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ABSTRACT: We show that a novel, general phase space mapping
Hamiltonian for nonadiabatic systems, which is reminiscent of the
renowned Meyer−Miller mapping Hamiltonian, involves a commutator
variable matrix rather than the conventional zero-point-energy parameter.
In the exact mapping formulation on constraint space for phase space
approaches for nonadiabatic dynamics, the general mapping Hamiltonian
with commutator variables can be employed to generate approximate
trajectory-based dynamics. Various benchmark model tests, which range
from gas phase to condensed phase systems, suggest that the overall
performance of the general mapping Hamiltonian is better than that of the
conventional Meyer−Miller Hamiltonian.

1. INTRODUCTION
Many important processes from photochemistry to electron
transfer in chemical, biological, and materials systems involve
quantum mechanical behavior of both electrons and nuclei in
the context of nonadiabatic dynamics.1−10 The celebrated
Meyer−Miller mapping model11−13 is one of the important
theoretical frameworks for developing practical nonadiabatic
dynamics methods.14−56 Consider a coupled F-electronic-state
Hamiltonian operator
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in the diabatic representation (for simplicity), where the F
electronic states consist of an orthogonal complete basis set, i.e.,
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Here Iêle is the identity operator in the electronic state space,M is
the diagonal “mass matrix” with elements {mj}, {R,P} are the
coordinate andmomentum variables for the nuclear DOFs (with
N the total number of nuclear DOFs), and potential energy
elements Vnm(R) = Vmn(R) form a real symmetric matrix. The
Meyer−Miller Hamiltonian reads
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where {x,p}={x(1),···,x(F), p(1),···,p(F)} are the mapping coor-

dinate and momentum variables for the F electronic states.
There exist two alternative approaches that derive the

Meyer−Miller mapping model in quantum mechanics.12,13

The approach of Stock and Thoss12 and of Sun et. al14 suggests

that parameter γ in the Meyer−Miller mapping Hamiltonian eq

3 is a parameter for the zero point energy of a singly excited

oscillator for the underlying mapping DOFs for each electronic

state,30−33 which is in the similar spirit to that of the pioneering

work of Meyer and Miller.11 In comparison, the unified

framework proposed in ref 13 offers a substantially different

picture. It derives a mapping model reminiscent of the Meyer−
Miller model,
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where parameter γ is interpreted as a parameter originated from

a commutator of Pauli matrix ,i
x

n
y

n
4
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σ σ− [ ̂ ̂ ] = − σ ̂
, which

allows both positive and negative values.13,42 The one-to-one
correspondence mapping formulation for the correlation
function for nonadiabatic systems can rigorously be estab-
lished.41,42

More interestingly, where the Meyer−Miller mapping
Hamiltonian is rederived in the novel framework in ref 13, it is
also indicated that there exists a more general mapping
Hamiltonian
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where Γ is a real symmetric matrix with the element Γnm in the
nth row andmth column. Its element Γnm is a real variable for the

corresponding commutator, ( , , )i
x

n
y

m
x

m
y

n
8

( ) ( ) ( ) ( )σ σ σ σ− [ ̂ ̂ ] + [ ̂ ̂ ] , as

presented in ref 13. Γ is denoted the commutator matrix. When
off-diagonal elements of commutator matrix Γ are set to zero
and diagonal elements are the same, the general mapping
Hamiltonian eq 5 is simplified to eq 4. Note that the
commutator matrix Γ can evolve with time when eq 5 is utilized
to generate corresponding Hamilton’s equations of motion. To
the best of our knowledge, except as presented in ref 13, the
general mappingHamiltonian eq 5 with commutator matrixΓ as
a variable has never been proposed and used to generate the
equations of motion for nonadiabatic dynamics. The purpose of
the paper is to employ the general mappingHamiltonian eq 5 for
trajectory-based dynamics for nonadiabatic systems, in the exact
mapping kernel formulation that we established in refs 41 and
42. The paper is organized as follows. Section 2 first reviews the
one-to-one correspondence mapping formulation derived in refs
41 and 42 and then derivesHamilton’s equations ofmotion from
eq 5, where the frozen-nuclei limit as well as the Born−
Oppenheimer limit are satisfied. Section 3 presents numerical
results of various benchmark model tests for gas phase as well as
condensed phase systems, which include the scattering models
of Tully,57 3-state photodissociation models of Miller and co-
workers,58 7-site model of the Fenna−Matthews−Olson
(FMO) monomer,59 and atom-in-cavity models.60−63 Finally,
conclusions are given in Section 4.

2. THEORY
2.1. Phase Space Mapping Formulations for Non-

adiabatic Systems. Because it is convenient to obtain useful
insight about the correspondence between quantum and
classical concepts in phase space formulations of quantum
mechanics,64−82 they have been widely used in many areas of
physics and chemistry since Wigner’s pioneering work.64 More
recently, we have proposed a unified framework for the one-to-
one correspondence mapping in phase space formulations of
quantum mechanics,42 which naturally includes and surpasses
the classification scheme79,81,82 for conventional ap-
proaches64−78,80 for quantum systems represented in the

continuous coordinate space and is able to treat quantum
systems described in the finite-dimensional Hilbert space.13,41

Such a framework offers a useful tool for nonadiabatic systems
where both continuous nuclear degrees of freedom (DOFs) and
discretized electronic state DOFs are involved.
In the unified framework of phase space mapping models for

the (coupled)multistate Hamiltonian (eq 1) in ref 13, eq 4 is the
mapping model reminiscent of the Meyer−Miller model. When
the mapping variables for the electronic state DOFs satisfy
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the mapping Hamiltonian eq 4 is equal to the conventional
Meyer−Miller Hamiltonian eq 3. This was first proposed in ref
41 for general F-state systems. The simplest way is to use the full
constraint electronic space that eq 6 defines, i.e.,

x p
Fx p( , ):
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for constructing the formulation for physical properties in the
mapping approach. The possible value of parameter γ for eq 6 or
eq 7 implies ( , )

F
1γ ∈ − ∞ .

