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ABSTRACT
A coherent state phase space representation of operators, based on the Husimi distribution, is used to derive an exact expression for the
symmetrized version of thermal correlation functions. In addition to the time and temperature independent phase space representation of the
two operators whose correlation function is of interest, the integrand includes a non-negative distribution function where only one imaginary
time and one real time propagation are needed to compute it. The methodology is exemplified for the flux side correlation function used
in rate theory. The coherent state representation necessitates the use of a smeared Gaussian flux operator whose coherent state phase space
representation is identical to the classical flux expression. The resulting coherent state expression for the flux side correlation function has
a number of advantages as compared to previous formulations. Since only one time propagation is needed, it is much easier to converge it
with a semiclassical initial value representation. There is no need for forward–backward approximations, and in principle, the computation
may be implemented on the fly. It also provides a route for analytic semiclassical approximations for the thermal rate, as exemplified by a
computation of the transmission factor through symmetric and asymmetric Eckart barriers using a thawed Gaussian approximation for both
imaginary and real time propagations. As a by-product, this example shows that one may obtain “good” tunneling rates using only above
barrier classical trajectories even in the deep tunneling regime.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088163

I. INTRODUCTION

Theoretical chemistry has made huge progress especially in
view of the development of high speed, large memory computational
facilities. The computation of molecular force fields is becoming
faster and more accurate. This has led to the development of on the
fly classical dynamics methods that allow for a classical simulation
of molecular dynamical processes in large systems, such as energy
transfer, reaction rates, and spectra.1–3 However, even when the
system is large, classical mechanics is not enough. Tunneling transi-
tions are observable in biological systems.4 Spectra are governed by
the quantization of energy levels, be they electronic or vibrational.

Despite much progress, the full quantum dynamics computation
remains prohibitive due to exponential scaling of the cost with the
number of degrees of freedom involved.

The challenge is to create computational methods that allow
for the elucidation of quantum effects even in large systems.
There are a number of important approaches used today to try
and provide answers. Most notably, one uses quantum dynam-
ics methods, such as centroid molecular dynamics (CMD),5 ring
polymer molecular dynamics (RPMD),6 coupled coherent state
dynamics,7,8 the classical Wigner (CW) method9 (also known as
the mixed quantum classical method10,11 or the linearized semi-
classical initial value representation approach12–16), imaginary time
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methods,17,18 and path integral Liouville dynamics (PILD).19,20

Semiclassical perturbation theory21,22 has been implemented in
recent years to approximate thermal rates.23,24 Semiclassical on the
fly methods have been developed to study electronic transitions,25

internal conversion,26 infrared spectroscopy,27 tunneling,28 isomer-
ization reactions,29 vibrationally resolved electronic spectra,30 and
more.

In this paper, we present a further alternative based on the
coherent state representation of quantum operators. Assume that Ĥ
is the (time-independent) Hamiltonian of the system with N degrees
of freedom, which takes the standard Cartesian form

Ĥ =
1
2

p̂ TM−1p̂ + V(q̂), (1.1)

where M is the diagonal “mass matrix” with elements {mj} and
p̂ and q̂ are the momentum and coordinate operators, respec-
tively. Let Â and B̂ denote operators relevant to the specific prop-
erty of interest. The symmetrized form of the thermal correlation
function31 is

cAB(t) =
1

Zβ
Tr[e−βĤ /2Âe−βĤ /2K̂ †

(t)B̂K̂(t)], (1.2)

with exp(−βĤ) the canonical density in which β = 1/(kBT) is the
inverse temperature, Zβ = Tr[exp(−βĤ)] the partition function,
and K̂(t) = exp(− i

̵h Ĥt) the propagator. (The relation of this sym-
metrized form to the standard and the Kubo-transformed form32,33

is given through their Fourier transforms as shown in, for example,
Refs. 34 and 35.)

As shown in Appendix A, the symmetrized form of the thermal
correlation function [Eq. (1.2)] may, under certain circumstances,
be exactly represented as

cAB(t) =
1

Zβ
∫

dpdq
(2πh̵)N

dp′dq′

(2πh̵)N ÃH(p, q)B̃H(p′, q′)

× ∣⟨ g(p, q; 0)∣e−βĤ /2K̂(t)∣g(p′, q′; 0)⟩∣
2
, (1.3)

where ∣g(p, q; 0)⟩ represents the multidimensional coherent state
whose coordinate representation is

⟨x∣g(p, q; t)⟩ = (
det(Γ(t))

πN )

1
4

exp(−[x − q(t)]T
Γ(t)

2

× [x − q(t)] +
i
h̵

pT
(t)[x − q(t)]). (1.4)

ÃH(p, q) and B̃H(p, q) are termed the dual functions in the Husimi
phase space or equivalently the coherent state representations of the
operators, Â and B̂, respectively. The definitions of the dual func-
tions are reviewed briefly in Appendix A. For our purpose, here we
note that the dual function of an operator, Ô, in its Husimi phase
space representation is given by

Ô = ∫
dpdq
(2πh̵)N ÕH(p, q)∣g(p, q; 0)⟩⟨g(p, q; 0)∣. (1.5)

When an operator, Â = A(q̂), is a function of only coordinate
variables, the symmetrized thermal correlation function given in
Eq. (1.2) may be exactly reformulated as

cAB(t) =
1

Zβ
∫ dq∫

dp′dq′

(2πh̵)N A(q)B̃H(p′, q′)

× ∣⟨q∣e−βĤ /2K̂(t)∣g(p′, q′; 0)⟩∣
2
. (1.6)

The representations given in Eqs. (1.3) and (1.6) have a num-
ber of aspects that could be beneficial when attempting to evaluate
thermal correlation functions. In contrast to the original form that
calls for forward and backward time propagations, the present form
necessitates only one imaginary time and one real time propagation.
The phase space averaging is apart from the coherent state oper-
ators, over a positive distribution as given in the term in absolute
value squared. This may reduce difficulties with converging quanti-
ties that carry phases. Not less important is that, as discussed in this
paper, it provides a good starting point for introducing semiclassical
approximations.

The central part of this paper is presented in Sec. II, where we
describe practical ways for obtaining the coherent state represen-
tations of operators. As a non-trivial example, we show how one
may use the formalism to construct a new expression for the flux
side correlation function that is essential for obtaining thermal reac-
tion rates.31 In Sec. III, we then demonstrate how the formalism
may be used within the context of a thawed Gaussian semiclassi-
cal approach to estimate tunneling rates. An analytic expression for
the thermal rates in one-dimensional scattering is derived and then
implemented for the “classical” problem of tunneling through sym-
metric and asymmetric Eckart barriers. We end with a discussion
of further developments and options for usage of the coherent state
formalism.

