
F O CU S A R T I C L E

New phase space formulations and quantum dynamics
approaches

Xin He | Baihua Wu | Youhao Shang | Bingqi Li |

Xiangsong Cheng | Jian Liu

Beijing National Laboratory for Molecular
Sciences, Institute of Theoretical and
Computational Chemistry, College of
Chemistry and Molecular Engineering,
Peking University, Beijing, China

Correspondence
Jian Liu, Beijing National Laboratory for
Molecular Sciences, Institute of
Theoretical and Computational
Chemistry, College of Chemistry and
Molecular Engineering, Peking
University, Beijing 100871, China.
Email: jianliupku@pku.edu.cn

Funding information
Ministry of Science and Technology of the
People's Republic of China, Grant/Award
Number: 2017YFA0204901; National
Natural Science Foundation of China,
Grant/Award Number: 21961142017

Edited by: Jinlong Yang, Associate Editor
and Peter R. Schreiner, Editor-in-Chief

Abstract

We report recent progress on the phase space formulation of quantum

mechanics with coordinate-momentum variables, focusing more on new the-

ory of (weighted) constraint coordinate-momentum phase space for discrete-

variable quantum systems. This leads to a general coordinate-momentum

phase space formulation of composite quantum systems, where conventional

representations on infinite phase space are employed for continuous variables.

It is convenient to utilize (weighted) constraint coordinate-momentum phase

space for representing the quantum state and describing nonclassical features.

Various numerical tests demonstrate that new trajectory-based quantum

dynamics approaches derived from the (weighted) constraint phase space rep-

resentation are useful and practical for describing dynamical processes of com-

posite quantum systems in the gas phase as well as in the condensed phase.
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1 | INTRODUCTION

Phase space with coordinate-momentum variables is a fundamental concept and offers a convenient tool to describe sta-
tistics as well as dynamics in classical mechanics. In comparison to other equivalent interpretations of quantum
mechanics, phase space formulations offer more insight and understanding between quantum and classical counterpart
concepts, which are widely used in chemical and biological dynamics and spectroscopy,1–60 quantum optics,51,61–70

cryogenic physics/chemistry,71–75 quantum information and computation,76–87 and so forth.
Phase space formulations of quantum mechanics have been developed since two important pioneering works, the

Weyl transform in 1927, of which the original formulation converted a Hamiltonian on classical phase space into a
quantum mechanical operator,88 and the Wigner function in 1932 that in principle depicts the inverse transform
although a pure state was used for demonstration.89 The most essential element is the one-to-one correspondence
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mapping between quantum operators and classical functions often defined on a smooth manifold, namely, phase space.
Because of the commutation relation of conjugate operators, the mapping is not unique in quantum mechanics.90,91

When infinite phase space is employed for a continuous-variable quantum system, most phase space formulations
can be described by Cohen's generalized form92 in 1966. Quantum dynamics with phase space variables is expressed by
the Moyal or Moyal-like bracket as first proposed by Groenewold93 in 1946 and Moyal94 in 1949. The Wigner and
Husimi representations are most often used for the continuous-variable system. When the Moyal bracket is approxi-
mated by the Poisson bracket in the Wigner phase space expression of the quantum Liouville theorem, which was also
derived as the linearized semiclassical initial value representation (LSC-IVR) or classical Wigner model4–8,11,20,23 for the
quantum correlation function, it reproduces exact quantum correlation functions even of nonlinear operators
(i.e., nonlinear functions of the coordinate or momentum operator) in the harmonic or classical limit. The truncated
Wigner approximation74 with the time-dependent generalization of the Bopp representation90,95 is similar to the LSC-
IVR, but the former requests more demanding evaluation of the stability matrix elements along the trajectory when
nonlinear operators are involved in the correlation function. Liu and Miller15 suggest a practical way to implement the
imaginary time path integral treatment of the Boltzmann density operator in the LSC-IVR for general molecular sys-
tems that often contain imaginary frequencies. Its recent application illustrates that quantum dynamical effects play a
critical role in reproducing the peaks in the intermediate region between the librational and bending bands, those
between the bending and stretching bands, and the double-peak in the stretching band in the experimental isotropic
Raman spectrum of liquid water19 (as shown in Figure 1). In addition that more advanced versions of SC-IVR96–99 are
capable of improving over the LSC-IVR, in Reference 11, we first employed the quantum Liouville theorem in the phase
space formulation to develop trajectory-based approaches to satisfy the two fundamental criteria: conservation of the
quantum Boltzmann distribution for the thermal equilibrium system and being exact for any quantum thermal correla-
tion functions in the classical and harmonic limits. Such trajectory-based approaches can in principle be further
improved by higher order corrections of the exact series expansion of the phase space propagator as demonstrated in
Reference 44. More progress along this line can be found in References 37–47. (Figure 2 shows molecular vibrational
spectra produced by the new phase space quantum dynamics methods.)

Phase space representations of a finite discrete F-state quantum system were first independently described by Stra-
tonovich100 in 1956, Feynman101 in 1987, and Wootters102 in 1987. Further developments of Stratonovich's formulation
have focused on an SU(2) or SU(F) structure of phase space,103–117 while those on the construction of a discrete phase
space are described in References 78,118–126. Other than the 2-state (or spin 1/2) system, the exact equations of motion

FIGURE 1 Quantum dynamical effects are decisive in reproducing the experimental isotropic Raman spectrum of liquid water at room

temperature, as illustrated by the LSC-IVR simulation where infinite (Wigner) phase space for nuclear DOFs is used. Converged results were

obtained with 216 water molecules in a box with periodic boundary conditions. (Reprinted with permission from Reference 19, Copyright

2018, Taylor & Francis).
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(EOMs) of phase variables (expressed by the Moyal-like bracket) involved in these approaches for the finite discrete
multi-state system are often tedious and numerically unfavourable.109,127–130,299,302 (See Appendix 3 of the Supporting
Information for more discussion.) Recent theoretical progress on exactly mapping the finite discrete F-state quantum
system onto constraint coordinate-momentum phase space suggests that there exists a novel unified framework to
derive comprehensive exact mapping Hamiltonians,44,57,131,132 of which the quantum EOMs of mapping coordinate-
momentum variables are simply linear.44,57,131–134

FIGURE 2 Molecular vibrational spectra produced by more advanced trajectory-based dynamics methods with infinite (Wigner) phase

space used for nuclear DOFs, which satisfy the two fundamental criteria: Conservation of the quantum Boltzmann distribution for the

thermal equilibrium system and being exact for any quantum thermal correlation functions in the classical and harmonic limits.

