)

In addition that φ(adia)
mod (R1, · · · , RP) avoids the numerical

instability that
�����

Tre

[
P∏

i=1
e−βΛ(Ri)/PC (Ri, Ri+1)

] �����
leads to, it

may offer more efficient adiabatic MES-PIMD sampling than
the effective potential given by Eq. (A7).

Besides Eq. (B1) [or Eq. (B2)], some other choices for the
effective potential term in MES-PIMD may also be proposed.
For instance, when the hyperbolic function method [Eqs. (14),
(21), and (25)] in the diabatic representation is employed, a
choice other than Eq. (27) for a well-defined effective potential
function is

e−βφ
(dia)
(hyper)(R1,· · · ,RP)

≡ Tre



P∏
i=1

e−βVdiag(Ri)/2PGdiag (Ri) e−βVdiag(Ri)/2P


,

(B3)
where the mth diagonal element of the diagonal matrix
Gdiag (Ri) may be given by

G(mm)
diag (Ri) =

∏
j,m

cosh2
[
−βVjm (Ri)/2P

]
(B4)

or by
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G(mm)
diag (Ri) =

∏
j,m

cosh
[
−βVjm (Ri)/P

]
. (B5)

Equation (B1) [Eq. (B3) or Eq. (B2)] does not demon-
strate noticeably better sampling performance than Eq. (27) [or
Eq. (A7)] as we investigate the benchmark models in Sec. III.
(Results are not shown.) It will be interesting in future to
test them for more multi-electronic-state systems. Although
various other choices are possible, it should be stressed that
Eq. (27) [or Eq. (A7)] offers the simplest well-defined effec-
tive potential for MES-PIMD that is practical for general
multi-electronic-state systems and that leads to a well-defined
physical quantity (as discussed in Sec. II and in Appendix A).

APPENDIX C: DIFFERENCE BETWEEN
THE COHERENCE LENGTH IN THE DIABATIC
REPRESENTATION AND THAT IN THE ADIABATIC
REPRESENTATION

It is well known that thermodynamic properties are inde-
pendent of the representation. The coherence length of the
electronic state density matrix defined in Eq. (68), however,
depends on whether the diabatic or adiabatic representation
is employed. Use the one-dimensional two-electronic-state

FIG. 20. The coherence length as a function of the difference between the
minimum of that ground state and that of the excited state ∆R = R(2)

eq − R(1)
eq

with other parameters fixed in the suite of models listed in Table I at the
inverse temperature β = 27 000. Both MES-PIMD and exact (DVR) results
are demonstrated.

model [of which the parameters are described in Table I]
for demonstration. Figure 20 shows the coherence length
as a function of the difference between the minimum of
that ground state and that of the excited state ∆R = R(2)

eq

−R(1)
eq with other parameters fixed for the system at the inverse

temperature β = 27 000. The behavior of the results shown
in Fig. 20(a) for the diabatic representation is significantly
different from that shown in Fig. 20(b) for the adiabatic repre-
sentation. The coherence length of the electronic state density
is not a well-defined physical quantity. Despite that a few
choices other than Eq. (68) have been proposed for quanti-
fying the coherence length,36 none of them are independent of
the representation of the electronic states.

APPENDIX D: PARAMETERS FOR
A SEVEN-ELECTRONIC-STATE SYSTEM COUPLED
TO A MORSE OSCILLATOR

In Eq. (78), c(mn) =H (mn)
FMO (m, n) and V (n)

0 =H (nn)
FMO

(n = 1, · · · , 7) are the diagonal and off-diagonal elements of
the Hamiltonian matrix HFMO (taken from Ref. 66)

HFMO

=

*................
,

0 −62 17 8 −1 −9 28

−62 175 −57 −5 −70 −19 6

17 −57 260 −4 −2 32 1

8 −5 −4 280 6 −8 −106

−1 −70 −2 6 320 40 2

−9 −19 32 −8 40 360 13

28 6 1 −106 2 13 420

+////////////////
-

(
unit: cm−1

)
;

(D1)

the intersection R(mn) (m , n) is the element in the mth row
and nth column of the matrix

RFMO =

*................
,

0 224 157 112 99 93 94

224 0 102 67 65 66 72

157 102 0 34 48 54 65

112 67 34 0 62 65 76

99 65 48 62 0 69 84

93 66 54 65 69 0 100

94 72 65 76 84 100 0

+////////////////
-

(unit: a.u.) .

