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Abstract We have recently developed a unified “middle” thermostat scheme for
rationally designing molecular dynamics (MD)/path integral molecular dynam-
ics (PIMD) algorithms for efficiently sampling the configuration space for the
classical/quantum canonical ensemble with or without constraints. It significantly
improves the time interval by a factor of 4–10 to achieve the same accuracy for
structural and configuration-dependent thermodynamic properties for MD (as well
as for any thermodynamic properties for PIMD). It has been implemented inAMBER
(2018/2019 version), which is available for MD/PIMD simulations with force fields,
QM/MM, or ab initio methods.

Keywords Canonical ensemble · Molecular dynamics · Path integral molecular
dynamics · Thermostat algorithms · “Middle” thermostat scheme · Quantum
statistics · Classical statistics · Holonomic constraints · Multi-time-step
techniques · Isokinetic constraints · Sampling efficiency

1 Introduction

Molecular dynamics (MD) has been widely used in chemistry, biology, materials,
environmental science, and other scientific fields [1, 2]. When nuclear quantum
effects are important, MD can be implemented to perform imaginary time path inte-
gral (PIMD) by virtue of the ring-polymer isomorphism [3, 4], which in principle
offers a numerically exact tool for practically studying quantum statistical properties
in molecular systems [4–8] where quantum exchange effects are negligible. Many
cases of interest involve the canonical ensemble, of which the number of particles
(N), volume (V) and temperature (T) are constant.
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In this review we focus on recent progress on the efficient “middle” thermostat
[9–12] that has been established in a series of papers [7, 9, 11–16] and has been imple-
mented in AMBER [17] (the 2018 and 2019 versions). In 2016 we first suggested the
Langevin thermostat in the “middle” scheme to construct efficient sampling algo-
rithms for PIMD [7, 13, 14]. In 2017 and 2018 we developed a unified framework
[9, 11] based on either velocity-Verlet or leap-frog algorithms to apply various ther-
mostat algorithms for MD [1, 15, 18–32] and those for PIMD [7, 13, 14, 33–39]
proposed for the canonical (NVT) ensemble. In our unified theoretical framework,
we can describe most conventional algorithms [1, 15, 18–27, 33–36, 38, 39] in the
“side” or “end” scheme. The unified “middle” scheme we proposed in Refs. [9, 11]
provides an efficient tool for configurational sampling with either stochastic or deter-
ministic thermostats. We have further extended the “middle” thermostat scheme as
an efficient configurational sampling tool for systems with holonomic or isokinetic
constraints [12]. Even when multiple-time-step (MTS) techniques are employed, the
“middle” scheme leads to new algorithms that outperform original ones [12]. We
have recently extended PIMD to offer an exact tool for quantum statistical proper-
ties in coupled multi-electronic-state systems [40, 41] where the Born-Oppenheimer
approximation breaks down, in which the “middle” thermostat scheme still offers an
efficient sampling tool.

2 “Middle” scheme

The “middle” scheme for MD or PIMD allows for larger time intervals to obtain the
same convergence value, which significantly reduces the computational cost. The
“middle” scheme is a powerful tool for configurational sampling, thus is helpful for
evaluating thermodynamic properties that depend on coordinates in classical MD
simulation For PIMD, all the structural and thermodynamic properties in quantum
mechanics are functions of only the configurations of the path integral beads, the
“middle” scheme is particularly useful because the time interval can be increased by
4 to 10 times without loss of accuracy.

We briefly review three typical thermostats, including stochastic thermostats (the
Andersen thermostat, Langevin dynamics) as well as deterministic ones (the Nosé-
Hoover thermostat and Nosé-Hoover chain). The integration step with thermostats
can be described as three parts, the step for updating coordinates, that for updating
momenta and that for thermostatting, denoted “x”, “p” and “T”, respectively. Then
the equations of motion are

(
dx

dp

)
=
(
M−1p
0

)
dt︸ ︷︷ ︸

x

+
(

0
− ∂U (x)

∂x

)
dt︸ ︷︷ ︸

p

+Thermostat︸ ︷︷ ︸
T

(1)
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Here, x and p are coordinates andmomentum in vector forms,U (x) is the physical
potential energy, M the diagonal mass matrix.

The evolution of density distribution for the phase space can be described by the
forward Kolmogorov equation. Define the translational propagator of coordinates as
Lx and that of momenta as Lp.

Lxρ = −pTM−1 ∂ρ

∂x
(2)

Lpρ =
(

∂U

∂x

)T
∂ρ

∂p
(3)

The definition of LT depends on the thermostat employed. For a time step �t, the
phase space propagators are eLx�t , eLp�t and eLT �t . The phase space propagation of
velocity-Verlet “middle” scheme we propose is written as

eL�t ≈ eL
Middle
VV �t = eLp�t/2eLx�t/2eLT �t eLx�t/ 2eLp�t/ 2 (4)

We denote it as “p-x-T-x-p”, where the operations are performed from right to
left. Similarly, the phase space propagation of the leap frog “middle” scheme reads

eL�t ≈ eL
Middle
LF �t = eLx�t/2eLT �t eLx�t/2eLp�t , (5)

which is donated as “p-x-T-x-p”, with the operations in a right-to-left sequence.
In the “middle” scheme, the thermostat process for a full time step is performed

immediately after the coordinate translation for half a time step, then the coordinate
translation for another half time step is followed. In contrast, traditional thermostat
algorithms can be included in the “side” scheme

eL�t ≈ eL
Side
VV �t = eLT �t/2eLp�t/ 2eLx�t eLp�t/2eLT �t/2 (6)

eL�t ≈ eL
Side
LF �t = eLx�t eLT �t/2eLp�t eLT �t/2 (7)

or the “end” scheme

eL�t ≈ eL
End
VV �t = eLT �t eLp�t/2eLx�t eLp�t/2. (8)