(a) Vibrational spectrum of the H2O molecule at 100K and that at 300K. Reprinted with permission from Reference 41, Copyright 2016

American Institute of Physics publishing. (b) Vibrational spectrum of the H2O2 molecule at 100K. Reprinted with permission from

Reference 44, Copyright 2021, American Institute of Physics publishing.
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The unified mapping formulation on coordinate-momentum phase space44,57,131–134 then offers a useful tool to treat
dynamics of a composite quantum system, in which both continuous and finite discrete degrees of freedom (DOFs) are
involved and coupled with one another. Because a typical molecular system has vibrational, rotational, and transla-
tional motion, it is often much more convenient to employ continuous coordinate space rather than Hilbert space with
dense states to describe the nuclear DOFs. On the other hand, the energy gap between different electronic states of
interest is often significantly larger such that the (adiabatic or diabatic) state representation is more useful to depict the
electronic DOFs. It is evident that a general description of the molecular system leads to a composite quantum system,
especially in the nonadiabatic region.135–152 A comprehensive version of the Meyer–Miller mapping Hamiltonian
model153,154 can rigorously be formulated in the general coordinate-momentum phase space formulation.44,57,131–134

In the Focus Article, we focus on novel developments on the phase space formulation of quantum mechanics with
coordinate-momentum variables for discrete-variable systems as well as for composite systems.44,57,131–134 In Section 2,
we first review the general coordinate-momentum phase space formulation, where infinite space is used for describing
continuous variables and constraint space is employed for mapping discrete variables. We then propose a weighted con-
straint phase space representation that is also an exact formulation for mapping discrete-variable quantum systems.
Section 3 demonstrates several examples and discusses implications of the (weighted) constraint coordinate-momentum
phase space for studying and illustrating discrete-variable or composite quantum systems. When we use the weighted
constraint phase space representation for mapping composite quantum systems, the mapping Hamiltonian (we use the
Meyer–Miller mapping Hamiltonian for demonstration throughout the article, albeit that other mapping Hamiltonians
are also available57,58,131,132) yields a novel trajectory-based approximate approach for composite systems. Such a new
method satisfies the frozen nuclei limit [i.e., the dynamics reproduces the exact evolution when only finite discrete
(electronic) DOFs are involved]. In Section 4, the performance of new trajectory-based quantum dynamics approaches
on (weighted) constraint phase space is extensively tested for a few typical benchmark composite systems in the gas
phase as well as in the condensed phase. Finally, conclusion remarks are presented in Section 5.

2 | GENERAL COORDINATE-MOMENTUM PHASE SPACE FORMULATION
OF QUANTUM MECHANICS

Consider a (molecular) system with N continuous (nuclear) DOFs and F discrete (electronic) states, of which the Ham-
iltonian reads

bH¼
XF
n,m¼1

Hnm bR,bP� �
jn⟩⟨mj ¼

XF
n,m¼1

1
2
bPT

M�1bPδnmþVnm bR� �� �
jn⟩⟨mj, ð1Þ

where R and P are the nuclear coordinate and momentum variables, respectively, M is the diagonal mass matrix, and
the F states form an orthonormal complete basis set, that is,

<mjn> ¼ δmn,bIele ¼XF
n¼1

jn⟩⟨nj: ð2Þ

bIele and bInuc stand for the identity operator of the discrete (electronic) DOFs and that of the continuous (nuclear) DOFs.
For simplicity, Equation (1) employs the (electronically) diabatic representation, where the Hermitian potential matrix
V Rð Þ is a function of only the coordinate vector. (In applications V Rð Þ is often a real symmetric matrix.) More discus-
sion on the adiabatic representation of discrete (electronic) DOFs is available in Section 4.1.

The unified formulation of mapping phase space with coordinate-momentum variables offers a useful exact
approach to describe the composite system. The trace of a product of two quantum operators is expressed as an integral
of two functions on mapping phase space, that is,

Trn,e bAbBh i
¼
Z

dμnuc R,Pð Þ
Z

S x,pð Þ
dμele x,pð ÞAC R,P;x,pð ÞeBC R,P;x,pð Þ ð3Þ
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with

AC R,P;x,pð Þ¼Trn,e bAbKnuc R,Pð Þ
ObKele x,pð Þ

h i
, ð4Þ

eBC R,P;x,pð Þ¼Trn,e bK�1
nuc R,Pð Þ

ObK�1
ele x,pð ÞbBh i

, ð5Þ

dμnuc R,Pð Þ¼ 2πℏð Þ�NdRdP and dμele x,pð Þ¼Fdxdp as the integration measure on nuclear phase space and that on
electronic phase space, respectively, and Trn,e represents the trace over the corresponding nuclear and electronic Hilbert
space. The integral over the mapping phase space variables for the finite discrete (electronic) DOFs in Equation (3) is
performed as Z

S x,pð Þ
Fdxdpg x,pð Þ¼

Z
Fdxdp

1
Ω
S x,pð Þg x,pð Þ¼

Z
FdxdpS x,pð Þg x,pð Þ, ð6Þ

where the area of constraint space S x,pð Þ

Ω¼
Z

dxdpS x,pð Þ ð7Þ

is the normalization constant, and S x,pð Þ is the normalized constraint space.
The normalization of the (inverse) mapping kernel reads