The trace of a product of two operators is expressed in phase
space as
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(2πℏ)−N dR dP⊗ F dx dP stands for the invariant measure on
the mapping phase space for nuclear and electronic state DOFs,
and Trn and Tre represent the trace over the nuclear DOFs and
that over the F electronic states, respectively. The mapping
kernel and its inverse satisfy the normalization
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where In̂uc is the identity operator in the nuclear space and the
integral over constraint mapping space x p( , ) is
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The one-to-one correspondence mapping from A(R,P;x,p) (or
B̃(R,P;x,p)) of eq 9 back to operator Â (or B̂) is
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The mapping kernel for the nuclear DOFs (in eq 9) is
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where f(ζ,η) is a scalar function to determine the corresponding
nuclear phase space. For instance, the Wigner function64,65 has

f ( , ) 1ζ η = (17)

and the Husimi function68 has
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The mapping kernel for the F electronic states (in eq 9) is
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and the inverse kernel
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In eqs 8, 12, 14, 15, and 16, while the integrals for the nuclear
DOFs are over the whole nuclear phase space when the Wigner
or Husimi function is employed, those for the F electronic states
are over the constraint electronic mapping space, x p( , ).
When the nuclear DOFs are described in Wigner phase space

(eqs 15 and 16 with eq 17), the mapping kernel and its inverse
are the same, i.e.,

K KR P R P( , ) ( , )nuc nuc
1̂ = ̂ −

(21)

When theWigner function (eqs 15 and 16 with eq 17) is used for
the nuclear DOFs, it is easy to show that the real part of the
mapping Hamiltonian H (R,P;x,p) = Trn,e[ĤK̂nuc(R,P)
⊗K̂ele(x,p)] with constraint eq 7 for the coupled multistate
Hamiltonian operator eq 1 is the same as the conventional
Meyer−Miller Hamiltonian eq 3. The equations of motion
produced by the real part of H (R,P;x,p) = Trn,e[ĤK̂nuc(R,P)
⊗K̂ele(x,p)] are identical with those yielded by its imaginary part.
When the parameter

F
F
1 1γ = + −

(22)

is employed, the mapping kernel for the electronic DOFs is
equal to the inverse kernel, i.e.,

K Kx p x p( , ) ( , )ele ele
1̂ = ̂ −

(23)

eq 22 offers the only physical value for parameter γ in the region
( , )

F
1− ∞ to make eq 23 hold. We note that the so-called spin

mapping model of refs 43 and 44 intrinsically based on the
Meyer−Miller mapping Hamiltonian model (especially when F
≥ 3 electronic states are involved) is only a special case of the
exact phase space mapping formulation that we established first
in refs 13 and 41 and then in ref 42, i.e., parameter

F F0, ( 1 1)/ , or 1γ = + − in our exact phase space
mapping formulation corresponds to the Q-version, W-version,
or P-version of refs 43 and 44, respectively. Interestingly, the
authors of ref 44 even failed to understand that the
interpretation for general F-state systems constructed in
Appendix A of ref 41 is simply an exact phase space mapping
formulation for the parameter γ = 0. We also note that the exact
phase spacemapping formulation of the correlation function can
be used to formalize various other methods based on the
Meyer−Miller mapping Hamiltonian model in refs 14, 35, 45,
46, 49, and 83−86, as we will show in a forthcoming paper.

2.2. Expression of the Time Correlation Function.
Define the Heisenberg operator B̂(t) = eiĤt/ℏB̂e−itĤt/ℏ. As a result
of eq 8, an exact expression of the time correlation function of
the nonadiabatic system
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When nuclear and electronic dynamics is exactly solved in eq 26,
the correlation function formulation eq 25 is exact for
nonadiabatic systems.41,42

When trajectory-based dynamics is introduced, eq 25 is recast
into

C t F

A B

R P x p

R P x p R P x p

( ) (2 ) d d d d

( , ; , ) ( , ; , )

AB
N

t t t t

x p( , )
∫ ∫π= ℏ

× ̃

−

(27)

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c04429
J. Phys. Chem. A 2021, 125, 6845−6863

6847

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c04429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the frozen-nuclei limit where only the electronic DOFs are
involved (i.e., nuclear coordinate R and nuclear momentum P
are fixed), Hamilton’s equations of motion from the Meyer−
Miller Hamiltonian eq 3 lead to exact results. When both nuclear
and electronic DOFs are considered, exact equations of motion
for the trajectories are far from trivial to solve numerically. When
the independent trajectory is introduced to eq 27, it is then often
an approximation to eq 25. For instance, when the Meyer−
Miller Hamiltonian, eq 3, is used to generate the independent
trajectory for both nuclear and electronic DOFs in eq 27, it is
equivalent to the extended classical mapping model (eCMM)
approach41,42 where the linearized semiclassical or linearized
path integral approximation14,87,88 is utilized for only the nuclear
DOFs.
Note that the one-to-one correspondence mapping frame-