2.1 Typical thermostats

Various thermostat methods have been developed for NVT simulations, e.g. Ander-
sen thermostat, Nosé-Hoover chain (NHC), Langevin dynamics, etc. The “mid-
dle” scheme naturally includes the two efficient Langevin thermostat algorithms
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developed for MD in Refs. [29, 30, 32] and in Ref. [28] as shown in Ref. [15].
Below we briefly review the “middle” scheme with the Andersen thermostat and
Nosé-Hoover chain.

2.1.1 “Middle” scheme with the Andersen thermostat

TheAndersen thermostatwas proposed byAndersen in 1980 for the canonical ensem-
ble [18]. The temperature of the system is controlled by stochastic collisions with a
heat bath. The time between the collisions is exponentially distributed. When a parti-
cle j undergoes a collision, its momentum is reassigned from a Maxwell momentum
distribution of the target temperature T, while momenta of other particles remain
unchanged. The evolution of the Andersen thermostat step is

p( j) ←
√

1

β
M1/2

j θ j , if μ j<ν�t
(
or more precisely μ j< 1 − e−ν�t

) (
j = 1, N

)
(9)

Here, ν is the collision frequency, θ j is a 3-dimensional Gaussian distributed
random vector with zero mean and unit variance, which is independent for each
particle as well as each invocation.

The phase space density propagator for the Andersen thermostat in a time interval
�t is

eLT �tρ = (
1 − e−ν�t

)
ρMB(p)

∞∫
−∞

ρ(x,p)dp + e−ν�tρ(x,p). (10)

Consider a harmonic system V (x) = 1
2

(
x − xeq

)T
A
(
x − xeq

)
. It is easy to prove

the stationary state distribution for the “middle” schemewith theAndersen thermostat
is

ρMiddle = 1

ZN
exp

[
−β

(
1

2
pT (M − A

�t2

4
)−1p

+1

2

(
x − xeq

)T
A
(
x − xeq

))]
, (11)

where ZN is the normalization constant, while that for the traditional schemes (either
“side” or “end”) reads

ρSide = ρEnd = 1

ZN
exp

[
−β

(
1

2
pTM−1p + 1

2

(
x − xeq

)T
(1 − AM−1 �t2

4
)A
(
x − xeq

))]
. (12)
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That is, in the harmonic limit, either the “side” or “end” schemes with a finite
time interval leads to the exact momentum distribution but an approximate con-
figurational distribution, and in contrast, the “middle” scheme produces the exact
configurational distribution but an approximate momentum distribution. Since eval-
uation ofmost properties inMDand that of all properties in PIMDdepend on only the
configurational distribution, the “middle” scheme is a better choice for MD/PIMD
simulations.

2.1.2 “Middle” scheme with the Nosé-Hoover chain thermostat

Nosé-Hoover chain (NHC) [21] performs deterministic MD by adding extended
degrees of freedom to control the temperature of the system. The equations of motion
for NHC read

ẋi = pi
mi

ṗi = − ∂U
∂xi

− p
η
(i)
1

Q1
pi

η̇
(i)
j =

p
η
(i)
j

Q j

ṗ
η

(i)
1

= p2i
mi

− kBT − p
η
(i)
2

Q2
p

η
(i)
1

ṗ
η

(i)
j

=
p2

η
(i)
j−1

Q j−1
− kBT −

p
η
(i)
j+1

Q j+1
p

η
(i)
j

(
j = 2, MNHC − 1

)
ṗ

η
(i)
MNHC

=
p2

η
(i)
MNHC−1

QMNHC−1
− kBT

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(
i = 1, 3N

)
(13)

where MNHC means the number of pairs for the additional variables{
η

(i)
j , p

η
(i)
j

} (
j = 1, MNHC

)
coupled to each degree of freedom

(
i = 1, 3N

)
, the

parameters Q1, . . . , QMNHC are the NHC thermal masses. For achieving the accu-
racy, one often uses the multiple time-scale techniques including the reference sys-
tem propagator algorithm (RESPA) [23] and higher-order factorizations such as the
Suzuki-Yoshida decomposition framework [42–44]. When the phase space density
propagator for the thermostat part eLT �t is effectively accurate, the thermostat prop-
agation keeps the Maxwell-Boltzmann distribution for the momentum effectively
unchanged, i.e.,

eLT �t exp

⎧⎪⎪⎨
⎪⎪⎩−β

⎡
⎢⎢⎣ 1

2
pTM−1p +

3N∑
i=1

MNHC∑
j=1

p2
η
(i)
j

2Q j

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ = exp

⎧⎪⎪⎨
⎪⎪⎩−β

⎡
⎢⎢⎣ 1

2
pTM−1p +

3N∑
i=1

MNHC∑
j=1

p2
η
(i)
j

2Q j

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭.