II. COHERENT STATE DYNAMICS—FORMALISM
A. Coherent state representation of operators

The central concept to be used is the coherent state represen-
tation of operators, as in Eq. (1.5). In the following, we will use
one-dimensional notation for the sake of simplicity, the general-
ization to many dimensions is straightforward. The coherent state
representation of an operator Ô is intimately related to its Wigner
representation36 as follows:

OW(p, q) = ∫
∞

−∞

dξ exp(
i
h̵

pξ)⟨q −
ξ
2
∣Ô∣q +

ξ
2
⟩. (2.1)

Specifically, inserting the coherent state representation as in Eq. (1.5)
and performing the integration over the variable ξ show that the
Wigner representation of the operator is just a Gaussian transform
of the coherent state representation ÕH(p, q),

OW(p, q) = ∫
∞

−∞

dp′dq′

πh̵
exp[−Γ(q − q′)2

−
(p − p′)2

h̵2Γ

⎤
⎥
⎥
⎥
⎥
⎦

ÕH(p′, q′), (2.2)

where Γ is the coherent state “width parameter.” To obtain an
explicit expression for the dual function ÕH(p, q), one needs the
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inverse Gaussian transform.37 As also reviewed in Appendix A,
using the general phase space formulation of quantum mechanics,
one finds

ÕH(p, q) = exp[−
1

4Γ
d2

dq2 −
h̵2Γ

4
d2

dp2 ]OW(p, q). (2.3)

Using the Gaussian expansion of the inversion operator

exp[−
1

4Γ
d2

dq2 ] =

√
Γ
π∫

∞

−∞

dx exp[−Γx2
+ ix

d
dq
] (2.4)

and noting that exp[ix d
dq ] is just the shift operator, we find the

practical formula

ÕH(p, q) = ∫
∞

−∞

dpxdx
πh̵

exp[−Γx2

−
1

h̵2Γ
p2

x]OW(p + ipx, q + ix), (2.5)

which will serve as the basis for the derivation of coherent state
representations of operators.

If operator Ô depends only on either the coordinate or the
momenta, then as the Wigner representation will depend only on the
coordinate or momentum, the same will hold true for the coherent
state representation. So, for example, the dipole operator will remain
unchanged from its Wigner representation. However, if one consid-
ers a density whose Wigner representation is given in terms of Dirac
“delta functions,” e.g., δ(q), then one finds from Eq. (2.5) that the
coherent state representation is ill defined,

δ̃H(p, q) =
1

2π∫
∞

−∞

dk exp(
k2

4Γ
+ ikq). (2.6)

This has special implications when considering rate theory and the
flux operator. The Wigner representation of the flux operator at the
point q‡ is just the classical form FW(p, q; q‡

) =
p
M δ(q − q‡

) so that
its coherent state representation would be ill defined.

The thermal rate constant (for going from left to right) is given
by the flux side expression31 as follows:

FR = lim
t→∞

Tr[exp(−
βĤ
2
)F̂(q‡

)

× exp(−
βĤ
2
)K̂ †
(t)θ(q̂ − q‡

)K̂(t)], (2.7)

where F̂(q‡
) is the flux operator defined as

F̂(q‡
) =

1
2M
[p̂δ(q̂ − q‡

) + δ(q̂ − q‡
)p̂], (2.8)

and θ(q̂ − q‡
) is the (step function) projection operator onto the

region that is on the right of the barrier located at q‡. The flux of par-
ticles moving from left to right is, however, independent of where
it is measured so that the same expression remains correct when
considering the Gaussian smeared flux operator38 (denoted by the
subscript S) whose Wigner representation is readily found to be

FW,S(p, q; q‡, γ) =
p
M

√ γ
π

exp[−γ(q − q‡
)

2
], (2.9)

where γ is the width parameter of the smearing function. The coher-
ent state representation of the smeared flux operator is then found
from Eq. (25) as follows:

F̃H,S(p, q; q‡, γ) =
p
M

√
Γγ

π(Γ − γ)
exp
⎡
⎢
⎢
⎢
⎢
⎣

−
Γγ(q − q‡

)
2

(Γ − γ)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.10)

with the proviso that the width parameter Γ of the coherent state is
larger than the smearing width γ. Taking the limit that Γ − γ→ 0+,
one finds the illuminating result:

F̃H,S(p, q; q‡
) =

p
M

δ(q − q‡
), (2.11)

which means that using the classical expression of the flux operator
for its coherent state representation is equivalent to consideration
of the Gaussian smeared flux operator with a coordinate smearing
function whose width is identical to that of the coherent state.

B. Coherent state flux side correlation function
As an example for the usefulness of the coherent state rep-

resentation, we consider the flux side correlation function. Using
the coherent state representation of the smeared flux operator, one
readily integrates over the position coordinate to find that the exact
expression for the reactive flux may be rewritten as

FR = lim
t→∞∫

∞

0
dx∫

∞

−∞

dp
(2πh̵)

×
p
M
∣⟨x∣ exp(−βĤ /2)K̂ (t)∣g(p, q‡

)⟩∣
2
. (2.12)

This exact formulation has a classical flavor to it. It is an
“average” of the velocity at the barrier location. Its numerically
exact computation calls for a single time propagation rather than
the usual forward–backward propagation. In addition, as shown
below, it is a good starting point for semiclassical approximations.
Equation (2.12) not only is of computational interest but may also
be considered as a starting point for quantum transition state the-
ories since the integrand, apart from the velocity component, is
positive. The exact reactive flux is always smaller than the flux
obtained with the same expression but with the momentum integra-
tion restricted to only positive momenta. For a parabolic barrier, the
result of such a theory is the upper bound derived by Pechukas and
McLafferty.38

III. THAWED GAUSSIAN RATE THEORY
The formulation of the flux side expression presented in

Sec. II B is especially useful for computing semiclassical initial
value approximations for the thermal rate since the propagators act
directly on a coherent state. In a multidimensional system, a rea-
sonable algorithm would be to evaluate the imaginary time thermal
propagator matrix elements numerically exactly using path integral
Monte Carlo methods, while the real time propagation would be
implemented using, for example, the Herman–Kluk semiclassical
initial value approximation.39 This would then be a semiclassi-
cal analog of the mixed quantum classical rate theory, where one
evaluates the Wigner representation of the thermal distribution
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numerically exactly, while the time evolution of the projection oper-
ator is obtained from classical mechanics.11,12 Such a semiclassical
theory may be implemented on the fly and would probably be more
accurate than the Wigner dynamics based mixed quantum classical
theory.

The coherent state representation given in Eq. (2.12) has addi-
tional advantages, opening the door for new approximations to the
thermal rate. Ever since quantum tunneling was discovered, it has
been a challenge to derive an analytic expression for the thermal rate,
even in one-dimensional scattering. The only analytic expression
we are aware of is for the symmetric Eckart barrier. Eckart derived
the exact analytic expression for the energy dependent transmission
probability in 1930.40 Yasumori and Fueki41 using an approximation
for the energy dependent probability, derived a series expansion for
the rate whose terms go as h2n and whose leading order term is iden-
tical to the exact term derived by Wigner in 1932.42 In the following,
we will demonstrate how the coherent state flux side expression
of Eq. (2.12) may be used to derive an analytic expression for the
thermal rate, which could be used for any simple barrier scattering
problem.