work for eq 8 as well as eq 25 only depends on the constraint
phase space defined by eq 7. That is, the exact mapping
framework is intrinsically independent of the form of themapping
Hamiltonian for dynamics. The Meyer−Miller Hamiltonian, eq
3, is not necessary to be the only choice for yielding the equations
of motion for the independent trajectory for eq 27. The
derivation procedure for eq 43 for Model II of ref 13 suggests
that a more comprehensive form for the phase space mapping
Hamiltonian model is eq 5. When the equality
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holds, eq 5 becomes
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Any Hermitian matrix Γ can be represented by its eigenvalues
{λk} and eigenvectors {bk}, i.e.,
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with Γbk = λk bk and symbol † standing for the complex
conjugate transpose. As its eigenvalues {λk} are real, define ck =
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The equations of motion governed by eq 36 are
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for nuclear DOFs, and
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for the electronic mapping DOFs {x,p} and auxiliary variables
{x ̃,p̃} for the commutator matrix. We denote this scheme the
extended classical mapping model with commutator variables
(eCMMcv). Because eq 28 holds at the beginning, it is
straightforward to verify that the equations of motion (eqs 37
and 38) generated from the mapping Hamiltonian (eq 36)
conserve the two properties,

x p
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This is equivalent to eq 7, and

s
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2
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( ) 2 ( ) 2∑ γ̃ + ̃ =
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Because eq 39 holds, the exact mapping framework for eq 8 as
well as eq 25 for the electronic DOFs is still valid.
Further consider that the initial electronic state is localized at

state |jocc⟩. While the initial condition for (x,p) is uniformly
sampled on constraint space x p( , ) that depicts the mapping
framework for the electronic DOFs, the initial condition for
auxiliary variables {x̃,p̃} for commutator matrix Γ is given by

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c04429
J. Phys. Chem. A 2021, 125, 6845−6863

6848

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c04429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


s
x p

x p
2

(( (0)) ( (0)) )
( (0)) ( (0))

2
k

k
n

k
n

n n

n j nk

( ) 2 ( ) 2
( ) 2 ( ) 2

, occ
δ δ

̃ + ̃ =
+

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÉ

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (41)

with

s
x p

k j1 when
( (0)) ( (0))

2
1 and

1 elsewhere
k

k k

occ

( ) 2 ( ) 2

= −
+

< =
l
m
ooooo

n
ooooo

(42)

such that the equations of motion of eqs 37and 38 approach the
Born−Oppenheimer limit for each trajectory when state−state
coupling terms {Vnm(R)} vanish for all n ≠ m; i.e., it yields
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The strategy similar to eq 43 has already been used in a few
approaches based on the Meyer−Miller mapping Hamilto-
nian.29,89,90 Because eqs 41 and 42 satisfy eq 28, the
comprehensive phase space mapping Hamiltonian proposed
by eq 5 is identical with eq 29 as well as eq 36. Then, eq 41
defines the constraint space for the initial conditions for auxiliary
variables {x̃,p̃} for commutator matrix Γ,
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When the initial values for (R,P;x,p) are the same, any point on
constraint space ξ{x ̃,p̃} as the initial values for auxiliary variables
{x ̃,p̃} for matrix Γ leads to the same values for (Rt,Pt;xt,pt) at
time t along the trajectory yielded by the equations of motion,
eqs 37 and 38. Note that only the initial values for (R,P;x,p) and
the values for (Rt, Pt; xt, pt) at time t are employed in the
correlation function, eq 27. Once that the initial values for
physical variables (R, P; x, p) are given, we only choose a specific
point on constraint space ξ{x ̃, p̃} as the initial values for auxiliary
variables {x̃, p̃}, because it is not necessary to do sampling on
constraint space ξ{x̃, p̃}. It is easy to prove that the equations of
motion of eqs 37 and 38 also approach the frozen-nuclei limit
when only the electronic DOFs are involved (i.e., nuclear
coordinate R and nuclear momentum P are fixed). That is, eq 35
is equivalent to solving the time-dependent Schrödinger
equation for the electronic DOFs when the nuclear DOFs are
frozen. A more convenient and equivalent way to evolve
electronic maping DOFs and auxiliary variables in eCMMcv is to
treat them in the matrix representation, which is provided in
Section S1-A of the Supporting Information.

Figure 1.Transmission coefficients of Tully’s SACmodel. In panel a, range and purple solid lines: The eCMM transmission coefficients on state 1 for γ
= 0.366 and γ = 0.5, respectively. Black solid line: Exact results yielded by DVR. Blue dashed line with circles: Ehrenfest dynamics. Panel b is similar to
Panel a but for the eCMM transmission coefficients on state 2. Panels c and d are the same as panels a and b, respectively, except that the adiabatic
representation is used in panels c and d. The transmission coefficients in the adiabatic representation are transformed to those in the diabatic
representation for fair comparison.
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In summary, the expression of the correlation function eq 27
on constraint space x p( , ) for the electronic DOFs andWigner
phase space for the nuclear DOFs, trajectory-based dynamics
(eqs 37 and 38) governed by the general mapping Hamiltonian
eq 36, and initial values for auxiliary variables {x ̃, p̃} defined by a
point on constraint space ξ{x ̃, p̃} are all necessary elements for
eCMMcv, the phase space mapping approach for nonadiabatic
dynamics which we propose in this paper. The eCMMcv
approach meets the frozen-nuclei limit as well as the Born−
Oppenheimer limit.
Finally, it is straightforward to express eCMMcv (or eCMM)

in the adiabatic representation or other representations. When
the general mappingHamiltonian with the commutator matrix is
used in eCMMcv to yield the equations of motion, they are
similar to the equations of motion generated by the Meyer−
Miller Hamiltonian. The strategy of Cotton and Miller in ref 26
can directly be extended to the general mapping Hamiltonian in
the adiabatic representation. (See Section S1 of Supporting
Information for more discussion.)