(14)

The stationary state distribution of the variables
(
x,p,pη

)
for the harmonic system

propagated with “middle-NHC” scheme is
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ρMiddle - NHC = 1

Z ′
N

exp

[
−β

(
1

2
pT (M − A

�t2

4
)−1p + 1

2

(
x − xeq

)T
A
(
x − xeq

)

+
3N∑
i=1

MNHC∑
j=1

p2
η

(i)
j

2Q j

⎞
⎠
⎤
⎦, (15)

where Z ′
N is the normalization constant. The stationary marginal distribution is

obtained by integration over pη in Eq. (15) for the phase space variables (x,p),
which is the same as Eq. (11). Similarly, the stationary state marginal distribution of
the physical phase space variables (x,p) for the harmonic system obtained by either
“side-NHC” or “end-NHC” is the same as Eq. (12).

2.2 Simulation results

2.2.1 Quartic potential

We test the quartic potential U (x) = x4/4 as a typical example in the anharmonic
region, where the mass is 1 au and the temperature parameter is β ≡ 1

kBT
= 8 au.

Fig. 1 MD results for the
average potential energy (of
the quartic potential system)
with various time intervals
(Reproduced with
permission from Ref. [9])
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Fig. 2 MD results for liquid water at T = 298.15 K using different schemes, a average
potential energy per atom 〈U (x)〉/(NatomkB) (unit: Kelvin) b average kinetic energy per atom〈
pTM−1p

〉
/(2NatomkB) (unit: Kelvin) (Reproduced with permission from Ref. [11])

Figure 1 shows that the “middle” scheme is more efficient as well as more stable
than the conventional “side” scheme, irrespective of the type of thermostat employed.
To obtain the same accuracy, the “middle” scheme can employ a (much) larger time
interval.

2.2.2 Liquid water

We have implemented the “middle” scheme in the AMBER2018 package [17]. A
liquid water system containing a box of 216 water molecules using the TIP3P water
model is used as a test case.

Figure 2 demonstrates that all algorithms lead to the same converged results as
the time interval decreases to zero. As the time interval increases, both “VV-Middle”
and “LF-Middle” schemes perform better than the “side” scheme or the conventional
algorithm of AMBER (denoted “Old” in Fig. 2) for estimating the average potential
energy. In addition, “LF-Middle” is more accurate than “VV-Middle” for evaluating
the kinetic energy when the time interval becomes large.

3 Path integral molecular dynamics

Imaginary time path integral maps a quantum system into a classical ring polymer.
Each bead of the ring polymer is a replica of the system, connected with adjacent
beads by harmonic springs [3, 45, 46]. By assigning fictitious momenta and masses
to the beads, one can employ MD to perform imaginary time path integral for the
quantum system [4]. This approach is denoted path integral molecular dynamics
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(PIMD), which has become a powerful tool for estimating quantum thermodynamic
properties of realistic molecular systems [5, 7, 9, 38–40, 47].

3.1 Thermodynamic properties

One can write any thermodynamic property of the canonical ensemble in quantum
mechanics in the general form

〈
B̂
〉
= 1

Z
Tr
(
e−β Ĥ B̂

)
, (16)

where Z = Tr
[
e−β Ĥ

]
is the partition function and B̂ represents a relevant operator

of our interest. Eq. (16) can be expressed in the configuration space x, i.e.,

〈
B̂
〉
=
∫
dx〈x|e−β Ĥ B̂|x〉∫
dx〈x|e−β Ĥ |x〉 . (17)

Substituting the expression of the identity operator in the configuration space
1̂ = ∫

dxi |xi 〉〈xi |, one can express the partition function as

Z = ∫
x1≡x

dx〈x|e−β Ĥ |x〉

= lim
P→∞

∫
dx1

∫
dx2 . . .

∫
dxP

(
P

2πβ�2

)3N P/2|M|P/2

× exp

{
− P

2β�2

P∑
i=1

[
(xi+1 − xi )TM(xi+1 − xi )

]− β

P

P∑
i=1

U (xi )
} , (18)

where xP+1 ≡ x1 and P is the total number of path integral beads. Similarly, the
numerator of Eq. (17) becomes

∫
dx〈x|e−β Ĥ B̂|x〉 x1≡x= lim

P→∞

∫
dx1

∫
dx2 . . .

∫
dxP

(
P

2πβ�2

)3N P/2
|M|P/2

× exp

⎧⎨
⎩− P

2β�2

P∑
i=1

[(
xi+1 − xi

)TM(xi+1 − xi
)]− β

P

P∑
i=1

U (xi )

⎫⎬
⎭

× B̃(x1, . . . , xP ) (19)

The estimator B̃(x1, . . . , xP) for the operator B̂
(
x̂
)
is

B̃(x1, . . . , xP) = 1

P

P∑
j=1

B
(
x j
)
. (20)
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When operator B̂ involves the momentum, the estimator B̃(x1, . . . , xP) can also
be expressed. For instance, the primitive version of the estimator for the kinetic
energy operator B̂ = 1

2 p̂
TM−1p̂ is

B̃(x1, . . . , xP) = 3N P

2β
−

P∑
j=1

P

2β2�2

[(
x j+1 − x j

)T
M
(
x j+1 − x j

)]
, (21)

and the virial version is

B̃(x1, . . . , xP) = 3N

2β
+ 1

2P

P∑
j=1

[(
x j − x∗)T ∂U

(
x j
)

∂x j

]
, (22)

where x∗ can be selected as the centroid of the path integral beads [48]

x∗ = xc ≡ 1

P

P∑
j=1

x j (23)

or any specific bead.