Trn bKnuc R,Pð Þ
h i

¼Trn bK�1
nuc R,Pð Þ

h i
¼ 1 ð8Þ

Tre bKele x,pð Þ
h i

¼Tre bK�1
ele x,pð Þ

h i
¼ 1 ð9Þ

and Z
dμnuc R,Pð Þ bKnuc R,Pð Þ¼

Z
dμnuc R,Pð Þ bK�1

nuc R,Pð Þ¼bInuc ð10Þ

Z
S x,pð Þ

dμele x,pð ÞbKele x,pð Þ¼
Z

S x,pð Þ
dμele x,pð ÞbK�1

ele x,pð Þ¼bIele: ð11Þ

The one-to-one correspondence mapping from phase space function AC R,P;x,pð Þ or eBC R,P;x,pð Þ of Equation (4)
back to operator bA or bB is

bA¼
Z

dμnuc R,Pð Þ
Z

S x,pð Þ
dμele x,pð ÞAC R,P;x,pð ÞbK�1

nuc R,Pð Þ
ObK�1

ele x,pð Þ

bB¼
Z

dμnuc R,Pð Þ
Z

S x,pð Þ
dμele x,pð ÞeBC R,P;x,pð ÞbKnuc R,Pð Þ

ObKele x,pð Þ:
ð12Þ

The nuclear or electronic kernel should satisfy five criteria, namely, linearity, reality, standardization (normalization),
traciality, and covariance.93,94,100,115
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2.1 | Mapping kernel for continuous (nuclear) degrees of freedom

The integrals for R,Pð Þ in Equations (3), (10), and (12) are over infinite (nuclear) phase space. The mapping kernel and
its inverse for the nuclear DOFs are

bKnuc R,Pð Þ¼ ℏ
2π

� �NZ
dζ
Z

dηeiζ � bR�R
� 	

þiη � bP�P
� 	

f ζ,ηð Þ

bK�1
nuc R,Pð Þ¼ ℏ

2π

� �NZ
dζ
Z

dηeiζ � bR�R
� 	

þiη � bP�P
� 	

f �ζ,�ηð Þ½ ��1,

ð13Þ

where f ζ,ηð Þ is a scalar function. For example, we have the Wigner function89,155

f ζ,ηð Þ¼ 1, ð14Þ

the Husimi function156

f ζ,ηð Þ¼ exp �ζTΓ�1ζ
4

�ℏ2

4
ηTΓη

� �
, ð15Þ

the anti-Husimi function

f ζ,ηð Þ¼ exp
ζTΓ�1ζ

4
þℏ2

4
ηTΓη

� �
, ð16Þ

the Glauber–Sudarshan P function61,62,66 (with the characteristic frequency matrix ω of the system)

f ζ,ηð Þ¼ exp
ℏ
4
ζTM�1=2ω�1M�1=2ζþℏ

4
ηTM1=2ωM1=2η

� �
, ð17Þ

and its generalized versions,66 the Glauber Q function157

f ζ,ηð Þ¼ exp �ℏ
4
ζTM�1=2ω�1M�1=2ζ�ℏ

4
ηTM1=2ωM1=2η

� �
, ð18Þ

the normal–antinormal ordered function91

f ζ,ηð Þ¼ cosh
ℏ
4
ζTM�1=2ω�1M�1=2ζþℏ

4
ηTM1=2ωM1=2η

� �
, ð19Þ

the Kirkwood antistandard-ordered function158,159

f ζ,ηð Þ¼ eiℏζ
Tη=2, ð20Þ

the Mehta standard-ordered function160

f ζ,ηð Þ¼ e�iℏζTη=2, ð21Þ

the Rivier function161,162
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f ζ,ηð Þ¼ cos
1
2
ℏζTη

� �
, ð22Þ

and the distribution function of Born and Jordan163

f ζ,ηð Þ¼ sin 1
2ℏζ

Tη

 �
1
2ℏζ

Tη
, ð23Þ

and so forth.
When operator bA is a function of only the nuclear DOFs, its phase space function from Equation (4) and the dual

function from Equation (5) become

Anuc R,Pð Þ¼Trn bAbKnuc R,Pð Þ
h i

ð24Þ

and

eAnuc R,Pð Þ¼Trn bK�1
nuc R,Pð ÞbAh i

: ð25Þ

When the Wigner function Equation (14) is used, the mapping kernel and its inverse are the same, that is,bKnuc x,pð Þ¼ bK�1
nuc x,pð Þ. The Wigner phase space function of operator bA (from Equation (24)) is identical to its dual

(from Equation (25)),

AW
nuc R,Pð Þ¼ eAW

nuc R,Pð Þ: ð26Þ

When the Husimi phase space (Equation (15)) is employed, it is straightforward to show the relationship between
the Wigner and Husimi phase space functions (obtained from Equation (24))

AH
nuc R,Pð Þ¼ exp

1
4

d
dR

� �T

Γ�1 d
dR

� �
þℏ2

4
d
dP

� �T

Γ
d
dP

� �" #
AW
nuc R,Pð Þ, ð27Þ

and the relationship between the dual function of Husimi phase space eAH
nuc R,Pð Þ and the Wigner phase space func-

tion AW
nuc R,Pð Þ

eAH
nuc R,Pð Þ¼ exp �1

4
d
dR

� �T

Γ�1 d
dR

� �
�ℏ2

4
d
dP

� �T

Γ
d
dP

� �" #
AW
nuc R,Pð Þ: ð28Þ

Because any choice of f ζ,ηð Þ in Equation (13) leads to an informationally complete representation of the
continuous-variable quantum system, it is not difficult to establish the relationship between different (dual) phase space
functions in addition to Equations (27) and (28).

2.2 | Mapping kernel on constraint space for discrete (electronic) degrees of freedom

As derived first in appendix A of Reference 132 in the spirit of Reference 131 and then in the Supporting Information of
Reference 134, the kernel that maps a set of F states onto constraint phase space S x,pð Þ reads
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bKele x,pð Þ¼
XF
n,m¼1

1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �
jn⟩⟨mj, ð29Þ

and the corresponding inverse kernel is

bK�1
ele x,pð Þ¼

XF
n,m¼1

1þF

2 1þFγð Þ2 x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� 1� γ

1þFγ
δnm

" #
jn⟩⟨mj: ð30Þ

As naturally required by Equation (9), constraint phase space S x,pð Þ is defined by

δ
XF
n¼1

x nð Þ� 	2þ p nð Þ� 	2
2

� 1þFγð Þ
 !

, ð31Þ

of which the area is

Ω γð Þ¼
Z

dxdpδ
XF
n¼1

x nð Þ� 	2þ p nð Þ� 	2
2

� 1þFγð Þ
 !