3. RESULTS AND DISCUSSIONS

Below we test the numerical performance of eCMMcv for a few
illustrative benchmark gas phase and condensed phase systems.
We first apply eCMMcv to Tully’s scattering models57 that
contain single avoided crossing (SAC) and dual avoided
crossing (DAC) examples. The second application consists of
photodissociation models of Miller and co-workers,58 where
more realisticMorse potentials are involved.We then test typical
system−bath models for condensed phase dissipative systems,91

which include the 7-state Fenna−Matthews−Olson (FMO)
monomer that appears in photosynthesis in green sulfur

bacteria59,92 and strongly coupled optical cavity-molecular
matter systems used to control and manipulate chemical and
physical processes.50,60−63,93

3.1. Tully’s ScatteringModels.Tully’s scattering models57

are often used as benchmark applications to test nonadiabatic
dynamics methods. The SAC and DAC models that mimic the
surface intersection in molecular systems have widely been
tested for mapping model dynamics.18,21,49,94

Tully’s scattering problems are described by a two-state
Hamiltonian (with the form of eq 1) with an atom of mass m =
2000 au After scattering in the interaction region, the system
evolves in plateau regions where diabatic potential functions
Vm(R → ∞) and Vm(R → −∞) are flat. The transmission and
reflection coefficients are calculated for state n. In each eCMM
or eCMMcv simulation, fully converged results are obtained by
an ensemble average over 96 000 trajectories.

3.1.1. Single Avoided Crossing. In the SAC model, the
diagonal elements of the potential operator areV11 =−V22 =A(1

− e−B|R|)sgn(R) and off-diagonal ones are V12 = V21 = Ce−DR
2

.
The parameters (using atomic units) are A = 0.01, B = 1.6, C =
0.005, and D = 1.0. The initial condition follows an occupation
on the state 1 with the initial nuclear wavepacket Ψ(R;t = 0) ∝
exp[−α(R − R0)

2/2 + i (R − R0)P0/ℏ], where the Gaussian
width parameter is α = 1 au, the initial average coordinate is R0 =
−3.8 au, and the initial average momentum is P0. The initial
Wigner distribution for the nuclear coordinate is then ρW

nuc (R, P)
∝ exp[−α(R − R0)

2 − (P − P0)
2/(αℏ2)].

In the simulations the initial average momentum P0 ranges
from 2 to 50 au. We present numerical results for the
transmission coefficients in Figure 1 and Figure 2. While panels
a and b of Figure 1 demonstrate the transmission coefficient of

Figure 2. Same as Figure 1, but for transmission coefficients obtained by eCMMcv.
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state 1 and that of state 2, respectively, for eCMM in the diabatic
representation, panels c and d of Figure 1 show those calculated
by eCMM in the adiabatic representation. Figure 2 then presents
those results obtained by eCMMcv. Two values

F F( 1 1)/ 0.366γ = + − = and γ = 1/2 are used for
parameter γ in eq 7 for eCMM and that in eq 39 for eCMMcv.
Figures 1 and 2 demonstrate that either eCMM or eCMMcv
yields results close to the exact transmission of either of state 1
and state 2 in a large range of the initial average momentum (P0
≥ 10 au), independent of the choice of γ and of the
representation of the electronic states. In the small initial
average momentum region (P0 < 10 au), the exact results
produced by the discrete variable representation (DVR)
approach95 exhibit a threshold. Both eCMM and eCMMcv are
competent in capturing such a threshold. Comparison between
eCMM (Figure 1) and eCMMcv (Figure 2) shows that
eCMMcv is less sensitive to the value of parameter γ. (More
comparison is available in Section S2 of the Supporting
Information.) The regime F F( 1 1)/ , 1/2[ + − ] is recom-
mended for γ in eCMMcv. We then focus on this reasonable
regime for parameter γ, which will be tested for the rest of the
benchmark models in the paper.
3.1.2. Dual Avoided Crossing. In the DAC model, the

diagonal elements of the potential operator are V11 = 0 and V22 =

−Ae−BR
2

+ E0, and the off-diagonal ones are V12 = V21 = Ce−DR
2

,
where the parameters are set as A = 0.10, B = 0.28, E0 = 0.05, C =
0.015, and D = 0.06. Two crossing points appear in the diagonal

potential energy surfaces. At time t = 0, state 1 is occupied with
the initial nuclear wavepacketΨ(R;t = 0)∝ exp[−α(R− R0)

2/2
+ i(R − R0)P0/ℏ], where the Gaussian width parameter is α = 1
au, the initial average coordinate is R0 = −10 au, and the initial
average momentum P0 varies from 2 to 50 au.
Results for the transmission coefficients are presented in

Figure 3 and Figure 4. Panels a and b in Figure 3 show the
eCMM results on state 1 and on state 2, respectively, using the
diabatic representation. The results produced by Ehrenfest
(mean field) dynamics demonstrate a noticeable deviation from
the exact DVR data for P0 ≥ 10 au. The eCMM approach with
either F F( 1 1)/ 0.366γ = + − = or γ = 1/2 yields accurate
results for the relatively large initial averagemomentum (P0≥ 10
au). It captures the correct shape of Stückelberg oscilla-
tions.14,57,96 The eCMM results calculated in the adiabatic
representation shown in panels c and d of Figure 3 are consistent
with those in the diabatic representation demonstrated in Panels
3(a) and 3(b). Figure 4 presents the eCMMcv results for the
samemodel. In comparison to the eCMM results of Figure 3, the
eCMMcv data of Figure 4 show better performance in a large
range of initial average momentum and are also less sensitive to
parameter γ.

3.2. Three-State Photodissociation Models of Miller
and Co-workers. The coupled three states with Morse
oscillators proposed by Miller and co-workers,58 which mimic
ultrafast photodissociation processes, provide another set of gas
phase benchmark models for testing nonadiabatic dynamics

Figure 3. Transmission coefficients of Tully’s DACmodel. In panel a, orange and purple solid lines: eCMM transmission coefficients on state 1 for γ =
0.366 and γ = 0.5, respectively. Black solid line: Exact results yielded by DVR. Blue dashed line with circles: Ehrenfest dynamics. Panel b is similar to
panel a but for the eCMM transmission coefficients on state 2. Panels c and d are the same as panels a and b, respectively, except that the adiabatic
representation is used in panels c and d. The transmission coefficients in the adiabatic representation are transformed to those in the diabatic
representation for fair comparison.
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methods. The models are composed of three Morse potentials
with Gaussian coupling terms, which are of the form

V x D e C i

V x V x A e i j i j

( ) 1 , 1, 2, 3.