3.2 Staging Path Integral Molecular Dynamics

Consider the staging transformation [6, 38, 47, 49]

ξ1 = x1

ξ j = x j − ( j − 1)x j+1 + x1
j

(
j = 2, P

)
. (24)

Define

ωP = 1

β�
. (25)

Eq. (18) becomes

Z
ξ 1≡x1= lim

P→∞

(
P

2πβ�2

)3NP/2

|M|P/2
∫

dξ1

∫
dξ2 . . .

∫
dξP

× exp

⎧⎨
⎩−β

P∑
j=1

[
1

2
ω2
Pξ

T
j Mjξ j + 1

P
U
(
x j
(
ξ1, . . . , ξP

))]⎫⎬⎭, (26)
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The diagonal mass matrices are given by

M1 = 0

M j = j

j − 1
PM

(
j = 2, P

)
. (27)

Define

φ
(
ξ1, . . . , ξP

) = 1

P

P∑
j=1

U
(
x j
(
ξ1, . . . , ξP

))
. (28)

Its derivatives satisfy the chain rule

∂φ

∂ξ1
=

P∑
i=1

∂φ

∂xi
= 1

P

P∑
i=1

U ′(xi )
∂φ

∂ξ j
= ∂φ

∂x j
+ j−2

j−1
∂φ

∂ξ j−1

(
j = 2, P

) . (29)

Adding fictitious momenta (p1, . . . ,pP) into Eq. (26) leads to

Z
ξ 1≡x1= lim

P→∞

(
P

4π2�2

)3NP/2

|M|P/2

⎛
⎝ P∏

j=1

∣∣∣M̃ j

∣∣∣
⎞
⎠

−1/ 2 ∫ ⎛
⎝ P∏

j=1

dξ j dp j

⎞
⎠

× exp
[−βHeff

(
ξ1, . . . , ξP ;p1, . . . ,pP

)]
(30)

with the effective Hamiltonian of the form

Heff
(
ξ1, . . . , ξP ;p1, . . . ,pP

) =
P∑
j=1

1

2
pT
j M̃

−1
j p j +Ueff

(
ξ1, . . . , ξP

)
, (31)

where

Ueff
(
ξ1, . . . , ξP

) =
P∑
j=1

1

2
ω2
Pξ

T
j Mjξ j + φ

(
ξ1, . . . , ξP

)
. (32)

The fictitious masses are defined as

M̃1 = M

M̃ j = M j = j

j − 1
PM

(
j = 2, P

)
(33)

such that all staging modes
(
ξ2, . . . , ξP

)
move on the same frequency. The estimator

of the thermodynamic property in Eq. (17) is
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〈
B̂
〉
= lim

P→∞

∫ ( P∏
j=1

dξ j dp j

)
exp
{−βHeff

(
ξ1, . . . , ξP ;p1, . . . ,pP

)}
B̃(x1, . . . , xP)

∫ ( P∏
j=1

dξ j dp j

)
exp
{−βHeff

(
ξ1, . . . , ξP ;p1, . . . ,pP

)} .

(34)

Equations (31) and (34) suggest the Hamilton equations of motion

ξ̇ j = M̃−1
j p j

ṗ j = −ω2
PM jξ j − ∂φ

∂ξ j

(
j = 1, P

) . (35)

One should couple it with a thermostat to ensure the canonical distribution for(
ξ1, . . . , ξP ,p1, . . . ,pP

)
. Note that the estimator of any thermodynamic properties

in Eq. (34) depends on only the configurational distribution of the beads in PIMD.
The choice of the fictitious masses in Eqs. (25), (27), and (33) is different from

that in Refs. [7, 9]. The procedure in Eqs. (24)–(35) for PIMD makes it possible to
use the same time interval to obtain converged results, regardless of the value of P,
the total number of path integral beads. This has been suggested earlier in Ref. [6].

The conventional wisdom often employs the decomposition of the equations of
motion in PIMD algorithms

(
ξ̇ j

ṗ j

)
=
(

M̃−1
j p j

−ω2
PM jξ j

)
︸ ︷︷ ︸

x

+
(

0
− ∂φ

∂ξ j

)
︸ ︷︷ ︸

p

+ (Thermostat)︸ ︷︷ ︸
T

(
j = 1, P

)
(36)

because the fictitious ring polymer force term−ω2
PM jξ j varies more frequently than

the physical force term − ∂φ

∂ξ j
, and the exact solution to the first term of Eq. (36) is

available [39]. E. g., Eq. (36) leads to exact results in the free particle limit. Our
recent work [7], however, shows that

(
ξ̇ j

ṗ j

)
=
(
M̃−1

j p j

0

)
︸ ︷︷ ︸

x

+
(

0
− ∂Ueff

∂ξ j

)
︸ ︷︷ ︸

p

+ (Thermostat)︸ ︷︷ ︸
T

(
j = 1, P

)
(37)

is a more accurate and efficient decomposition scheme for developing PIMD
algorithms in the “middle” thermostat scheme.