: ð32Þ

The normalized constraint phase space is S x,pð Þ¼S x,pð Þ=Ω γð Þ:
Equations (29)–(32) define the mapping kernel and inverse kernel as well as constraint phase space, which are the

key elements of the coordinate-momentum phase space formulation of the discrete-variable quantum system that we
first established in References 131,132 and further developed in References 57,58,134. As yielded from Equation (4),
when the Wigner function Equation (14) is used for the nuclear DOFs, the mapping Hamiltonian for the quantum
Hamiltonian operator Equation (1) reads

HC R,P;x,p;γð Þ¼ 1
2
PTM�1Pþ

XF
n,m¼1

Vmn Rð Þ 1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �
: ð33Þ

Because V Rð Þ is Hermitian, the mapping Hamiltonian is real. As V Rð Þ is often a real symmetric matrix, Equation (33)
becomes

HC R,P;x,p;γð Þ¼ 1
2
PTM�1Pþ

XF
n,m¼1

1
2

x nð Þx mð Þ þp nð Þp mð Þ
� �

� γδnm

� �
Vmn Rð Þ, ð34Þ

which is the seminal Meyer–Miller Hamiltonian153 that has extensively been implemented for nonadiabatic dynamics
in the literature.4,56,60,138,154,164–218 In References 58,131,132, it is shown that there also exist other comprehensive map-
ping Hamiltonian models in the general coordinate-momentum phase space formulation of quantum mechanics. When
the mapping Hamiltonian is employed to generate trajectory-based dynamics in the phase space formulation for a com-
posite quantum system, we denote it as the classical mapping model (CMM) approach. It satisfies the frozen nuclei
limit. We use the Meyer–Miller Hamiltonian for demonstration throughout the Focus Article.

When Meyer and Miller proposed the conventional Meyer–Miller mapping Hamiltonian model for the nonadiabatic
system in 1979, they did not invoke the phase space formulation. In 1997, Stock and Thoss154 utilized the Schwinger
oscillator theory of angular momentum219,220 to derive the Meyer–Miller mapping Hamiltonian.153 Its LSC-IVR approx-
imation4 in principle includes infinite Wigner phase space for the finite set of (electronic) states. The applications, how-
ever, suggest that the LSC-IVR approximation in the framework of References 4,154,170 is not
good.172,177,181,187,195,200,202 More advanced semiclassical approaches96,97 improve the performance but request more
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computational effort.172,173 The symmetric-window function and other techniques have been introduced to practically
overcome the drawbacks.177,181,187,195,200,202 Recent progress along this line is briefly summarized in Reference 138.

Equation (31) indicates that parameter γ lies in region �1=F,∞ð Þ. It is shown that parameter γ can be either positive
or negative131,134 and should be interpreted as a special case of the commutator matrix57,58,131,134 rather than the con-
ventional zero-point-energy parameter.153,154 There exist three key elements for a trajectory-based quantum dynamics
method to evaluate the evolution of the expectation/ensemble average of physical property, namely,

1. the EOMs of the trajectory,
2. the initial condition of the trajectory, and
3. the integral expression for the expectation/ensemble average of the physical property of interest.

In the frozen-nuclei limit, Hamilton's EOMs governed by the Meyer–Miller mapping Hamiltonian is isomorphic to
exact dynamics. While it is reasonable to employ the mapping Hamiltonian to define the EOMs of the trajectory, the left
two elements are also important to consider such that the trajectory-based dynamics method is consistent. The con-
straint coordinate-momentum phase space formulation then offers a more advanced platform to consider all the three
key elements.

It is evident that Equation (31) is a special choice of constraint phase space S x,pð Þ. The interpretation of parameter
γ in References 57,58,131,134 hints that a more comprehensive choice of normalized constraint phase space S x,pð Þ is

Z∞
�1=F

dγw γð Þ 1
Ω γð Þδ

XF
n¼1

x nð Þ� 	2þ p nð Þ� 	2
2

� 1þFγð Þ
 !

, ð35Þ

with the quasi-probability distribution function

Z∞
�1=F

dγw γð Þ¼ 1: ð36Þ

Equation (6), the integral over the mapping phase space variables for the finite discrete (electronic) DOFs then becomesZ
S x,pð Þ

Fdxdpg x,pð Þ

¼
Z∞
�1=F

dγw γð Þ
Z

Fdxdp
1

Ω γð Þδ
XF
n¼1

x nð Þ� 	2þ p nð Þ� 	2
2

� 1þFγð Þ
 !

g x,pð Þ:
ð37Þ

If we require that the kernel is the same as its inverse, that is,

bKele x,pð Þ¼ bK�1
ele x,pð Þ¼

XF
n,m¼1

1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �
jn⟩⟨mj, ð38Þ

it is then not difficult to obtain

Z∞
�1=F

dγw γð Þχ γð Þ¼ 1 ð39Þ
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with

χ γð Þ¼Fγ2þ2γ: ð40Þ

(See Appendix 1 of the Supporting Information for more discussion.) Equations (35)–(40) define normalized con-
straint phase space S x,pð Þ, the mapping kernel and inverse kernel, and the quasi-probability distribution function w γð Þ
of parameter γ. The weighted constraint phase space formulation for the discrete-variable quantum system is the key
new theoretical result of the Focus Article. When the Wigner function Equation (14) is used for the nuclear DOFs,
where bKnuc x,pð Þ¼ bK�1

nuc x,pð Þ, Equation (4) is then identical to Equation (5) when bA¼ bB. The mapping Hamiltonian for
the quantum Hamiltonian operator Equation (1) produced by either of Equations (4) and (5) leads to the same expres-
sion as Equation (34). When the mapping Hamiltonian is utilized to produce the trajectory-based dynamics for a com-
posite system, it is denoted as the weighted mapping model (wMM) approach. The frozen nuclei limit is satisfied
in wMM.