( ) ( ) , , 1, 2, 3; and .

ii i
x R

i

ij ji ij
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i i

ij ij
2

= [ − ] + =

= = = ≠

β

α

− −

− −

(45)

The parameters for the three models are listed in Table 1. The
nuclear mass is set to m = 20000 au. The initial Gaussian
wavepacket for the nuclear DOF is prepared from a ground state
with frequency ω = 5 × 10−3 au = 1097 cm−1 centering in Re =
2.9, 3.3, and 2.1 au for models 1, 2, and 3, respectively. The
Wigner distribution for the nuclear DOF is

x p m x R p m( , ) exp ( ) / /( )e
2 2ρ ω ω∝ [− − ℏ − ℏ ] (46)

We use 96 000 trajectories to yield fully converged data in each
eCMM or eCMMcv simulation.
The three systems have been studied by a few nonadiabatic

dynamics methods based on the Meyer−Miller mapping
Hamiltonian.29,58,90,94 Because the Gaussian coupling terms of

eq 45 are relatively local, short-time dynamics implies the Born−
Oppenheimer limit.
Figure 5 compares the exact population of each state in each

model as a function of time produced by DVR, that generated by
eCMM, and that yielded by eCMMcv. While panels a, c, and e
demonstrate the eCMM/eCMMcv results with parameter

F F( 1 1)/ 0.333γ = + − = for models 1, 2 and 3,
respectively, panels b, d, and f show such results with γ = 1/2.
Figure 5 indicates that eCMMcv is overall superior to eCMM in
the three model tests. The eCMMcv approach is more accurate
as well as less sensitive to parameter γ. This is mainly because
eCMMcv approaches the Born−Oppenheimer limit when the
state−state coupling disappears at short times.
In Figure 6, we compare the performance of eCMMcv (with γ

= 1/2 for demonstration) to that of Ehrenfest dynamics.
Ehrenfest dynamics produces reasonable short time results but
yields significant deviation from the long time limit. In
comparison, eCMMcv generates much more accurate results
for these three models.

Figure 4. Same as Figure 3, but for transmission coefficients obtained by eCMMcv.

Table 1. Parameters of 3-State Photodissociation Morse Potential Models58

parameters model 1 model 2 model 3

D1, D2, D3 0.003, 0.004, 0.003 0.020, 0.010, 0.003 0.020, 0.020, 0.003
β1, β2, β3 0.65, 0.60, 0.65 0.65, 0.40, 0.65 0.40, 0.65, 0.65
R1, R2, R3 5.0, 4.0, 6.0 4.5, 4.0, 4.4 4.0, 4.5, 6.0
C1, C2, C3 0.00, 0.01, 0.006 0.00, 0.01, 0.02 0.02, 0.00, 0.02
A12, A23, A31 0.002, 0.002, 0.0 0.005, 0.0, 0.005 0.005, 0.0, 0.005
R12, R23, R31 3.40, 4.80, 0.00 3.66, 0.00, 3.34 3.40, 0.00, 4.97
α12, α23, α31 16.0, 16.0, 0.0 32.0, 0.0, 32.0 32.0, 0.0, 32.0

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c04429
J. Phys. Chem. A 2021, 125, 6845−6863

6852

https://pubs.acs.org/doi/10.1021/acs.jpca.1c04429?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04429?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04429?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c04429?fig=fig4&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c04429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.3. FMO Monomer. The Fenna−Matthews−Olson
(FMO) monomer is a benchmark site-exciton or system−bath
model widely used for testing nonadiabatic dynamics
methods.25,28,37,44,46,49,59,97−105 The FMO monomer model
includes seven sites, and each site denotes a photosynthetic
pigment (Bacteriochlorophyll). The 7-site system is described
by the Hamiltonian of ref 59 (in units of wavenumber),

H

12410 87.7 5.5 5.9 6.7 13.7 9.9
87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 53.5 2.2 9.6 6.0
5.9 8.2 53.5 12320 70.7 17.0 63.3

6.7 0.7 2.2 70.7 12480 81.1 1.3
13.7 11.8 9.6 17.0 81.1 12630 39.7
9.9 4.3 6.0 63.3 1.3 39.7 12440
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(47)

and surrounding protein environments are depicted by
harmonic baths, H P R( )b n i ni ni ni,

1
2

2 2 2ω= ∑ + , where {Rni, Pni,

ωni} are the position, momentum, and frequency for the ith bath
mode on site n, respectively. Interaction between the system and

bathmodes adopts a bilinear form, H c R n nsb n i ni ni,= −∑ | ⟩⟨ |with
cni being the exciton−phonon or system−bath coupling
coefficient, which can be determined from the discretization of
the spectral density of the bath. The bath is characterized by a
Debye spectral density,83,106,107 which adopts a Lorentzian
cutoff,

J( ) 2 c

c
2 2ω λ
ωω

ω ω
=

+ (48)

where λ is the bath reorganization energy and ωc is the
characteristic frequency. A proper discretization scheme is,108
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HereNb is the total number of discretized harmonic modes, and
we employ Nb = 50 modes per site for converged results. The
bath parameters are λ = 35 cm−1, ωc = 106.14 cm−1. We study a
relatively low temperature T = 77 K, which is a challenging case
for many nonadiabatic dynamics methods. We consider two