For this purpose, we use a thawed Gaussian initial value repre-
sentation for both the imaginary time (thermal)43,44 and real time45

propagators. The thawed Gaussian approximation K̂0(τ) for the
imaginary time propagator K̂(τ) = exp(−Ĥτ) is

⟨y∣K0(τ)∣x⟩ =
1

√
2πG(τ)

exp(−
1

2G(τ)
[ y − x(τ)]2 + γ(τ)). (3.1)

The equations of motion are

dx(τ)
dτ

= −G(τ)V′(x(τ)), (3.2)

∂G(τ)
∂τ

= −G2
(τ)V′′(x(τ)) +

h̵2

M
, (3.3)

dγ(τ)
dτ

= −
1
4

G(τ)V′′(x(τ)) − V(x(τ)), (3.4)

with initial conditions

x(τ ≈ 0) = x, G(τ ≈ 0) =
h̵2

M
τ, γ(τ ≈ 0) = −τV(x). (3.5)

The thawed Gaussian approximation in real time is

⟨x∣ exp(−
iHt
h̵
)∣g(p, q)⟩ = (

ReΓt

π
)

1/4
exp[−

Γt

2
(x − qt)

2

+
i
h̵

pt(x − qt) +
i
h̵

W(pt , qt)]. (3.6)

The associated real time equations of motion are Hamilton’s
equations of motion for the time dependent momentum and coor-
dinate (denoted as pt and qt , respectively) and a complex equation
for the time evolving width parameter,

q̇t =
pt

M
, (3.7)

ṗt = −V′(qt), (3.8)

ih̵Γ̇t = −V′′(qt) +
h̵2Γ2

t

M
. (3.9)

The action is

W(pt , qt) = ∫

t

0
dt′[

p2
t′

2M
− V(qt′)] −

h̵2

2M∫
t

0
dt′ReΓt′ , (3.10)

but it is irrelevant for our purposes as it disappears when consider-
ing the absolute value squared of the matrix element appearing in
Eq. (2.12). This is a central advantage of the present formulation.

With these preliminaries, it becomes possible to derive an ana-
lytic expression for the thermal rate of crossing a simple barrier
potential V(q) whose generic structure is shown schematically in
Fig. 1. At reactants (q→ −∞), the potential is constant with mag-
nitude 0. In the product region (q→ +∞), the potential is again
constant with energy −ΔV such that ΔV is the exoergicity of the
reaction. The barrier, with barrier height V‡ relative to reactants,
is located somewhere in between at q‡. The classical Hamiltonian
governing the equations of motion for the phase space variables is
assumed to be of the form

Hcl =
p2

2M
+ V(q). (3.11)

In the classical limit (or equivalently the high temperature limit
of the quantum rate), the thermal flux is given by

Fcl = lim
̵h→0

FR =
1

2πh̵β
exp(−βV‡

). (3.12)

FIG. 1. Schematic representation of the barrier potentials considered. In this
specific case, the barrier height is (in arbitrary units) V‡

= 1, and the exoergicity is
ΔV = 3.
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This allows us to define the transmission factor as the ratio of the
semiclassical thawed Gaussian reactive flux to the classical reac-
tive flux. The resulting expression whose derivation is presented in
Appendix B is

PR =
1
2

√

(
h̵2Γβ
2M
+ 1) exp(

h̵2Γβ2
(V‡
+ ΔV)

(h̵2Γβ + 2M)
)

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

erf
⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

2M2(V‡ + ΔV)

h̵2Γ(h̵2Γ β
2 +M)

⎞
⎟
⎟
⎠

+ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+
1
2

√

(
h̵2Γβ
2M
+ 1) exp(

h̵2Γβ2V‡

h̵2Γβ + 2M
)

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

erf
⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

2M2V‡

h̵2Γ(h̵2Γ β
2 +M)

⎞
⎟
⎟
⎠

− 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+
exp(βV‡

)

2

×

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
2MV‡

h̵2Γ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+
1
2

exp[β(V‡
+ ΔV)]

×

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
2M(V‡ + ΔV)

h̵2Γ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (3.13)

For a symmetric barrier, this reduces to the simpler expression

PR,sym =

¿
Á
ÁÀ(h̵2Γ β

2 +M)

M
exp[

h̵2Γβ2V‡

(h̵2Γβ + 2M)
]

× erf
⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ

2M2V‡

h̵2Γ(h̵2Γ β
2 +M)

⎞
⎟
⎟
⎠

+ exp(βV‡
)

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
2MV‡

h̵2Γ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (3.14)

The thawed Gaussian propagators in real and imaginary time
are exact for a parabolic barrier so that using them in Eq. (2.12) leads
to the exact quantum transmission probability for the parabolic bar-
rier. The present expressions are different. In deriving Eqs. (3.13)
and (3.14), we made use of the asymptotic constant structure of
the potential, which is not the case for the parabolic barrier, and
therefore, they are not applicable directly to the parabolic barrier
case, although, as we shall see below, they do give the correct high
temperature quantum corrections.

The analytic expressions derived for the one-dimensional
transmission factor are not yet complete, since they depend on the
width parameter Γ used for the smeared flux operator or equivalently
for the coherent states. This may be considered a disadvantage, but
we will argue that it is an important advantage, as it provides further
flexibility. Our strategy for choosing the width parameter will be to
assure that the analytical expression becomes exact in the small h
limit, where one may obtain an expansion of the exact rate constant
in powers of h2.

For example, Wigner derived in 1932 the exact leading order
correction term to the rate42 for a symmetric barrier, with barrier
frequency ω,

P = 1 +
h̵2β2ω2

24
(1 +

1
4M2βω4

∂4V(q)
∂q4 ∣q=0) +O(h̵4

). (3.15)

On the other hand, expanding the thawed Gaussian expression for
the transmission factor [Eq. (3.13)] gives

PR = 1 +
h̵2Γβ
2M
(

1
2
+ β(V‡

+ ΔV)) +
h̵4Γ2β2

8M2

× [(β(V‡
+ ΔV))

2
− (β(V‡

+ ΔV)) −
1
4
] +O(h̵6

). (3.16)

We may then expand the width parameter in terms of h as

Γ = Γ0 + h̵2Γ1 (3.17)

and derive the relevant expressions for the coefficients Γ0 and Γ1
by comparing with the exact expansion of the rate up to h4. These
may then be extrapolated to low temperature as demonstrated below
for the benchmark Eckart barriers, for which other approximate
methods have been tested.11,18,46–50

A. Symmetric Eckart barrier
The symmetric Eckart barrier potential Hamiltonian is

H =
p2

x

2M
+

V‡

cosh2( x
d)

, (3.18)

and due to the symmetry, the expression for the reaction probability
simplifies considerably as in Eq. (3.14). For the symmetric Eckart
barrier, the barrier frequency is related to the barrier height as

ω2
=

2V‡

Md2 . (3.19)

In these reduced variables, the transmission factor expression
[Eq. (3.14)] becomes a function of the following three reduced
variables:

Γ̃ = d2Γ, α =
h̵

Md2 ω
, τ̃ =

h̵ωβ
2

, (3.20)

and we note that the reduced barrier height is

βV‡
=

τ̃
α

. (3.21)

The transmission factor is then

PR = exp(
τ̃
α
)[

√

1 + τ̃Γ̃α exp(−
τ̃

α(ατ̃Γ̃ + 1)
)

× erf
⎛

⎝

¿
Á
ÁÀ

1
Γ̃α2(ατ̃Γ̃ + 1)