E.g., when one apply the Langevin dynamics as thermostat, it has been clari-
fied in Appendix C of Ref. [7] (and its Supplementary Material [50]) that Eq. (37)
guarantees the exact marginal configuration distribution of the path integral beads
in the harmonic limit, irrespective to the time interval, while Eq. (36) does not. The
conclusion holds for any thermostat as long as the thermostat faithfully maintains
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Fig. 3 PIMD results using different time intervals for liquid water at T = 298.15 K. a Absolute
difference between the primitive and virial estimators for averaged kinetic energy per atom (unit:
Kelvin). b The averaged potential energy per atom 〈U (x)〉/(NatomkB) (unit: Kelvin). Statistical
error bars are included. (Reproduced with permission from Ref. [9])

the Maxwell momentum distribution. This is verified by the simulation results for
PIMD in Ref. [9] when the Andersen thermostat and NHC are used.

We apply the “middle” and conventional “side” schemes with PIMD algorithms
for liquid water system to study the canonical ensemble at constant temperature
T = 298.15 K and ρl = 0.997 g · cm−3. As presented in Fig. 3, in comparison
to the “side” scheme, the “middle” scheme reduces the error by about an order of
magnitude with the same time interval.

3.3 Normal-mode Path Integral Molecular Dynamics

Consider the normal mode transformation of path integral beads [48, 51, 52]

x = Cnormq (38)

with q = (
q0 . . . qP−1

)T
and x = (

x1 . . . xP
)T
, where the element of the

orthogonal transformation matrix Cnorm is
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Cnorm
jk =

⎧⎪⎪⎨
⎪⎪⎩

√
1/P, k = 0√
2/P cos(2π jk/P), 1 ≤ k ≤ P/2 − 1√
1/P(−1) j , k = P/2√
2/P sin(2π jk/P), P/2 + 1 ≤ k ≤ P − 1

(
j = 1, P

)
, (39)

for even P and

Cnorm
jk =

⎧⎨
⎩

√
1/P, k = 0√
2/P cos(2π jk/P), 1 ≤ k ≤ (P − 1)/2√
2/P sin(2π jk/P), (P + 1)/2 ≤ k ≤ P − 1

(
j = 1, P

)
, (40)

for odd P. When one employs the normal mode transformation, the partition function
becomes

Z = lim
P→∞

(
P

2πβ�2

)NP/2

|M|P/2
∫

dq0

∫
dq1 . . .

∫
dqP−1

× exp

⎧⎨
⎩−β

⎡
⎣P−1∑

k=0

1

2
ω2
kq

T
k M

norm
k qk + 1

P

P∑
j=1

V
(
x j (q0, . . . ,qP−1)

)⎤⎦
⎫⎬
⎭.

(41)

Themassmatrices are defined asM
norm
0 = 0 andM

norm
k = PM

(
k = 1, P − 1

)
,

the frequency for each mode is given by

ωk = 2ωP sin(kπ/P)
(
k = 0, P − 1

)
, (42)

respectively. Eq. (28) then becomes

φ(q0, . . . ,qP−1) = 1

P

P∑
j=1

V
(
x j (q0, . . . ,qP−1)

)
, (43)

and the derivatives ∂φ/∂qk is obtained from

∂φ

∂q
=
(

∂x
∂q

)T
∂φ

∂x
= (

Cnorm
)T ∂φ

∂x
. (44)

Employing fictitious momenta (p0, . . . ,pP−1) into Eq. (41) produces

Z = lim
P→∞

(
P

4π2�2

)NP/2

|M|P/2

(
P−1∏
k=0

∣∣∣M̃norm
k

∣∣∣
)−1/ 2 ∫ (

P−1∏
k=0

dqkdpk

)

× exp
[−βHnorm

eff (q0, . . . ,qP−1;p0, . . . ,pP−1)
]
, (45)
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where the effective Hamiltonian can be expressed by the normal mode variables

Hnorm
eff (q;p) =

P−1∑
k=0

1

2
pT
k M̃

−1
norm,kpk +Unorm

eff (q). (46)

In Eq. (46) the effective potential is

Unorm
eff (q) =

P−1∑
k=0

1

2
ω2
kq

T
k M

norm
k qk + φ(q), (47)

and the fictitious masses
{
M̃norm,k

}
can be arbitrary, which can be chosen as

M̃norm,k=0 = M and M̃norm,k = PM
(
k = 1, P − 1

)
such that all non-zeroth normal

modes
(
k = 1, P − 1

)
move on the same frequency.

The thermodynamic property Eq. (17) can be evaluated by

〈
B̂
〉
= lim

P→∞

∫ (P−1∏
k=0

dqkdpk

)
exp
{−βHnorm

eff
(
q0, . . . , qP−1; p0, . . . , pP−1

)}
B̃(x1, . . . , xP )

∫ (P−1∏
k=0

dqkdpk

)
exp
{−βHnorm

eff
(
q0, . . . , qP−1; p0, . . . , pP−1

)} .

(48)

It then suggests a MD scheme to sample (q0, . . . ,qP−1,p0, . . . ,pP−1). The
equations of motion derived from the effective Hamiltonian (Eq. 46) are

q̇k = M̃−1
norm,kpk

ṗk = −ω2
kM

norm
k qk − ∂φ

∂qk

(
k = 0, P − 1

)
, (49)

which must be coupled with a thermostat to ensure the correct canonical distribution
for (q0, . . . ,qP−1,p0, . . . ,pP−1). This is denoted normal mode PIMD (NM-PIMD).