Figure 5. Population dynamics results of the three states for photodissociation models58 listed in Table 1. The eCMM as well as eCMMcv results are
obtained with γ = 0.333 or γ = 0.5. Black, red, and blue markers: Populations on state 1, state 2, and state 3, respectively. Solid lines: Exact results
produced byDVR. Dashed lines: The eCMM results. Solid circles: The eCMMcv results. Panels a and b are for model 1, panels c and d formodel 2, and
panels e and f for model 3.
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different cases. In the first case the initial excitation occurs on
pigment/site 1, and in another case pigment/site 6, instead, is
excited at the beginning. Since coherence effects could be
important in the photoharvesting system, we calculate the
population of each site as well as the electronic coherence terms
(i.e., the off-diagonal elements of the reduced density matrix for
the electronic DOFs). An ensemble of 120 000 trajectories is
used in each eCMM or eCMMcv simulation. Several numeri-
cally exact approaches are capable of offering benchmark results
for the FMO monomer model, which include quasi-adiabatic
propagator path integral (QuAPI),109−111 hierarchical equations
of motion (HEOM)112−120 and multilayer multiconfigurational
time-dependent Hartree (ML-MCTDH).107,121−125 We utilize
HEOM to obtain exact results for the FMO model system.
Parameter F F( 1 1)/ 0.261γ = + − ≈ or γ = 1/2 is used for
eCMM and eCMMcv.
Figure 7 shows the population of each site of the FMO

monomer when site 1 is initially excited. While panels a and b
d e m o n s t r a t e t h e e C M M r e s u l t s f o r

F F( 1 1)/ 0.261γ = + − ≈ and γ = 1/2, respectively, panels
c and d present the corresponding results generated by
eCMMcv. Panel e shows that Ehrenfest dynamics works poorly
in this case. Figure 8 demonstrates the same information as
Figure 7, but for the initial excitation on site 6 instead. It is
indicated in Figure 7 and Figure 8 that the results yielded by
eCMM are close to those by eCMMcv, which are reasonably
accurate in comparison to exact data. The eCMMcv approach
performs slightly better than eCMM for this site-exciton model
system.
We then study the (electronic) coherence terms. The four

most important off-diagonal elements (which have the largest
absolute values) of the reduced density matrix are selected for
demonstration. Themoduli of ρ12, ρ13, ρ15, and ρ34 are illustrated
in Figure 9 for the case where site 1 is initially excited. When site
6 is excited at the beginning, the moduli of ρ34, ρ45, ρ47, and ρ56
are presented in Figure 10. In comparison to the poor
performance of Ehrenfest dynamics (as shown in Figure 9e or
Figure 10e), either eCMM or eCMMcv yields much more

Figure 7. Population dynamics of the 7-state site-exciton model for FMO at 77K, where the initial excitation is on the first pigment (site 1). Panels a
and b show the eCMM results with parameter γ = 0.261 and those with γ = 0.5, respectively. Red, blue, purple, black, blue, orange, and green lines
present populations of sites 1, 2, 3, 4, 5, 6, and 7, respectively. Dashed lines: The eCMM results. Solid lines: Exact results by HEOM. Panels c and d are
the same as panels a and b, respectively, but for the eCMMcv results. In panel e, dashed lines are used for Ehrenfest dynamics results, while solid lines
are for HEOM results.

Figure 6.Comparison between eCMMcv and Ehrenfest dynamics. Solid circles: The eCMMcv results with γ = 0.5. Solid lines: Exact results generated
by DVR. Dashed lines: Ehrenfest dynamics. Black, red, and blue colors represent populations on the first, second, and third states, respectively. Panels
a, b, and c are for models 1, 2, and 3, respectively.
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reasonably good results. The eCMMcv results are slightly closer
to the HEOM data than the eCMM ones in Figure 9 and Figure
10.
More results on the population dynamics of each site of the

FMO monomer for 77 and 300 K are available in Section S3 of
the Supporting Information, in which the eCMM/eCMMcv
approaches are compared to Ehrenfest dynamics as well as
HEOM. Provided that the eCMM/eCMMcv approaches lead to
overall satisfying short-time as well as long-time dynamics results
for the FMO monomer for 77 and 300 K, it is reasonable to
expect that eCMM/eCMMcv can in principle predict semi-
quantitative data for very low temperature or even 0 K, where it
is generally difficult for HEOM to obtain converged data. The
reliable performance of eCMM for the spin-boson model at 0K
has already been demonstrated in refs 41 and 42. Figure 11

compares the population dynamics for site 1 as well as site 3 for
the FMO monomer at different temperatures when site 1 is
initially activated. As the temperature decreases, the relaxation
time scale increases. While the oscillating behavior (of the
population dynamics of site 1) vanishes after only two periods
(less than 300 fs) at 300 K, such behavior lasts significantly
longer than 1000 fs at 0 K as shown in Figure 11.

3.4. Atom-in-Cavity Models. Mixed quantum-classical
trajectory-based methods have been utilized to study interaction
dynamics of light and matter, which offer approximate but
practical approaches for simulating realistic systems in
chemistry, materials, and biology.126−136 We utilize eCMM
and eCMMcv to test the performance of describing the cavity-
modified chemical dynamics. The benchmark system that we
study in this section involves interaction between an atom with

Figure 9.Coherence terms of the 7-state site-exciton model for FMO at 77K, where the initial excitation is on the first pigment (site 1). Panels a and b
show the eCMM results with parameter γ = 0.261 and those with γ = 0.5, respectively. Red, blue, purple, and and black colors are used for |ρ12|, |ρ13|,
|ρ15|, and |ρ34|, respectively. Dashed lines: The eCMM results. Solid lines: Exact results by HEOM. Panels c and d are the same as panels a and b,
respectively, but for the eCMMcv results. In panel e, dashed lines are used for Ehrenfest dynamics results, while solid lines are for HEOM results.