⎞

⎠
+

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
1

Γ̃α2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

. (3.22)
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As shown in Appendix C, the leading order expansion in terms
of h2 and h4 (or equivalently α2 and α4) of the exact rate for the
symmetric Eckart barrier is

P(β) = 1 +
α2βV‡

6
(1 + βV‡

) +
α4
(βV‡

)
2

360

× [9 + 7(βV‡
)

2
− 6βV‡

] +O(α6
). (3.23)

Using the expansion of the width parameter in terms of h2 as in
Eq. (3.17), one readily finds

d2Γ0 =
(1 + βV‡

)

3(1 + 2βV‡)
, (3.24)

d2h̵2Γ1 =
α2βV‡

90(1 + 2βV‡)
3 [4(βV‡

)
4
+ 2(βV‡

)
3

+ 22(βV‡
)

2
+ 30(βV‡

) + 7]. (3.25)

These results are instructive. For a fixed value of α, one notes
that in the high temperature limit, that is, in the limit that βV‡

→ 0,
the width parameter goes to a constant value of 1

3 , while in the
low temperature limit, that is, when βV‡

→∞, the width parameter
increases to α2

180(βV‡
)

2
. Classical barrier crossing occurs only when

the momentum at the barrier is positive. A large spatial width para-
meter implies a narrow smeared flux function in coordinate space,
which implies a broad function in momentum space. Increasing the
momentum width of the initial distribution implies a higher prob-
ability for the above barrier momenta and thus barrier crossing. In
this thawed Gaussian picture, tunneling occurs solely by those trajec-
tories initiated in the reactant region whose momentum is associated
with an energy that is greater than the barrier height. The proba-
bility for attaining this momentum depends on the coherent state.
The narrower it is in the coordinate space, the larger its momentum
width, and thus, the probability for higher momentum increases. As

the temperature is lowered, the increase in the spatial width para-
meter increases the probability of higher momenta, thus increasing
the transmission probability. In the thawed Gaussian theory, tunnel-
ing is attained purely by the above barrier classical trajectories even
in the deep tunneling regime. This gives a rather different picture
from that considered elsewhere according to which deep tunneling
cannot be ascribed to the above barrier classical trajectories51 or that
it is affected by Gaussian weighted jumps between classical paths.52

We apply this theory to the well-studied example for the sym-
metric Eckart barrier that corresponds to a model of the hydrogen
exchange reaction with α = π/12. In the right most column of
Table I, we show the transmission probabilities obtained using the
expansion of the rate to fourth order as in Eq. (3.23). As may
be inferred from this table, using this high temperature limit, one
obtains accurate results only up to hβω‡

= 4. For lower tempera-
tures, perhaps not unexpectedly, using the first two terms in the
high temperature expansion does not account well for the tunneling
transmission factors at lower energy. The numerically exact trans-
mission factors are shown in the second column from the left. The
third column from the right shows the results obtained from the
thawed Gaussian expression for the transmission factor [Eq. (3.22)]
using only the leading order term for the width parameter (Γ0) as in
Eq. (3.24). Although in this case we used only the lowest order term
of order h2, the result is as good as the high temperature limit, also
giving quite accurate rates, provided that hβω ≤ 4. It is instructive to
compare these results with the parabolic barrier approximation

Ppb =
τ

sin(τ)
(3.26)

whose values are shown in the second column from the right.
One notes that systematically, in the high temperature region, the
parabolic barrier expression underestimates the exact transmission
probability.

This is not a trivial observation. As already noted by Wigner,42

the classical Wigner approximation as we call it today does not
include the fourth derivative term and therefore is too small. This
presents a challenge also to other thermal rate theories, such as

TABLE I. Transmission factors for the symmetric barrier case. The various columns are obtained for different estimates of the
rate, as explained in the text.

hβω Exact Γ̃0[1 + ln(1 + Γ̃1
Γ̃0
)] (Γ̃0 + Γ̃1) Γ̃0 Ppb

High
T limit

1.5 1.130 1.133 1.133 1.130 1.100 1.132
2 1.224 1.230 1.230 1.223 1.188 1.227
3 1.525 1.548 1.549 1.511 1.504 1.528
4 2.071 2.143 2.151 1.998 2.200 2.037
6 5.199 5.673 5.890 4.217 21.26 4.104
8 21.77 24.25 28.62 11.18 ⋅ ⋅ ⋅ 8.567
10 161.9 168.9 271.6 36.33 ⋅ ⋅ ⋅ 17.04
12 1973.3 1842 5154 141.7 ⋅ ⋅ ⋅ 31.58
14 34 057 29 398 184 523 651.3 ⋅ ⋅ ⋅ 54.75
16 7.404 × 105 6.376 × 105 1.105 × 107 3472 ⋅ ⋅ ⋅ 89.54
18 1.882 × 107 1.756 × 107 9.591 × 108 21 190 ⋅ ⋅ ⋅ 139.4
20 5.344 × 108 5.795 × 108 10.50 × 1010 147 438 208.4
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Miller’s semiclassical theory,21,22 centroid,48 or ring polymer molec-
ular dynamics,49,50 which typically reduce to the parabolic barrier
limit but do not obtain the added term as derived by Wigner.

As may be seen from the results presented in Table I, using
only Γ̃0, we obtain an estimate that is too low as the temperature
is reduced. Inspection of Eq. (3.24) shows that d2Γ0 is an increasing
function of the temperature, varying from the value of 1/3 at high
temperature to 1/6 at low temperature. For this reason, it cannot
account for the deep tunneling region. The second term increases
significantly when the temperature is lowered. Therefore, adding the
term with Γ̃1 gives somewhat better results as shown in the middle
column of this table. However, empirically, we notice that the value
of Γ̃ rises too rapidly as the temperature is lowered and the resulting
transmission factors are too high. Inspection of Eq. (3.25) shows that
Γ1 diverges as (βV‡

)
2 when β→∞. On the other hand, we know,

in general, that in the limit of β→∞, the true transmission factor
should go to zero due to quantum reflection, and the semiclassical
instanton result will go to a finite value. It is thus clear that to obtain
good agreement with the numerically exact results at low temper-
ature, one should mitigate the rapid rise of Γ1 with β. With this in
mind, we used an ansatz that recovers the high temperature estimate
of Γ̃0 + Γ̃1 but prevents the width parameter from rising too quickly
as β becomes large,

Γ̃ = Γ̃0[1 + ln(1 +
Γ̃1

Γ̃0
)]. (3.27)

This ansatz does not call for any additional information but pro-
vides a more reasonable extrapolation of the width parameter as one
goes to low temperature. As may be seen from the third column
from the left of Table I, this ansatz gives quite accurate results for
the transmission factor, covering over eight orders of magnitude in
the transmission factor, comparable in quality to those obtained in
Ref. 18. For the symmetric Eckart barrier, the thawed Gaussian
coherent state flux side expression leads to an accurate analytic
estimate of the thermal rate.