Similar to Eq. (37), the equations of motion of NM-PIMD should be decomposed
into three parts

(
q̇k
ṗk

)
=
(
M̃−1

norm,k pk
0

)
︸ ︷︷ ︸

x

+
(

0
− ∂Ueff

∂qk

)
︸ ︷︷ ︸

p

+ (thermostat)︸ ︷︷ ︸
T

(
k = 0, P − 1

)
(50)

in the “middle” thermostat scheme for designing efficient NM-PIMD algorithms.
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3.4 Multi-electronic-state PIMD

Consider a Hamiltonian with Ns electronic states of the form Ĥ = T̂ + V̂, where
V̂ = V(R̂) is a Ns × Ns symmetric diabatic potential energy matrix and T̂ is the
kinetic energy matrix. The canonical partition function is defined as

Z = Trne[e−βĤ] (51)

and a specific physical property of interest is evaluated by

〈
B̂
〉
= 1

Z
Trne[e−βĤB̂] (52)

In Eqs. (51) and (52) the trace is integrated over both the nuclear and electronic
degrees of freedom, i.e.

Tre[Ô] =
Ns∑
n=1

〈n|Ô|n〉 (53)

and

Trn[Ô] =
∫

dR〈R|Ô|R〉. (54)

Substituting the resolution of the identity into Eq. (51) yields

Z = lim
P→∞

∣∣∣∣ PM
2πβ�2

∣∣∣∣
P/2 ∫

dR1 . . . dRP exp

[
−β

2
ω2

P

P∑
i=1

(Ri − Ri+1)
TM(Ri − Ri+1)

]

× Tre

[
P∏

i=1

OT (Ri )O(Ri )

]
(55)

where O(Ri ) is related to the splitting scheme. We have studied three typical
decomposition schemes, namely, the “diagonalization”, “first-order expansion”, and
“hyperbolic function” methods in Ref. [40].

Because Tre
[∏P

i=1 O
T (Ri )O(Ri )

]
is not always positive-definite for general

multi-electronic-state (MES) systems, regardless of which decomposition scheme is

employed, it is not recommended to use either Tre
[∏P

i=1 O
T (Ri )O(Ri )

]
or its abso-

lute value to define an effective potential function φ(R1, . . . ,RP) for performing
PIMD. A reasonable effective potential is defined by
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e−βφ(dia)(R1,...,RP ) = Tre

[
P∏

i=1

e−βVdiag(Ri )/P

]
. (56)

Note that the right-hand side of Eq. (56) is always positive-definite. HereVdiag(Ri )

is a diagonalmatrix, whose elements are the diagonal elements ofV(R). The partition
function [Eq.(55)] may then be expressed as

Z = lim
P→∞

∣∣∣∣ PM

2πβ�2

∣∣∣∣P/2 ∫
dR1 . . . dRP exp

[
−βU (dia)

eff (R1, . . . ,RP )
]
Z̃ (dia)(R1, . . . ,RP ), (57)

of which the estimator is

Z̃ (dia)(R1, . . . ,RP) =
Tre

[
P∏

i=1
OT (Ri )O(Ri )

]

Tre

[
P∏

i=1
e−βVdiag(Ri )/P

] (58)

and

U (dia)
eff (R1, . . . ,RP ) = 1

2
ω2
P

P∑
i=1

(Ri − Ri+1)
T PM(Ri − Ri+1) + φ(dia)(R1, . . . ,RP ). (59)

Then one can obtain any specific physical property of interest in Eq. (52) from

〈
B̂
〉
=
∫
dR1 . . . dRP exp

[
−βU (dia)

eff (R1, . . . ,RP)
]
B̃(dia)(R1, . . . ,RP)∫

dR1 . . . dRP exp
[
−βU (dia)

eff (R1, . . . ,RP)
]
Z̃ (dia)(R1, . . . ,RP)

(60)

The estimators B̃(dia)(R1, . . . ,RP) in the diabatic representation for some typical
operators are described in Ref. [40].

Define an effective Hamiltonian

H (dia)
eff (R1, . . . ,RP ;p1, . . . ,pP) =

P∑
i=1

1

2
pT
i M̃

−1
i pi +U (dia)

eff (R1, . . . ,RP) (61)

with the fictitious masses M̃i and momenta pi . It leads to the MES-PIMD equations
of motion

Ṙi = M̃−1
i pi

ṗi = − ∂
∂Ri

U (dia)
eff (R1, . . . ,RP)

(
i = 1, P

)
. (62)
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Their coupling to a thermostat produces a proper canonical distribution for
(R1, . . . ,RP ;p1, . . . ,pP), which changes Eq. (60) into

〈
B̂
〉
= lim

P→∞

∫ ( P∏
i=1

dRi dpi

)
exp
{
−βH (dia)

eff (R1, . . . ,RP ; p1, . . . , pP )
}
B̃(dia)(R1, . . . ,RP )

∫ ( P∏
i=1

dRi dpi

)
exp
{
−βH (dia)

eff (R1, . . . ,RP ; p1, . . . , pP )
}
Z̃ (dia)(R1, . . . ,RP )

. (63)

Similar to Eq. (37), the MES-PIMD equations of motion are decomposed into
three parts

(
Ṙi

ṗi

)
=
(
M̃−1

i pi
0

)
︸ ︷︷ ︸

x

+
(

0

− ∂U (dia)
eff

∂Ri

)
︸ ︷︷ ︸

p

+ (Thermostat)︸ ︷︷ ︸
T

(
i = 1, P

)
. (64)

The “middle” scheme then yields efficient MES-PIMD algorithms. As discussed
in Sects. 3.2 and 3.3, the staging or normal-mode transformation of path integral
beads can be used in Eq. (64).