Figure 8. Same as Figure 7, but for the case where the initial excitation occurs on the sixth pigment (site 6).
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frozen nuclear DOFs in a one-dimmensional lossless cavity,

which exhibits relaxation dynamics (for the atom) in

conjunct ion with spontaneous emiss ion of pho-

tons.50,60−63,93,134 The atomic electronic states are coupled

because of the interaction of the cavity field and the transition

moments between different atomic energy levels. Such a system

can be elaborated as a multielectronic-state Hamiltonian model,

of which the off-diagonal terms are from the coupling with the

cavity field. After making the dipole approximation137,138 and

neglecting the second order interaction (which only leads to a

constant shift of the energy level in a two-state system139), a

general Hamiltonian reads,62,63

H k k R k k

P R
1
2

( )
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k k
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where |k⟩ is the kth atomic energy level, {P̂α, R̂α, ω̂α} denote the
momenta, positions, and frequencies of the photonic modes in
the cavity, Ne and Np stand for the number of atomic energy
levels and that of cavity field modes, respectively, μkk′ is the
transition dipole moment between two energy levels |k⟩ and |k′⟩,
and λα λα(rA) represents the coupling between the αth field
mode and the atom at fixed position rA. The values of the
parameters of the Hamiltonian are given in refs 50, 62, and 63,
which we briefly describe below. (All parameters are used in
atomic units.)

Figure 11. Dynamics at different temperatures for the FMO monomer model when site 1 is initially activated. Red, black, and blue lines represent
populations at 300, 77, and 0 K, respectively. Solid lines: The eCMM/eCMMcv results for site 1 (pigment 1). Dashed lines: The eCMM/eCMMcv
results for site 3 (pigment 3).

Figure 10. Same as Figure 9, but for the case where the initial excitation occurs on the sixth pigment (site 6). In this case, red, blue, purple, and black
lines are used to present |ρ34|, |ρ45|, |ρ47|, and |ρ56|, respectively.
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The cavity mode frequencies are determined by the standing-
wave condition, i.e.,

c
L

N, 1, , pω α π α= = ···α (51)

here Np = 400 and the coupling vector λα(rA) with fixed atom
position rA is

r
L

r
L

( )
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απ

=α
i
k
jjj

y
{
zzz

(52)

where c = 137.136 stands for the speed of light, ε0 = 1/(4π)
represents the vacuum permittivity, L = 2.362 × 105 is the
volume length of the cavity, and the atom is fixed at the center of
the cavity rA = L/2. Two models are considered: one is a two-
level atom model with atomic energy levels ε1 = −0.6738 and ε2

= −0.2798 and transition dipole moment μ12 = −1.034; the
other is a three-level atom model with atomic energy levels ε1 =
−0.6738, ε2 = −0.2798, and ε3 = −0.1547, and transition dipole
moments μ12 = −1.034 and μ23 = −2.536. Four hundred field
modes are used in each model. We choose the highest excited
state of the atom as the initial state. Each cavity mode is initially
in its vacuum state ⟨Rα | Ψ0⟩ ∝ exp [−ωαRα

2/(2ℏ)] (with zero
number of photons). The Wigner distribution of the initial
density operator for the cavity field modes then reads

P RR P( , ) exp ( /( ) / )W

N

1

2 2
p

∏ρ ω ω∝ [− ℏ + ℏ ]
α

α α α α
= (53)

An ensemble of 96 000 trajectories are used to yield fully
converged results for eCMM/eCMMcv. Exact results for the
cavity quantum electrodynamics processes in the two models

Figure 12. Population as a function of time for the two-level atomicmodel in optical cavity. Panel a shows the eCMM results with γ = 0.366, while panel
b demonstrates those with γ = 0.5. Panels c and d are the same as panels a and b, respectively, but for the eCMMcv results. Ehrenfest dynamics results
are presented in panel e for comparison. Black color: Population of state 1. Red color: Population of state 2. Solid lines: Exact results from refs 62 and
63. Short-dashed lines: eCMM results in panels a and b or eCMMcv results in panels c and d. Long-dashed lines: Ehrenfest dynamics results in panel e.

Figure 13. Population as a function of time for the three-level atomic model in optical cavity. Panel a shows the eCMM results with γ = 0.333, while
panel b demonstrates those with γ = 0.5. Panels c and d are the same as panels a and b, respectively, but for the eCMMcv results. Ehrenfest dynamics
results are presented in panel e for comparison. Black, red, and blue colors: Population of state 1, that of state 2, and that of state 3. Solid lines: Exact
results from refs 62 and 63. Short-dashed lines: eCMM results in panels a and b, or eCMMcv results in panels c and d. Long-dashed lines: Ehrenfest
dynamics results in panel e.
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can be obtained by the truncated configuration interaction (CI)
approach, which are available in refs 62 and 63.
Figure 12 and Figure 13 show the population dynamics of the

two-level model and that of the three-level model, respectively.
The eCMM and eCMMcv results are obtained with

F F( 1 1)/ 0.366γ = + − = or γ = 1/2 for the 2-level
model, and with F F( 1 1)/ 0.333γ = + − = or γ = 1/2 for
the 3-level model. The exact data62,63 and Ehrenfest dynamics
results are also demonstrated for comparison. As shown in panel
e of Figure 12 and panel e of Figure 13, the Ehrenfest dynamics
results considerably deviate from the exact population dynamics
even at very short times, which agrees with what was reported in
refs 50, 62, and 63. In contrast, Ehrenfest dynamics yields
reasonable behavior at very short times in the previous
benchmark models studied in the paper, although its long
time performance is often poor. This indicates that the atom-in-
cavity models are even more challenging for testing the
outperformance of a nonadiabatic dynamics method beyond
Ehrenfest dynamics. It has been demonstrated in refs 62 and 63
that the fewest switches surface hopping approach57 generates
even worse results than Ehrenfest dynamics.
Figure 12a−d and Figure 13a−d demonstrate that the results