B. Asymmetric Eckart barrier
The asymmetric Eckart barrier potential has the form

V(x) =
V1 − V2

1 + exp(− x
d)
+
(
√

V1 +
√

V2)
2

4 cosh2( x
2d)

(3.28)

such that the barrier is located at

x‡
= d ln

⎛

⎝

(
√

V1 +
√

V2)
2
− (V2 − V1)

(
√

V1 +
√

V2)
2
+ (V2 − V1)

⎞

⎠
, (3.29)

and the barrier height is

V‡
= V1. (3.30)

The exoergicity is

ΔV = V2 − V1. (3.31)

TABLE II. Transmission factors for the asymmetric barrier case. The notation is as in
Table I except that the parabolic barrier estimate is not included.

hβω Exact Γ̃0[1 + ln(1 + Γ̃1
Γ̃0
)] Γ̃0 + Γ̃1 Γ̃0

High
T limit

1.5 1.109 1.109 1.111 1.11 1.109
2 1.195 1.195 1.195 1.198 1.195
3 1.480 1.479 1.479 1.481 1.471
4 2.015 2.013 2.014 1.982 1.945
6 5.322 5.274 5.325 4.477 3.883
8 26.10 24.83 26.81 13.68 8.08
10 251.6 241.9 333 56.1 16.1
12 4068 5413 13 653 305 29.8
14 0.9055 × 105 2.946 × 105 2.469 × 106 2185 51.7

The parameters we use are the same as employed in Ref. 11 such that
V2 = 4V1 and ΔV = 3V‡. For this specific case, the barrier frequency
is related to the barrier height by

ω2
=

8V‡

9Md2 . (3.32)

Other parameters are scaled as for the symmetric case [see
Eq. (3.20)]. The parameter α was chosen such that the barrier height
is identical to the barrier height of the symmetric Eckart barrier, that
is, α = 3π

16 .
For the asymmetric case, there is no known analytic expansion

of the rate as a function of h2. We therefore resorted to a numeri-
cal strategy to determine the temperature dependence of the width
parameter, as described in more detail in Appendix D. Briefly, we
computed numerically the exact rate constant in the range 0 ≤ hβω
≤ 0.8 and fit it to a fourth order polynomial in the variable τ =

̵hβω
2 .

This was then used to determine the width parameters Γ̃0 and Γ̃1.
The results are given in Table II. As in the symmetric case, using
the width parameter Γ̃0 does not account for the significant tunnel-
ing at low temperatures. Using Γ̃0 + Γ̃1 gives reasonable results for
hβω ≤ 8, and using the ansatz of Eq. (3.27) gives accurate results for
hβω ≤ 12. The results obtained by the analytic expression are more
accurate than those obtained by a variety of different approximate
methods to determine the rate constant.

IV. DISCUSSION
The highlights of this paper are as follows:

● a general formalism for the computation of thermal correla-
tion functions based on the coherent state representation of
operators,

● a general formula for the computation of the coherent state
representation of the operators,

● a coherent state based formulation of the flux side correla-
tion function using a smeared flux operator,

● derivation of the coherent state representation of the flux
operator as its classical representation,

● application of the coherent state flux side correlation func-
tion to derive an analytic formula for the thermal tunneling
rate through simple barriers based on thawed Gaussian
propagators, and
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● application of the resulting theory to the symmetric and
asymmetric Eckart barrier tunneling rates.

The implications of these results are numerous. The general
expression of the correlation function using coherent states has a
number of advantages:

● The resulting expression presents an average of a posi-
tive temperature and time dependent distribution function,
which should be helpful in applying the formalism using
numerically exact methods. The numerical difficulty caused
by the highly oscillatory structure of the integrand is much
alleviated, and this should facilitate the convergence of
Monte Carlo methods.

● In contrast to the “standard” methods that imply a forward
and backward time propagation, the coherent state form
presented in Eq. (1.5) involves only a single forward time
propagation. This reduces the numerical effort when using
semiclassical initial value representations of the propagator.

● The use of coherent states has the advantage that it is directly
amenable to semiclassical initial value propagation, as also
exemplified for the flux side correlation function combined
with thawed Gaussian propagation.

As discussed in this paper, a necessary condition for the appli-
cation of the coherent state correlation function representation is the
construction of a practical method for the computation of the coher-
ent state representation of operators. For this purpose, we derived
an explicit inversion formula connecting between the Wigner repre-
sentation of an operator and its coherent state representation. This
formula highlights also the difficulties especially when dealing with

the Dirac delta function or step function operators. For the flux side
correlation function, this impediment was removed through the use
of a Gaussian smeared flux operator.38 The resulting coherent state
representation of the flux operator is just the classical form.

The versatility of the new expression for the flux side correla-
tion function is especially useful in the context of thawed Gaussian
approximations to the wavefunction. Using the thawed Gaussian
semiclassical approximation for both the thermal and real time
propagators, we derived an analytic expression for the thermal rate.
The result depends, however, on the choice of the width parameter
used to smear the flux operator. This may be considered a weakness,
but conversely, it may be considered an added strength of the theory.
We showed that by judicious choice of the temperature dependence
of the width parameter, one could obtain very reasonable approx-
imations to the transmission factor for both the symmetric and
asymmetric cases. Specifically, in view of machine learning algo-
rithms, one may perhaps utilize this freedom of choice for the width
parameter to learn what would be the most general optimal function
to use. For the Eckart barrier, one knows the exact transmission fac-
tor at each temperature. One can then use this knowledge to fit the
width parameter so that the thawed Gaussian theory would give the
exact transmission factor. Such an inversion is shown in Fig. 2 for
the symmetric case (left) used in Table I and the asymmetric case
(right) considered in Table II.

These plots are noteworthy for a number of reasons. The coher-
ent state reactive flux expression given in Eq. (2.12) is exact and so
does not depend on the choice of the width parameter Γ. This means
that, in principle, the width parameter should not vary with the tem-
perature. Inspection of Fig. 2 shows that for both the symmetric
and asymmetric barrier cases, the width parameter hardly changes

FIG. 2. Temperature dependence of the width parameter. The x-axis shows the reduced temperature hβω. The solid circles show the value of the (reduced) width parameter
that would give the exact rate; the solid line is the value obtained from Eq. (3.27). The left panel is for the symmetric case (see Table I), and the right panel is for the
asymmetric case (see Table II).
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for temperatures above the crossover temperature (β = 2π), indicat-
ing the validity of the thawed Gaussian estimate in this temperature
range. Moreover, over all the temperature range considered, the
“exact” width parameter changes by a factor of 2 in the symmet-
ric case and only 50% in the asymmetric case. We will investigate
in future work whether a more accurate estimate of the imaginary
time propagator would lead to a theory, whereby this dependence is
further reduced, leading to a more accurate theory.

This figure also demonstrates that the optimal value of the
width parameter changes in a smooth way as a function of temper-
ature and generally increases as the temperature is lowered. There
is some real physics underlying this structure. Increasing the width
parameter implies that the width of the momentum distribution
associated with the coherent states increases, giving a higher proba-
bility for momenta whose energy supersedes the barrier energy. The
fact that for any temperature there exists a value of the width para-
meter that gives the exact transmission factor implies that even deep
tunneling may be represented correctly in terms of the above barrier
trajectories only.