We have investigated a seven-state system inRef. [40]. It is shown in Fig. 4 that the
“middle” thermostat scheme greatly improves the efficiency over the conventional
“side” scheme.
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Fig. 4 Results for the “middle” scheme in comparison to those for conventional thermostat schemes
for MES-PIMD for a 1-D seven-state system. Results for the heat capacity and coherence length are
plotted as functions of the time interval�t . Atomic units (au) are used (Reproducedwith permission
from Ref. [40])
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4 “Middle” scheme with constraints

4.1 Holonomic constraint

Define the holonomic constraint

σ(x) = 0, (65)

where σ(x) is nc-dimensional vector function of the configuration x. Its derivative
yields the constraint for the momentum p

d

dt
σ(x) =

(
∂σ

∂x

)T

M−1p = 0. (66)

SHAKE [53] and RATTLE [54] are two typical algorithms for applying con-
straints tomolecular systems.While SHAKE guarantees only the position constraint,
RATTLE satisfies both the position and momentum constraints. It is straightforward
to employ the “middle” schemewith the SHAKEor RATTLE algorithm for sampling
the canonical (NVT) ensemble. Various versions can be constructed to guarantee
that the position and momentum satisfy Eqs. (65)–(66) at the end of a time step. Our
recommended “VV-Middle” scheme with holonomic constraints is

p̃
(

�t

2

)
← p(0) − ∂U

∂x(0)
�t

2

C2 :
⎧⎨
⎩Solve μ :

(
∂σ

∂x(0)

)T
M−1

(
p̃
(

�t
2

)+ ∂σ
∂x(0)μ

)
= 0

˜̃p(�t
2

) ← p̃
(

�t
2

)+ ∂σ
∂x(0)μ

x̃
(

�t

2

)
← x(0) + M−1 ˜̃p

(
�t

2

)
�t

2

Thermostat f or a f ull time step �t (in which ˜̃p
(

�t

2

)
is updated)

x̃(�t) ← x̃
(

�t

2

)
+ M−1 ˜̃p

(
�t

2

)
�t

2

C1 :

⎧⎪⎪⎨
⎪⎪⎩
Solve λ : σ

(
x̃(�t) + M−1 ∂σ

∂x(0)λ
)

= 0

x(�t) ← x̃(�t) + M−1 ∂σ
∂x(0)λ

p
(

�t
2

) ← ˜̃p(�t
2

)+ 1
�t

∂σ
∂x(0)λ

p̃(�t) ← p
(

�t

2

)
− ∂U

∂x(�t)

�t

2

C2 :
⎧⎨
⎩Solve μ :

(
∂σ

∂x(�t)

)T
M−1

(
p̃(�t) + ∂σ

∂x(�t)μ
)

= 0

p(�t) ← p̃(�t) + ∂σ
∂x(�t)μ

, (67)
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which is denoted “C2-p-C1-x-T-x-C2-p”, where the operations are performed from
right to left. When “LF-Middle” is used, our recommended version is

p̃
(

�t

2

)
← p

(
−�t

2

)
− ∂U

∂x(0)
�t

C2 :
⎧⎨
⎩Solve μ :

(
∂σ

∂x(0)

)T
M−1

(
p̃
(

�t
2

)+ ∂σ
∂x(0)μ

)
= 0

˜̃p(�t
2

) ← p̃
(

�t
2

)+ ∂σ
∂x(0)μ

x̃
(

�t

2

)
← x(0) + M−1 ˜̃p

(
�t

2

)
�t

2

Thermostat f or a f ull time step �t (in which ˜̃p
(

�t

2

)
is updated)

x̃(�t) ← x̃
(

�t

2

)
+ M−1 ˜̃p

(
�t

2

)
�t

2

C1 :

⎧⎪⎪⎨
⎪⎪⎩
Solve λ : σ

(
x̃(�t) + M−1 ∂σ

∂x(0)λ
)

= 0

x(�t) ← x̃(�t) + M−1 ∂σ
∂x(0)λ˜̃̃p(�t

2

) ← ˜̃p(�t
2

)+ 1
�t

∂σ
∂x(0)λ

C2 :

⎧⎪⎨
⎪⎩
Solve μ :

(
∂σ

∂x(�t)

)T
M−1

( ˜̃̃p(�t
2

)+ ∂σ
∂x(�t)μ

)
= 0

p
(

�t
2

) ← ˜̃̃p(�t
2

)+ ∂σ
∂x(�t)μ

(68)

We denote it “C2-C1-x-T-x-C2-p”.
We useAMBER2018 [55] to simulate a liquidwater system subject to intramolec-

ular bond length and angle constraints. The system contains a box of 216 water
molecules (with periodic boundary conditions). The TIP3P model are employed as
the force field. Fig. 5a implies that the two “middle” schemes (Eqs. 67 and 68)
perform better in configurational sampling than the conventional “side” scheme as
well as the BBK algorithm [25] for systems subject to constraints. Fig. 5b shows
that “LF-Middle” leads to a more accurate marginal momentum distribution than
“VV-Middle”.