Many choices are possible for the discrete or continuous version of the normalized quasi-probability distribution
function w γð Þ in the weighted constraint phase space mapping theory. In the Focus Article, we consider only the sim-
plest cases of the discrete version. When but a single value of parameter γ is chosen in Equation (39), that is, w γð Þ¼
δ γ� γ1ð Þ, we obtain

Fγ2þ2γ¼ 1, ð41Þ

of which the physical solution is

γ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þF

p �1
F

: ð42Þ

Equation (42) is a trivial result that was used in References.57,114,115,117,197 In this case, the weighted constraint phase
space formulation is identical to the constraint phase space formulation, and wMM becomes CMM with Equation (42)
when trajectory-based dynamics is considered. When only two values of parameter are selected, that is,

w γð Þ¼
X2
j¼1

w γj

� �
δ γ� γj

� �
, ð43Þ

Equations (36) and (39) lead to

w γ1ð Þ¼ 1�χ γ2ð Þ
χ γ1ð Þ�χ γ2ð Þ

w γ2ð Þ¼ χ γ1ð Þ�1
χ γ1ð Þ�χ γ2ð Þ :

ð44Þ

When the values of parameter γ are close to zero or smaller than zero in region �1=F,∞ð Þ, trajectories produced by the
Meyer–Miller mapping Hamiltonian Equation (34) for nonadiabatic molecular dynamics are stable. For demonstration
in the paper, we choose

γ1 ¼�γ2 ¼Δ ð45Þ

with Δ a reasonably small positive real number in region 0, 1=Fð Þ. Figure 3 presents the constraint coordinate-
momentum phase space formulation when a single value of parameter γ is used (Figure 3a) as well as the weighted for-
mulation when two values of parameter γ suggested by Equation (45) are used (Figure 3b).
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3 | PHASE SPACE REPRESENTATION OF THE NONCLASSICAL FEATURE
OF QUANTUM SYSTEMS

Recent advance in quantum technologies makes it possible to control and manipulate quantum states in experiment.
Because the phase space formulation offers an informationally complete description of the density matrix, direct mea-
surements of phase space of the quantum system with continuous DOFs, those of the quantum system with discrete
DOFs, and those of the composite quantum system have been realized in experiment.70,85,221–234 While the celebrated
Wigner phase space has long been used for illustration of the negative quasi-probability for continuous-variable sys-
tems,225,235 Stratonovich phase space has recently been proposed for visualization and tomography of discrete-variable
systems.85,113,227–229,231,236,237 A combination of these two spaces has been used for illustration of nonclassical correla-
tions or entanglement between the discrete DOF and the continuous DOF of the composite system.238,239

(In Appendix 3 of the Supporting Information, we briefly review Stratonovich phase space with an either SU(2) or SU
(F) structure,114,300,301 as well as the relationship between Stratonovich phase space and constraint coordinate-
momentum phase space as already pointed out in References 57,58.)

As coordinate-momentum phase space is well-established in classical mechanics, the formulation of (weighted) con-
straint coordinate-momentum phase space described in Section 2 offers a potentially useful approach for describing cor-
relations and dynamics in the discrete-variable system as well as the composite system in quantum mechanics. When
(weighted) constraint coordinate-momentum phase space is used for mapping an F-state system, the phase space distri-
bution is
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FIGURE 3 Illustration of the exact mapping formulation with constraint coordinate-momentum phase space. Panel (a) presents

constraint phase space with only a single value of parameter γ. Panel (b) demonstrates weighted constraint phase space with two values of

parameter γ, where the quasi-probability distribution function is w γð Þ¼wþδ γ�Δð Þþw�δ γþΔð Þ. Constraint phase space with the positive

weight is blue-dashed, while that with the negative weight is red dot-dashed. (Panel (a) is reprinted with permission from Reference 134,

Copyright 2021, American Chemical Society).
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ρC x,pð Þ¼
XF
m,n¼1

ρmnKnm x,pð Þ, ð46Þ

where ρmn ¼ ⟨m


bρ nj ⟩ and Knm x,pð Þ¼ ⟨n



bKele x,pð Þ mj ⟩ with bKele x,pð Þ defined in Equation (38). For the sake of visualiza-
tion, it is convenient to further reduce constraint phase space variables x,pð Þ to two relevant variables, x nð Þ,x mð Þ� 	

or
x nð Þ,p mð Þ� 	

for describing the correlation on arbitrary two states nj ⟩ and mj ⟩. We define the marginal function,
K n,mð Þ x nð Þ,x mð Þ� 	

, on constraint coordinate-momentum phase space (Figure 4),

K n,mð Þ x nð Þ,x mð Þ
� �

¼
Z

Fdx ⊥ dp
1

Ω γð Þδ
XF
j¼1

x jð Þ� 	2þ p jð Þ� 	2
2

� 1þFγð Þ
 !

Knm x,p;γð Þ, ð47Þ

where x ⊥ represents all x ið Þ other than x nð Þ,x mð Þ� �
, and that on weighted constraint phase space,

K n,mð Þ x nð Þ,x mð Þ
� �

¼
Z∞
�1=F

dγw γð Þ 1
Ω γð Þ

Z
Fdx ⊥ dpδ

XF
j¼1

x jð Þ� 	2þ p jð Þ� 	2
2

� 1þFγð Þ
 !

Knm x,p;γð Þ: ð48Þ

Figure 5 demonstrates the case of Equation (48) when the quasi-probability distribution function w γð Þ is defined by
Equations (43)–(45) where two symmetrical values of parameter γ are used. Similar definitions are also applied for
K n,mð Þ x nð Þ,p mð Þ� 	

. The explicit formula of these marginal functions can be derived by using the integral techniques
(where we use Wick's theorem)297,298 in Appendix 1 of the Supporting Information.

Figures 4 and 5 demonstrate a composite system that consists of a discrete DOF for spin-1/2 and a continuous DOF
for a harmonic oscillator. The marginal joint distribution function of the composite system reads

ρ n,mð Þ
C R,P;x nð Þ,x mð Þ

� �
¼Trn,e bρbKnuc R,Pð Þ

O
nj ⟩⟨m



K n,mð Þ x nð Þ,x mð Þ
� �h i

: ð49Þ

The marginal quasi-probability distribution functions of the continuous variable for both the pure state and the mixed
state are presented in Figure 4a, where infinite Wigner phase space is employed. The marginal functions of the discrete
variables (based on Equation (47)) of the spin-1/2 system read

K"" x 1ð Þ,x 2ð Þ� 	 K"# x 1ð Þ,x 2ð Þ� 	
K#" x 1ð Þ,x 2ð Þ� 	 K## x 1ð Þ,x 2ð Þ� 	

 !