Why do we stress this? The present application was limited
to one-dimensional scattering. However, there is nothing in the
formalism that limits its use to one dimension. In multidimen-
sional applications, there is a coherent state phase space associated
with each degree of freedom. Each one of these has a separate
width parameter. For many degrees of freedom, the most general
coherent state would have a symmetric matrix of width para-
meters, all of which could be optimized through the use of a
machine learning algorithm.53 The thawed Gaussian theories have
been considered extensively in recent years in the context of com-
plex systems, and so, these are also known in the multidimensional
case.54,55

The comparison between the “exact” width parameters and
those used in the approximate determination of the width para-
meters through the high temperature expansion is also instruc-
tive. The expansion used not only is quantitative for a large
range of temperatures for a given potential but also correctly
describes the order of magnitude difference between the magni-
tude of the width parameter in the symmetric and asymmetric cases
considered.

These results should create renewed interest in the compu-
tation of thermal correlation functions at high temperature even
though the actual quantum effect is rather limited. We note that
most approximate methods employed for thermal rates do not get
the correct high temperature limit. They reduce to the parabolic bar-
rier limit, but as already stressed by Wigner, this is not the whole
story.

In principle, the exact evaluation of the coherent state rep-
resentation of the flux side correlation function [Eq. (1.6)] gives
a reaction rate that is independent of the choice of the divid-
ing surface. This independence is, however, not satisfied by the
thawed Gaussian approach used in this paper. To improve upon
the present results, one may consider varying the location of the
dividing surface10 and use that location at which the derivative of
the approximate flux with respect to the location of the dividing
surface vanishes. In the symmetric case, this will almost always
be the barrier top; however, this is not the case in the asym-
metric case, where such optimization will usually improve the
estimate.11,15

Perhaps not less important is the fact that the thawed Gaussian
is just a zeroth order term in a time dependent perturbation theory
expansion of the exact propagator35,57–59 so that one may improve
systematically upon the zeroth order thawed Gaussian theory used
here. The added expense in computing the first order term is no
greater than the expense needed to compute the zeroth order term
with the Herman–Kluk initial value semiclassical representation of
the propagator.39 Moreover, one may use this first order correc-
tion term as a different strategy for choosing the width parameter,
namely, by choosing the value of the width parameter that minimizes
the relative magnitude of the first order term.

To summarize, the coherent state approach to thermal corre-
lation functions seems promising. Some of its practical advantages
have been demonstrated here for thermal reaction rate estimates and
especially for one-dimensional Eckart barriers, but much is left to be
done to demonstrate its utility also in the context of other desirable
thermal correlation functions for larger molecular systems.
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APPENDIX A: PHASE SPACE REPRESENTATION
OF A QUANTUM OPERATOR

The phase space formulation of quantum mechanics with
coordinate-momentum variables60–64 is formulated such that the
trace of a product of two quantum operators is equivalent to an
integral of two phase space functions, i.e.,

Tr[ÂB̂] =
1

(2πh̵)N ∫ dqdpAC(x, p)B̃C(q, p), (A1)

where

AC(q, p) = Tr[ÂK̂(q, p)] (A2)

and

B̃C(q, p) = Tr[K̂ −1
(q, p)B̂]. (A3)
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Conversely,

Â =
1

(2πh̵)N ∫ dqdpAC(q, p)K̂ −1
(q, p),

B̂ =
1

(2πh̵)N ∫ dqdpB̃C(q, p)K̂(q, p).
(A4)

In Eqs. (A1)–(A4), the mapping kernel K̂(q, p) and the correspond-
ing inverse satisfy the normalization,

Tr[K̂(q, p)] = Tr[K̂ −1
(q, p)] = 1 (A5)

and

1
(2πh̵)N ∫ dqdpK̂(q, p) =

1
(2πh̵)N ∫ dqdpK̂ −1

(q, p) = Î. (A6)

Here, Î is the identity operator.
Since we are considering in this paper a continuous-variable

quantum system, the mapping phase space involved is infinite.
The integral measure is chosen to be (2πh̵)−N dqdp. Recent
progress implies that constraint coordinate-momentum phase space
is employed for the discrete-variable quantum system.63,65–67 Liu
and co-workers have suggested that it is more comprehensive
to employ the kernel K̂(q, p) and its inverse for mapping the
coordinate-momentum phase space for a composite system that
includes both continuous and discrete variables.63,65–67 Even when
the continuous-variable system is studied, it is also more convenient
to reformulate Cohen’s scheme60,62 in this way35 so that one readily
obtains the phase space representation of a quantum operator from
Eq. (A4) and the transformation between two different phase space
representations.

The mapping kernel for describing the continuous-variable
system is

K̂(q, p) = (
h̵

2π
)

N

∫ dζdηeiζT
(q̂−q)+iηT

(p̂−p) f (ζ, η), (A7)

and the corresponding inverse kernel is

K̂ −1
(q, p) = (

h̵
2π
)

N

∫ dζdηe−iζT
(q̂−q)−iηT

(p̂−p) 1
f (ζ, η)

, (A8)

where f (ζ, η) is a scalar function that defines the corresponding
phase space. For example, the choice

f (ζ, η) = 1 (A9)

gives the Wigner function,68 and the choice

f (ζ, η) = exp(−
ζTΓ−1ζ

4
−

h̵2

4
ηTΓη) (A10)

yields the Husimi function.69

When the Wigner function is used, the kernel is identical to its
corresponding inverse. Equations (A2) and (A3) take the same form,
i.e.,

BW(p, q) = B̃W(p, q)

= (
h̵

2π
)

N

∫ dζdη Tr[eiζT
(q̂−q)+iηT

(p̂−p)B̂]

= ∫ dyeiyT p/̵h
⟨q −

y
2
∣B̂∣q +

y
2
⟩. (A11)

Equation (A4) produces the Wigner phase space representation of
operator B̂, i.e.,

B̂ =
1

(2πh̵)N ∫ dqdpdyB̃W(q, p)eiyT p/̵h
∣q +

y
2
⟩⟨q −

y
2
∣. (A12)

When the operator B̂ = B(q̂) is a function of only coordinate vari-
ables, Eq. (A12) is simplified to the coordinate state representation
as follows:

B̂ = ∫ dqB(q)∣q⟩⟨q∣. (A13)

Similarly, one sees that Eq. (A12) becomes the momentum state
representation when the operator B̂ = B(p̂) is a function of only
momentum variables.

When the Husimi function is employed, Eq. (A2) for the
operator B̂ leads to

BH(p, q) = (
h̵

2π
)

N

∫ dζdη exp(−
ζTΓ−1ζ

4
−

h̵2

4
ηTΓη)

× Tr[eiζT
(q̂−q)+iηT

(p̂−p)B̂] = ⟨g(p, q)∣B̂∣g(p, q)⟩, (A14)

and Eq. (A3) produces the dual function

B̃H(p, q) = (
h̵

2π
)

N

∫ dζdη exp(
ζTΓ−1ζ

4
+

h̵2

4
ηTΓη)

× Tr[eiζT
(q̂−q)+iηT

(p̂−p)B̂]. (A15)

Noting the equivalence between ζ and i d
dq outside of the trace in

the integral of Eq. (A15) and that between η and i d
dp , we find an

equivalent expression to Eq. (A15) as follows:

B̃H(p, q) = (
h̵

2π
)

N

exp
⎡
⎢
⎢
⎢
⎢
⎣

−
1
4
(

d
dq
)

T

Γ−1 d
dq
−

h̵2

4
(

d
dp
)

T

× Γ d
dp
]∫ dζdη Tr[eiζT

(q̂−q)+iηT
(p̂−p)B̂], (A16)

which states that

B̃H(p, q) = exp
⎡
⎢
⎢
⎢
⎢
⎣

−
1
4
(

d
dq
)

T

Γ−1 d
dq
−

h̵2

4
(

d
dp
)

T

Γ d
dp

⎤
⎥
⎥
⎥
⎥
⎦

BW(p, q).