(D2)

TABLE II. Parameters in Eq. (78).

n ω(n) (cm−1) R(n)
eq (a.u.) D(n) (a.u.) α

(ij)
1 (a.u.) α

(ij)
2 (a.u.)

1 212.2 0 7.28 × 10�2

5 × 10�5 0.02

2 209.0 5 7.17 × 10�2

3 205.8 10 7.06 × 10�2

4 202.7 15 6.95 × 10�2

5 199.5 20 6.84 × 10�2

6 196.3 25 6.73 × 10�2

7 193.1 30 6.62 × 10�2
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APPENDIX E: PARAMETERS IN EQ. (79) FOR THE SIX
SPIN-BOSON MODELS IN REF. 45

In Eq. (79), M(j) = 1, ω(j,1) = ω(j,2) = ωj, R(1)
eq,(j)

= −R(2)
eq,(j) =

cj

M(j)ω
2
j
, j = 1, · · ·Nb, where Nb is the num-

ber of the degrees of freedom of the harmonic bath, V (1)
0

= −
Nb∑
j=1

c2
j

2Mjω
2
j

+ ε, V (2)
0 = −

Nb∑
j=1

c2
j

2Mjω
2
j
− ε, and ∆(12) = ∆. Here

Nb = 100 frequencies {ωj} and coupling constants {cj} are
selected from the spectral density of the exponentially damped
Ohmic form

J (ω) =
π

2

Nb∑
j=1

c2
j

ωj
δ
(
ω − ωj

)
=
π

2
αωe−ω/ωc . (E1)

We then employ the discretization strategy in Ref. 67 for the
above equation. The frequencies {ωj} are chosen as

ωj = −ωc log

(
1 −

j
Nb + 1

)
, j = 1, · · · , Nb (E2)

TABLE III. Parameters [in Eq. (79)] for the six spin-boson models in
Ref. 45.

Model ∆ (a.u.) ε (a.u.) β (a.u.) ωc (a.u.) α (a.u.)

I 0.1 0 1 0.25 0.09
II 0.1 0 50 0.25 0.09
III 0.1 1 50 0.25 0.1
IV 0.1 1 2.5 0.1 0.1
V 0.1 0 10 0.1 2
VI 0.1 5 1 0.2 4

and then the coupling constants {cj} are determined as

cj =

√
αω2

j ωc

Nb + 1
, j = 1, · · · , Nb. (E3)

APPENDIX F: PARAMETERS FOR THE
SEVEN-ELECTRONIC-STATE COUPLED TO
MULTIDIMENSIONAL MORSE OSCILLATORS

In Eq. (80), M(j) = 1, j = 1, · · ·Nb with Nb = 50;

ω(j,n) = −ωc [1 − 0.015 (n − 1)] log

(
1 −

j
Nb + 1

)
R(n)

eq,(j) =
1

M(j)ω(j,1)

√
2η

~ (Nb + 1)
+ 5 (n − 1)

D(j,n) = 0.0728 [1 − 0.015 (n − 1)]

α(mn)
1,(j) = 5 × 10−5

α(mn)
2,(j) = 0.02




(j = 1, · · · , Nb, n = 1, · · · , 7),

with ωc = 212.2 cm�1, η = 35 cm�1; V (n)
0 = H (nn)

FMO

(n = 1, · · · , 7) and c(mn)
(j) =H (mn)

FMO (m , n) are the diagonal and
off-diagonal elements of the Hamiltonian matrix given in
Eq. (D1), respectively;

{
R(mn)

(j) = R(mn); j = 1, · · · , Nb, m , n
}

are elements of the matrix in Eq. (D2).
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