¼ 1
2π 1þ2γð Þ

1þ1
2

x 1ð Þ
� �2

�1
2

x 2ð Þ
� �2

x 1ð Þx 2ð Þ

x 1ð Þx 2ð Þ 1�1
2

x 1ð Þ
� �2

þ1
2

x 2ð Þ
� �2

0BB@
1CCA,

ð50Þ

where notations " , # are used to represent the two discrete states.
The marginal functions for the discrete variable are demonstrated on constraint coordinate-momentum phase space

in Figure 4b and on weighted constraint space in Figure 5b. More interestingly, the identical angular behavior and the
radial cancellation behavior of two weighted components lead to a hollow ring structure on weighted constraint phase
space (Figure 5a, also see Appendix 4 of the Supporting Information). The difference between the Schrodinger cat state
and the mixed state is distinct in either Figure 4b on constraint space or Figure 5b on weighted constraint space.

The marginal joint function of a pure Bell entangled state, 0j ⟩ #j ⟩þ 1j ⟩ "j ⟩
� 	

=2, of the composite system is demon-
strated in Figure 4c (by adopting the similar strategy of References 238,239), where constraint coordinate-momentum
phase space is used for the discrete DOF at each grid, as well as in Figure 5c where weighted constraint space is
employed for the discrete DOF at each grid. The two-dimensional grids represent variables R,Pð Þ of infinite Wigner
phase space for the continuous DOF in either of Figures 4c and 5c. When the pure Bell entangled state is studied, both
Figures 4c and 5c clearly demonstrate a Gaussian decay of the joint marginal function against Wigner phase space
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variables R,Pð Þ of the continuous DOF. Either Figures 4c or 5c also shows the pattern of the correlation between the
continuous DOF and the discrete DOF. It is convenient to distinguish the pure Bell entangled state, 0j ⟩ #j ⟩þ 1j ⟩ "j ⟩

� 	
=2,

from the direct product of the Schrodinger cat states, 0j ⟩þ 1j ⟩
� 	N "j ⟩þ #j ⟩

� 	
=2, when the hybrid representation of the

general coordinate-momentum phase space is used.

4 | DYNAMICS OF COMPOSITE QUANTUM SYSTEMS

The quantum Liouville theorem can be expressed as a generalized Moyal bracket on hybrid coordinate-momentum phase
space. When the Poisson bracket for classical Hamilton's EOMs governed by the mapping Hamiltonian, Equation (34), is
used to approximate the generalized Moyal bracket on phase space,57,58 we have CMM when constraint space is used,
and wMM when weighted constraint space is employed. (Please see Appendices 2, 3, and 5 of the Supporting Information
for more discussion.) We compare the new wMM and CMM approaches to Ehrenfest dynamics240,241 as well as the
fewest-switches surface hopping (FSSH) method,242–244 two prevailing trajectory-based dynamics methods for a few typi-
cal composite quantum systems. (In this section we set ℏ¼ 1 for simplicity if it is not specifically stated).

4.1 | Equations of motion governed by the mapping Hamiltonian

In Equation (1), the “complete” set of diabatic states nj ⟩
� �

is independent of nuclear coordinate/configuration R. The
mapping variables for discrete (electronic) DOFs, x,pð Þ, are independent of R. Define g¼ xþ ip. The EOMs governed
by Equation (33), the mapping Hamiltonian of Equation (1), then read,

g
_¼�iV Rð Þg ð51Þ

R
_ ¼M�1P ð52Þ

_P¼�
XF
n,m¼1

rRVmn Rð Þð Þ 1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �
: ð53Þ

Diabatic potential matrix V Rð Þ is Hermitian, so is the force matrix, rRVmn Rð Þf g. It is trivial to verify that the mean
force of the right-hand side (RHS) of Equation (53) is always real. When V Rð Þ is a real symmetric matrix, the EOMs
become

_x¼V Rð Þp
_p¼�V Rð Þx
_R¼M�1P

_P¼�
XF
n,m¼1

rRVmn Rð Þð Þ 1
2

x nð Þx mð Þ þp nð Þp mð Þ
� �

� γδnm

� �
:

ð54Þ

FIGURE 4 Illustrations of (a) Wigner representation of a continuous-variable system, (b) constraint phase space representation of a

discrete-variable system, and (c) hybrid coordinate-momentum phase space representation of a composite system with both discrete and

continuous DOFs. (a) Wigner distribution for 0j ⟩⟨0


 (Panel a1), that for 1j ⟩⟨1



 (Panel a4), real part (Panel a2) and imaginary part (Panel a3)

of the Wigner distribution for 0j ⟩⟨1


, Wigner distribution for mixed state 0j ⟩⟨0



þ 1j ⟩⟨1


� 	
=2 (Panel a5), and that for Schrödinger cat state

0j ⟩þ 1j ⟩
� 	

=
ffiffiffi
2

p
(Panel a6). Here, 0j ⟩ and 1j ⟩ are two energy levels of a continuous-variable system. (b) Marginal distribution of constraint

phase space coordinates x 1ð Þ,x 2ð Þ� 	
for "j ⟩⟨"

 (Panel b1), #j ⟩⟨#

 (Panel b4), that for "j ⟩⟨#

 (Panel b2), that for #j ⟩⟨"

 (Panel b3), that for mixed

state "j ⟩⟨"

þ #j ⟩⟨#

� 	
=2 (Panel b5), and that for Schrödinger cat state "j ⟩þ #j ⟩

� 	
=
ffiffiffi
2

p
(Panel b6). Here, "j ⟩ and #j ⟩ represent two discrete

states of a discrete-variable system. (c) Panel c1: Schematic representaton of the composite system and the pure entangled state