(A17)
It is straightforward to apply the same strategy to derive from
Eq. (A14)

BH(p, q) = exp
⎡
⎢
⎢
⎢
⎢
⎣

1
4
(

d
dq
)

T

Γ−1 d
dq
+

h̵2

4
(

d
dp
)

T

Γ d
dp

⎤
⎥
⎥
⎥
⎥
⎦

BW(p, q).

(A18)
Equation (A18) leads to a more well-known relation between the
Wigner and Husimi (distribution) functions70,71 as follows:

BW(p, q) = exp
⎡
⎢
⎢
⎢
⎢
⎣

−
1
4
(

d
dq
)

T

Γ−1 d
dq
−

h̵2

4
(

d
dp
)

T

Γ d
dp

⎤
⎥
⎥
⎥
⎥
⎦

BH(p, q)

(A19)
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or equivalently,61

BH(p′, q′) = (
1

πh̵
)

N

∫ dqdp exp[−(q − q′)TΓ(q − q′)

−
1
h̵2 (p − p′)TΓ−1

(p − p′)]BW(p, q). (A20)

We then readily obtain from Eq. (A4) the Husimi phase space
representation or coherent state representation of the operator B̂,
i.e.,

B̂ =
1

(2πh̵)N ∫ dqdpB̃H(p, q)∣g(p, q)⟩⟨g(p, q)∣, (A21)

which is essential to the exact reformulation of the thermal
correlation function, Eq. (1.3) or Eq. (1.6) presented in this paper.

APPENDIX B: DERIVATION OF EQ. (3.13)

Using the thawed Gaussian expressions for the imaginary and
real time propagations, the expression for the time dependent
reactive flux (with τ = β

2 ) simplifies to

FR(t) = ∫
∞

0
dx∫

∞

−∞

dp
2πh̵

p
M

√
(ReΓt)

√

π∣(Γ∗t G(τ) + 1)∣2
exp[2γ(τ)]

× exp
⎛
⎜
⎜
⎜
⎝

−

h̵2
(∣Γt ∣

2G(τ) + ReΓt)[qt − x(τ) + pt(ImΓt)G(τ)
̵h(∣Γt ∣

2G(τ)+ReΓt)
]

2

h̵2∣(Γ∗t G(τ) + 1)∣2

⎞
⎟
⎟
⎟
⎠

× exp
⎛

⎝
−
(ReΓt)G(τ)p2

t [G2
(τ)∣Γt ∣

2
+ 2G(τ)ReΓt + 1]

h̵2∣(Γ∗t G(τ) + 1)∣2(∣Γt ∣
2G(τ) + ReΓt)

⎞

⎠
,

(B1)

and it is understood that the initial conditions for pt , qt are p, q‡.
This result is exact for a parabolic barrier since the thawed Gaussian
propagators we are using are exact for quadratic potentials.

The reactive flux is given by the long time limit of the time
dependent flux. Since we are assuming a single barrier potential,
asymptotically in either direction, the motion becomes free particle
motion. (This is not the case for the parabolic barrier; hence, the fol-
lowing is not applicable to the parabolic barrier case.) To obtain the
reactive flux, we need the long time limit of trajectories initiated at
the location of the barrier. This means that if the initial momentum
is positive, then qt → +∞, while if the initial momentum is negative,
then qt → −∞. Furthermore, it implies that in the long time limit,
the final momentum is a positive (negative) constant, p+(p−), for
initial positive (negative) momentum whose energy is greater than
the barrier height. Since in this long time limit the potential is a
constant, we also know from solving the equation of motion for the
width parameter and free particle motion that

lim
t→∞
(t2ReΓt) =

M2

h̵2Γ
(B2)

and

lim
t→∞
(tImΓt) = −

M
h̵

. (B3)

Therefore, the expression for the reactive flux simplifies to

FR = lim
t→∞∫

∞

0
dx∫

∞

−∞

dp
2πh̵

p
M

√
(ReΓt)
√

π

× exp
⎡
⎢
⎢
⎢
⎣

2γ(τ) −
(ReΓt)G(τ)p2

t

h̵2(G(τ)(ImΓt)
2
+ ReΓt)

⎤
⎥
⎥
⎥
⎦

× exp( − (G(τ)(ImΓt)
2
+ ReΓt)[qt − x(τ)

+
pt(ImΓt)G(τ)

h̵(G(τ)(ImΓt)
2
+ ReΓt)

⎤
⎥
⎥
⎥
⎦

2
⎞

⎠
. (B4)

We then use the following notation for the coordinate in the
long time limit:

qt =
p+
M

tθ(p) +
p−
M

tθ(−p), (B5)

and it is understood that p
−
< 0. Energy conservation implies that

p2
+

2M
=

p2
−

2M
+ ΔV =

p2

2M
+ V‡

+ ΔV. (B6)

One then readily sees that

lim
t→∞

pt(ImΓt)G(τ)
h̵(G(τ)(ImΓt)

2
+ ReΓt)

= −[ p+θ(p) + p−θ(−p)]

×
ΓG(τ)t

M(ΓG(τ) + 1)
. (B7)

Due to the fact that the potential is asymptotically constant and that
the Gaussian factor in the rate expression [Eq. (B4)] forces also the
variable x to be large, we find from Eq. (3.3)

lim
t→∞

G(τ) =
h̵2

M
τ (B8)

and from Eq. (3.4)

lim
t→∞

γ(τ) = 0 ⋅ θ(−p) + ΔVτθ(p). (B9)

After changing variables from x to y = x/t, the expression for the
reactive flux simplifies considerably

FR = ∫

∞

0
dy∫

∞

−∞

dp
2πh̵

p
h̵

1
√

πΓ
exp[−

p2
−

(h̵2Γτ +M)
τ

−
2M(ΔV)θ(p)
(h̵2Γτ +M)

τ + 2(ΔV)θ(p)τ]

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
M(h̵2Γτ +M)

h̵2Γ
(
[p+θ(p) + p−θ(−p)]
(h̵2Γτ +M)

− y)
2⎤
⎥
⎥
⎥
⎥
⎦

. (B10)
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The integration over y is readily carried out, and the expression
for the reactive flux becomes

FR = ∫

∞

−∞

dp
4πh̵

p
√

M(h̵2Γτ +M)

× exp[−
p2
+ 2MV‡

(h̵2Γτ +M)
τ + 2θ(p)

(ΔV)h̵2Γτ2

(h̵2Γτ +M)
]

× (1 + [θ(p)erf(p+

√
M

h̵2Γ(h̵2Γτ +M)
)

− θ(−p)erf(−p−

√
M

h̵2Γ(h̵2Γτ +M)
)]). (B11)