yielded by eCMMcv are very similar to those produced by
eCMM. Either eCMM or eCMMcv achieves significantly better
performance than Ehrenfest dynamics in describing the cavity-
modified chemical dynamics of the two models. The
reabsorption and re-emission process of the earlier emitted
photon by the atom occurs around t = 1800 au. It is encouraging
that both eCMM and eCMMcv are capable of semiquantitively
depicting the positive (negative) spike in the excited (ground)
electronic state of the atom. Figures 12 and 13 can be compared
to Figures 8 and 12 of ref 63 as well as Figures 1 and 2 of ref 50.
Although eCMMcv is developed in an exact phase space

mapping formulation of the correlation function as described in
Section 2.1, its trajectory-based dynamics governed by the
general mappingHamiltonian with commutator variables (eq 29
or eq 36) is nevertheless an approximation to the exact equations
of motion in quantum mechanics. Although the eCMMcv
approach leads to overall reasonably good results in various
model tests as shown in Figures 1−13, in the future it will be
useful to overcome several drawbacks of eCMMcv. As shown in
Figures 3 and 4, neither eCMM nor eCMMcv performs well in
the low momentum region, which implies that the performance
of eCMMcv should be improved in order to faithfully describe
the deep tunneling regime. Figures 3 and 4, Figures 7 and 8, and
Figure 13 indicate that negative values for the population of a
site/state can occasionally occur in eCMMcv results, while the
window function treatment of the SQC approach29 is expected
to solve such a problem. Like most approximate nonadiabatic
dynamics methods, the eCMMcv approach does not guarantee
that the detail balance is rigorously satisfied for both electronic
and nuclear DOFs when the whole system is at thermal
equilibrium, although the long time limit results for the
electronic DOFs for most model tests are reasonably good. It
will be interesting to see how the strategies of refs 140−142 and
of refs 143 and 144 can practically be used to systematically
improve the mapping Hamiltonian dynamics for multidimen-
sional nonadiabatic systems.

4. CONCLUDING REMARKS

In the conceptually different picture presented in the unified
framework for phase spacemappingmodels,13 it is indicated that

there exists a more comprehensive mapping Hamiltonian (eq 29
or eq 36) beyond the well-known Meyer−Miller Hamilto-
nian11,12 (eq 3), where commutator matrix Γ that consists of

auxiliary mapping variables for ( ,i
x

n
y

m
8

( ) ( ){ σ σ− [ ̂ ̂ ] +

, )x
m

y
n( ) ( ) }σ σ[ ̂ ̂ ] , rather than the conventional zero-point-energy

parameter, is involved. In the exact mapping formulation on
constraint space for phase space approaches for nonadiabatic
dynamics,41,42 such a general mapping Hamiltonian with
commutator variables (eq 29 or eq 36) can be used to produce
eCMMcv, an approximate trajectory-based approach. We have
tested a few benchmark models that range from gas phase to
condensed phase systems, which include the SAC and DAC
scattering models,57 3-state photodissociation models,58 7-site
model of the Fenna−Matthews−Olson (FMO) monomer,59

and atom-in-cavity models.60−63 Parameter γ in the exact
mapping kernel i s recommended in the region,

F F( 1 1)/ , 1/2[ + − ], where the eCMMcv results are
relatively insensitive to the value of γ. The results demonstrate
that the overall performance of the general mapping
Hamiltonian (eq 29 or eq 36) employed in eCMMcv is better
than the original Meyer−Miller Hamiltonian (eq 3) used in
eCMM.
The conclusion applies to the most recent version of

symmetrical quasi-classical (SQC) dynamics with triangle
window functions.29 The successful SQC methods of Cotton
andMiller employ the conventional Meyer−Miller Hamiltonian
or its symmetrized form.18−29 As shown in Section S4 of the
Supporting Information, when the original Meyer−Miller
Hamiltonian is replaced by the general mapping Hamiltonian
with commutator variables (eq 29 or eq 36), the performance of
the latest SQC approach of ref 29 can be improved. It is expected
that the general mapping Hamiltonian (eq 29 or eq 36) should
also be useful in other mixed quantum-classical methods based
on the Meyer−Miller mapping Hamiltonian. We note that the
additional computation cost for the commutator variables is
negligible in comparison to the force for nuclei for realistic
systems. So we expect that the general mapping Hamiltonian
with commutator variables (eq 29 or eq 36) will be useful for on-
the-fly nonadiabatic dynamics.55,56 (See more discussion for
mapping dynamics in the adiabatic representation in Section S1
of the Supporting Information.)
The strategy with a commutator variable matrix can in

principle be utilized in other mapping models (e.g., those of the
unified framework of ref 13). For example, the general mapping
Hamiltonian for Model I of ref 13 in the diabatic representation
is
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where {x(n), y(n); px
(n), py

(n)} are the mapping variables for the nth
electronic DOF. The Hamiltonian with commutator variables of
eq 55 should lead to more accurate trajectory-based non-
adiabatic dynamics than the mapping Hamiltonian of Model I of
ref 13 in the eCMM approach in ref 41 or the SQC approach in
ref 145. The isomorphism proposed in ref 146 indicates that
either eq 54 or eq 29 is a more general phase space mapping
Hamiltonian beyond the conventional Li−Miller Hamiltonian
for the second-quantized many-electron Hamiltonian.147−150

Further investigations along this line will shed light on more
comprehensive insight for developing phase space mapping
approaches for nonadiabatic dynamic processes from photo-
chemistry to electron transfer, as well as for nonequilibrium
electronic transport processes, in realistic experimentally related
c h e m i c a l , b i o l o g i c a l , a n d m a t e r i a l s s y s -
tems.1−10,59,126−136,151−158
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