4.2 Isokinetic constraints in the “middle” scheme

Nonholonomic constraints (that involve the constraint of momenta) are also widely
used in MD simulation in the canonical ensemble. In Ref. [12] we have recently
extended the application of the “middle” thermostat scheme to the isokinetic con-
straint as well as to the MTS technique, which leads to a more efficient version for
the Stochastic-Iso-NH-RESPA [SIN(R)] algorithm [56].
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Fig. 5 MD results of liquid water with intramolecular O–H bond length and H–O–H angle
constraints at T = 298.15 K using different schemes, a average potential energy per atom
〈U (x)〉/(NatomkB) (unit: Kelvin) b average kinetic energy per atom

〈
pTM−1p

〉
/(2NatomkB) (unit:

Kelvin). “Old” stands for the BBK algorithm [25] used in AMBER (Reproduced with permission
from Ref. [11])

Given �t = nδt , with �t as the outer time interval and δt the inner time interval,
respectively. The propagating order of original SIN(R) [56] is expressed as

eL�t ≈ eLN δt/2eL
( f )
p δt/2+L(s)

p �t/2eLxδt/2eLOδt eLxδt/2eL
( f )
p δt/2eLN δt/2

×
(
eLN δt/2eL

( f )
p δt/2eLxδt/2eLOδt eLxδt/2eL

( f )
p δt/2eLN δt/2

)n−2

× eLN δt/2eL
( f )
p δt/2eLxδt/2eLO δt eLxδt/2eL

( f )
p δt/2+L(s)

p �t/2eLN δt/2, (69)

where the Kolmogorov operators in Eq. (69) are explicitly defined in Ref. [12]. Refs.
[9, 11] have already suggested that applying thermostat in the middle of the propa-
gation step always leads to much better performance in sampling the configuration
space.When the middle thermostat scheme is used to design new SIN(R) algorithms,
the propagating order of the “VV-Middle” version is

eL�t ≈ eL
( f )
p δt/2+L(s)

p �t/2eLxδt/2eLN δt/2eLO δt eLN δt/2eLxδt/2eL
( f )
p δt/2

×
(
eL

( f )
p δt/2eLxδt/2eLN δt/2eLO δt eLN δt/2eLxδt/2eL

( f )
p δt/2

)n−2

× eL
( f )
p δt/2eLxδt/2eLN δt/2eLO δt eLN δt/2eLxδt/2eL

( f )
p δt/2+L(s)

p �t/2, (70)

[denoted “VV-Middle-SIN(R)”] and that of the “LF-Middle” version becomes

eL�t ≈ eLxδt/2eLN δt/2eLOδt eLN δt/2eLxδt/2eL
( f )
p δt
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×
(
eLxδt/2eLN δt/2eLO δt eLN δt/2eLxδt/2eL

( f )
p δt
)n−2

× eLxδt/2eLN δt/2eLO δt eLN δt/2eLxδt/2eL
( f )
p δt+L(s)

p �t (71)

[denoted “LF-Middle-SIN(R)”]. Eqs. (70) and (71) yield the same efficiency
and accuracy for sampling the configuration space. These versions in the “middle”
scheme are all easily extended with more than two time steps for SIN(R).

We have simulated a system of liquid water [216 H2O molecules in a box with
periodic boundary conditions at the state point T = 298.15K(temperature) and 0.997
g·cm−3 (density)] to compare the original version of SIN(R) [Eq. (69)] and its new
version with the “middle” scheme (“VV-Middle-SIN(R)”) [Eq. (70)]. POLI2VS-a
polarizable and flexible force field [57] for liquid water is used. In MTS, one may
treat the force contributed by the intramolecular interactions as the fast part and
consider the force derived from the noncovalent interactions as the slow part. Fig. 6
demonstrates the results with the inner time interval δt varied from 0.1 to 2fs while
the outer time interval �t are fixed at 2 or 4fs. As the inner time step δt increases,
“VV-Middle-SIN(R)” performs more efficiently than conventional SIN(R).

All versions in the “middle” scheme for MD in Sect. 4.1 (with holonomic con-
straints) and Sect. 4.2 (with nonholonomic constraints as well as resonance-free
multiple time-step techniques) can easily be extended to PIMD. We have already
applied some of them in PIMD simulations for liquid water [10].
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Fig. 6 Average potential energy per atom 〈U (x)〉/(NatomkB) (unit: Kelvin) of liquid water at
T = 298.15 K as a function of the inner time step δt with a fixed outer time step. a �t = 2 fs b �t
= 4 fs (Reproduced with permission from Ref. [12])
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5 Conclusions

In many remarks, the “middle” thermostat scheme [7, 9, 11, 12, 15, 16] (either
“VV-Middle” or “LF-Middle”) provides a promising approach to design efficient
MD/PIMD algorithms for sampling the configuration space of the canonical ensem-
blewith orwithout constraints. Combination of the “middle” schemewith resonance-
free MTS techniques leads to more efficient and robust algorithms for sampling the
configuration space for multi-time-scale systems [12].

It is straightforward to employ the “middle” thermostat scheme with various
advanced enhanced sampling techniques [55, 58–68] to accelerate configurational
sampling for molecular systems where rare events become important [12]. Since
the “middle” thermostat scheme is useful for any types of potential energy surfaces
or force fields (for realistic molecular systems), it will be helpful to implement
the “middle” scheme for ab initio MD or ab initio PIMD[21, 69] to reduce the
computation cost. It will be interesting to develop more efficient MD and PIMD
algorithms in the unified theoretical framework for these purposes.
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