Noting the integral

∫

∞

1
dX exp(−AX)erf(

√
BX)

=

√
B + A exp(−A)erf(

√
B) +

√
B[1 − erf(

√
B + A)]

A
√

B + A
, (B12)

one finds after some tedious algebra that the reactive flux may be
expressed in closed form as follows:

FR =

√
h̵2Γτ +M

8πh̵τ
√

M
exp[−

MV‡
− h̵2Γτ(ΔV)

(h̵2Γτ +M)
2τ]

× erf
⎛
⎜
⎝

¿
Á
ÁÀ2M2(V‡ + ΔV)

h̵2Γ(h̵2Γτ +M)

⎞
⎟
⎠
+

√
h̵2Γτ +M

8πh̵τ
√

M

× exp(−
2MV‡τ
(h̵2Γτ +M)

) ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

erf
⎛
⎜
⎝

¿
Á
ÁÀ 2M2V‡

h̵2Γ(h̵2Γτ +M)

⎞
⎟
⎠

+ exp(2
(ΔV)h̵2Γτ2

(h̵2Γτ +M)
) − 1] +

1
8πh̵τ

×

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
2MV‡

h̵2Γ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+
exp(2(ΔV)τ)

8πh̵τ

×

⎡
⎢
⎢
⎢
⎢
⎣

1 − erf
⎛

⎝

√
2M(V‡ + ΔV)

h̵2Γ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

(B13)

and this is the desired result.

APPENDIX C: DERIVATION OF EQ. (3.23)

For a parabolic barrier with barrier frequency ω, it is well
known that the leading order terms in the h expansion for the
transmission factor are

κ = 1 +
h̵2β2ω2

24
+

7h̵4β4ω4

360 ⋅ 16
+O(h̵6

). (C1)

The exact energy dependent reaction probability, as derived by
Eckart,40 is

P(E) =
sinh2

(πk)
cosh2

(πνI) + sinh2
(πk)

=

sinh2
( π

α

√
E

V‡ )

cosh2
( π

α

√

1 − 1
4 α2) + sinh2

( π
α

√
E

V‡ )

. (C2)

As noted by Yasumori41 (see also Ref. 72), an excellent approxima-
tion to the energy dependent probability is

P(E) ≃
⎧⎪⎪
⎨
⎪⎪⎩

1 + exp
⎡
⎢
⎢
⎢
⎢
⎣

2π
α
⎛

⎝

√

(1 −
α2

4
) −

√
E

V‡

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

−1

. (C3)

From this form, Yasumori derived an analytic expression for the
thermal transmission probability as follows:

I = β∫
∞

0
dE exp(−βE)

1

1 + exp( 2π
α

√

1 − α2

4 −
2π
α

√
E

V‡ )

= exp(−βV‡
(1 −

α2

4
))[1 + 2

∞

∑
m=1
(

βV‡α2

4π2 )

m

L2m

×
⎛

⎝

√

βV‡(1 −
α2

4
)
⎞

⎠

∞

∑
p=1

(−1)p

p2m

⎤
⎥
⎥
⎥
⎥
⎦

, (C4)

with

L2m(x) = −[
d(2m)

dy(2m) exp(−y2
)]

y=x
exp(x2

). (C5)

It is then a matter of straightforward algebra to find that

I0 = exp(−βV‡
(1 −

α2

4
)), (C6)

I1 = −
βV‡α2

12
exp(−βV‡

(1 −
α2

4
))[1 − 2βV‡

(1 −
α2

4
)], (C7)

I2 = −
7π4

360
exp(−βV‡

(1 −
α2

4
))(

βV‡α2

4π2 )

2

×

⎡
⎢
⎢
⎢
⎢
⎣

48βV‡
(1 −

α2

4
) − 16(βV‡

(1 −
α2

4
))

2

− 12
⎤
⎥
⎥
⎥
⎥
⎦

(C8)

so that

I0 + I1 + I2 = exp(−βV‡
)[1 +

α2 βV‡

6
(1 + βV‡

)

+
α4
(βV‡

)
2

360
[9 + 7(βV‡

)
2
− 6βV‡

]

⎤
⎥
⎥
⎥
⎥
⎦

+O(α6
), (C9)

J. Chem. Phys. 156, 244101 (2022); doi: 10.1063/5.0088163 156, 244101-12

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

and this is the desired result. Note that the term
α2
(βV‡

)

2

6 is identical
to the term of order h2 for the parabolic barrier [see Eq. (C1)], while
the term with 7(βV‡

)
2

is identical to the fourth order term of the
parabolic barrier.

APPENDIX D: h2 EXPANSION FOR THE ASYMMETRIC
ECKART BARRIER

For the asymmetric Eckart barrier, the exact energy dependent
transmission probability is

T(E) = 1 −
cosh[ 3π

α (

√

( E
V1
+ 3) −

√
E

V1
)] + cosh[π

√
81
α2 − 1]

cosh[ 3π
α (

√

( E
V1
+ 3) +

√
E

V1
)] + cosh[π

√
81
α2 − 1]

.

(D1)
The numerically exact transmission probabilities given in

Table II are obtained by numerical quadrature of the thermal
average,

P(β) = exp(βV1)β∫
∞

0
dE exp(−βE)T(E). (D2)

Our objective is to obtain an expansion of the transmission
probability in h2 up to h4. For this purpose, we are guided by the
result for the symmetric case, as in Eq. (3.23). Introducing four
parameters {γj, j = 1, . . . , 4}, we write down the expansion for the
asymmetric case as

P(β) =
⎡
⎢
⎢
⎢
⎢
⎣

1 +
α2βV‡

6
(

3
8

γ1 + βV‡
) +

α4
(βV‡

)
2

360

× [9γ2 + 7γ4(βV‡
)

2
− 6γ3βV‡

]

⎤
⎥
⎥
⎥
⎥
⎦

+O(α6
) (D3)

and note that using the reduced variables, this may also be rewritten
exactly as a series in the reduced temperature variable τ, including
up to fourth order terms,

P(β) = 1 +
3ταs

48
γ1 +

τ2

6
+

α2
s τ2

40
γ2 −

αs

60
zτ3γ3 + y

7τ4

360
γ4. (D4)

The parameters are then determined by computing the
exact thermal transmission factor at high temperature and fit-
ting the results to a fourth order polynomial in τ. This was
implemented by computing the exact transmission probability for
the values τ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35,
and 0.4. The resulting coefficients with standard deviations for the
expansion in τ were 0.016 267 82 ± 7 × 10−8, 0.165 633 ± 1 × 10−6,
−0.005 804 ± 4 × 10−6, and 0.018 516 ± 6 × 10−6 for the respec-
tive powers of τ, τ2, τ3, and τ4. From these and Eq. (D4),
the parameters γ1, γ2, γ3, and γ4 were extracted, and they are
0.994 216,−0.603 136, 1.330 056, and 0.952 238, respectively.

Using the leading order expansion of the thawed Gaussian
expression as in the symmetric case and equating the terms with
h2 and h4, one obtains the temperature dependence of the width
parameter coefficients Γ0 and Γ1.
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54T. Begušić and J. Vaníček, J. Chem. Phys. 153, 024105 (2020).
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