0j ⟩ #j ⟩þ 1j ⟩ "j ⟩
� 	

=2; Panel c2: hybrid coordinate-momentum phase space representation of the entangled state. The grid is on the Wigner

phase space R,Pð Þ for the continous DOF, and each circle of a grid stands for the local marginal distribution function of constraint phase

space variables x 1ð Þ,x 2ð Þ� 	
. The notations are identical to those in Panels (a) and (b).
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Consider the full Hamiltonian of nuclei and electrons of the molecular system,

bH¼ 1
2
bPT

M�1bPþ bHel bR� �
, ð55Þ

where bHel bR� �
is the electronic Hamiltonian. Its representation in the diabatic basis reads

bHel Rð Þ¼
X
n,m

Vnm Rð Þ nj ⟩⟨m


, ð56Þ

and that in the adiabatic basis is

bHel Rð Þ¼
X
k

Ek Rð Þ ϕk Rð Þj ⟩⟨ϕk Rð Þ

, ð57Þ

where Ek Rð Þ denotes the adiabatic potential energy surface of the k-th adiabatic electronic state. Assume that the uni-
tary transformation between a set of diabatic basis states, mj ⟩

� �
, and a set of adiabatic basis states, ϕk Rð Þj ⟩

� �
, is

ϕk Rð Þj ⟩¼
X
m

Umk Rð Þ mj ⟩

nj ⟩¼
X
k

U�
nk Rð Þ ϕk Rð Þj ⟩,

ð58Þ

where Umk Rð Þ¼ ⟨m ϕk Rð Þj ⟩: This states the diagonalization of the diabatic potential matrix,X
n,m

U�
nj Rð ÞVnm Rð ÞUmk Rð Þ¼Ek Rð Þδkj, ð59Þ

or equivalently,

Vmn Rð Þ¼
X
k

Umk Rð ÞEk Rð ÞU�
nk Rð Þ: ð60Þ

Define the nonadiabatic coupling vector,

dmn Rð Þ¼ ⟨ϕm Rð Þ ∂ϕn Rð Þ
∂R





 ⟩: ð61Þ

It is trivial to show

dmn Rð Þ¼�d�
nm Rð Þ, ð62Þ

because of the orthonormality of the basis set, that is, ⟨ϕm Rð Þ ϕn Rð Þj ⟩¼ δmn: We then obtain

FIGURE 5 Illustrations of (a) components and (b) marginal distribution functions of the weighted constraint phase space

representation of a discrete-variable system, and (c) weighted hybrid representation of the same composite system as that of Figure 4c.

(a) Marginal distribution of constraint phase space coordinates x 1ð Þ,x 2ð Þ� 	
for Schrödinger cat state "j ⟩þ #j ⟩

� 	
=
ffiffiffi
2

p
with γ¼Δ weighted by wþ

(Panel a1), with γ¼�Δ weighted by w� (Panel a2). The sum of the two components yields the marginal distribution of constraint phase

space coordinates x1,x2ð Þ of the weighted representation with two values of parameter γ for the Schrödinger cat state (Panel a3). Coordinates

are scaled by the larger radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ2Δð Þp

. (b) Weighted marginal distribution of constraint phase space coordinates x 1ð Þ,x 2ð Þ� 	
for the same

properties as those in Figure 4b. (c) Same as Figure 4c, but using weighted marginal distribution for the discrete DOF.
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rRU
�
mk Rð Þ¼ ⟨rRϕk Rð Þ

m⟩¼

X
n
⟨rRϕk Rð Þ

ϕn⟩⟨ϕn



m⟩

¼
X
n
d�
nk Rð ÞU�

mn Rð Þ¼�
X
n
dkn Rð ÞU�

mn Rð Þ
ð63Þ

and

rRUmk Rð Þ¼�
X
n
d�
kn Rð ÞUmn Rð Þ¼

X
n
Umn Rð Þdnk Rð Þ: ð64Þ

Below we show the explicit form of the EOMs, Equations (51)–(53), under the diabatic-to-adiabatic transformation,
Equation (58).

The covariant transformation for mapping variables corresponding to the diabatic-to-adiabatic transformation,
Equation (58), reads

ex nð Þ Rð Þþ iep nð Þ Rð Þ¼
X
m

U�
mn Rð Þ x mð Þ þ ip mð Þ

� �
ð65Þ

or

x nð Þ þ ip nð Þ ¼
X
m

Unm Rð Þ ex mð Þ Rð Þþ iep mð Þ Rð Þ
� �

: ð66Þ

Denote eg Rð Þ¼ex Rð Þþ iep Rð Þ. Equations (65)–(66) become

eg Rð Þ¼U† Rð Þg
g¼U Rð Þeg Rð Þ: ð67Þ

The electronic mapping kernel, Equation (29), is

bKele ¼
X
n,m

1
2
ex nð Þ þ iep nð Þ
� � ex mð Þ � iep mð Þ

� �
� γδnm

� �
ϕnj ⟩⟨ϕm



, ð68Þ

under the transformation for a specific nuclear configuration, R. Substitution of Equation (63) into Equation (65) yields

rR ex nð Þ Rð Þþ iep nð Þ Rð Þ
� �

¼�
X
k

dnk Rð Þ ex kð Þ Rð Þþ iep kð Þ Rð Þ
� �

: ð69Þ

The total time derivative of ex nð Þ þ iep nð Þ reads

d
dt
ex nð Þ þ iep nð Þ
� �

¼
X
m

U�
mn Rð Þ d

dt
x mð Þ þ ip mð Þ
� �� �

þ
X
m

d
dt
U�

mn Rð Þ
� �

x mð Þ þ ip mð Þ
� �

¼�i
X
k

δnkEk Rð Þ ex kð Þ þ iep kð Þ
� �

�
X
k

_R �dnk Rð Þ ex kð Þ þ iep kð Þ
� �

¼�i
X
k

Ek Rð Þδnk� i _R �dnk Rð Þ
 � ex kð Þ þ iep kð Þ
� �

:

ð70Þ

Equation (70) is the EOMs for mapping variables of electronic DOFs in the adiabatic representation.
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We then consider the EOMs of nuclear mapping variables under the transformation Equation (58). Equation (52)
remains invariant under the transformation. Substitution of Equations (60), (63), (64), and (69) into Equation (53)
produces

_P¼�
XF
n,m¼1

rRVmn Rð Þð Þ 1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �

¼�
X
n,m

rR

X
k

Umk Rð ÞEk Rð ÞU�
nk Rð Þ

 !
1
2

x nð Þ þ ip nð Þ
� �

x mð Þ � ip mð Þ
� �

� γδnm

� �
¼
X
k, l

dlk Rð Þ El Rð Þ�Ek Rð Þð Þ 1
2
ex kð Þ þ iep kð Þ
� � ex lð Þ � iep lð Þ

� �
� γδkl

� �
�
X
k, l

rREk Rð Þδkl 1
2
ex kð Þ þ iep kð Þ
� � ex lð Þ � iep lð Þ

� �
� γδkl

� �
:

ð71Þ

Since force matrix Fkl ¼rREk Rð Þδklþ Ek Rð Þ�El Rð Þð Þdlk Rð Þf g is Hermitian, the mean force of the RHS of
Equation (71) stays real. Under the diabatic-to-adiabatic transformation, Equation (58), the EOMs of nuclear phase var-
iables (Equations (52) and (53)) are then recast into

_R¼M�1P

_P¼�
X
k, l

rREk Rð Þδklþ Ek Rð Þ�El Rð Þð Þdlk Rð Þ½ � 1
2
ex kð Þ þ iep kð Þ
� � ex lð Þ � iep lð Þ

� �
� γδkl

� �
: ð72Þ

Define the effective potential matrix, V effð Þ, whose element is a function of the nuclear phase variables,

V effð Þ
nk R,Pð Þ¼En Rð Þδnk� i _R �dnk Rð Þ¼En Rð Þδnk� iM�1P �dnk Rð Þ: ð73Þ

A more compact form of Equation (70) for the electronic phase variables becomes

_eg¼�iV effð Þ R,Pð Þeg: ð74Þ

Equations (72) and (74) are the final EOMs under the covariant transformation Equation (65).
When the electronic wavefunction of the basis set is always real, that is, ⟨r ϕn Rð Þj ⟩ is real for any n, which is often

the case for molecular systems, Equation (62) leads to

dmn Rð Þ¼�dnm Rð Þ: ð75Þ

Equation (72) is simplified to

_R¼M�1P

_P¼�
X
k, l

rREk Rð Þδklþ Ek Rð Þ�El Rð Þð Þdlk Rð Þ½ � 1
2
ex kð Þex lð Þ þep kð Þep lð Þ
� �

� γδkl

� �
: ð76Þ

Note that the mapping Hamiltonian of Equation (33) (obtained in the diabatic representation) becomes

HC R,P,x ex,epð Þ,p ex,epð Þð Þ¼ 1
2
PTM�1Pþ

XF
n¼1

En Rð Þ 1
2

ex nð Þ Rð Þ
� �2

þ ep nð Þ Rð Þ
� �2� �

� γ

� �
ð77Þ
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under the transformation defined by Equations (60) and (65). The new EOMs, Equations (72) and (74), conserve the
mapping Hamiltonian of Equation (77). The diabatic-to-adiabatic transformation depends on nuclear coordinate R,
which is also a time-dependent variable of the evolution. The time-dependent canonical transformation for the Hamil-
tonian system yields a new set of EOMs by the chain rule.245

In Equations (71)–(74) and (76)–(77) P correspond to the mapping momentum in the diabatic representation, but
not the canonical momentum in the adiabatic representation because Equation (71) is not generated from Hamilton's
equations of motion. Equations (74) and (76) share a similar form to the EOMs proposed by Cotton et al.184 and dis-
cussed in the Supporting Information of Reference 57. Define the covariant transformation for nuclear phase variables,

eR¼ReP¼Pþ i
X
m,n

1
2
ex nð Þ þ iep nð Þ
� � ex mð Þ � iep mð Þ

� �
� γδnm

� �
dmn Rð Þ: ð78Þ

The Hamiltonian of Equation (77) becomes

HC eR,eP,ex,ep� �
¼ 1
2
P eP,ex,ep, eR� �T

M�1P eP,ex,ep, eR� �
þ
XF
n¼1

En eR� � 1
2

ex nð Þ eR� �� �2
þ ep nð Þ eR� �� �2� �

� γ

� �
,

ð79Þ

of which the canonical variables are eR,eP,ex,epn o
instead of R,P,ex,epf g. (See more discussion in Appendix 2 of the

Supporting Information). The mapping diabatic momentum, P, is related to the kinematic momentum of the adiabatic
representation. Although we can directly use Hamilton's EOMs for eR,eP,ex,epn o

, it is more convenient to employ the
EOMs for R,P,ex,epf g instead to avoid the derivative of nonadiabatic coupling terms. This is indeed the strategy
suggested by Cotton et al.184 When the initial condition does not involve nonadiabatic coupling terms, the sampling of
P in the diabatic representation is the same for that of eP in the adiabatic representation. This is the case in the following
applications, where FSSH has to be used in the adiabatic representation. By applying the covariance relation under the
diabatic-to-adiabatic transformation, the EOMs on mapping phase space are independent of the representation of the
(electronic) basis set, which is also the merit of Ehrenfest dynamics.

We note that either Equation (51) or Equation (74) can analytically be solved by a symplectic approach that employs
an exact propagator on electronic phase space at each nuclear phase point. For example, for Equation (74), we use

eU R,P;Δtð Þ¼ exp �iΔtV effð Þ
h i

, ð80Þ

such that the evolution of electronic phase variables follows eg tþΔtð Þ¼ eU R,P;Δtð Þeg tð Þ:
We then test a range of benchmark systems, including two-site dissipative models, Tully's scattering models, atomic

systems in cavity interacted with a number of field modes, and linear vibronic coupling model systems that involve the
conical intersection.135,246–248 They are typical composite quantum systems in chemistry, physics, condensed matter sci-
ence, quantum optics, and quantum information.

4.2 | Spin-boson models at low-temperature in condensed phase

The first model illustrated is the spin-boson model, which describes a two-site system interacted with an environmental
bath in the condensed phase. It is also a simplified model for electron transfer and energy transfer in chemical and bio-
logical reactions. Several numerically exact benchmark methods for solving the spin-boson model include quasi-
adiabatic propagator path integral (QuAPI)249–252 and more efficient small matrix PI (SMatPI),304,305 hierarchy equations
of motion (HEOM),253–261 and (multi-layer) multi-configuration time-dependent Hartree [(ML-)MCTDH].262–268 Quan-
tum dynamics of the spin-boson model exhibits interesting dissipative characters, of which the asymptotic behaviors are
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often missed by either of Ehrenfest dynamics and FSSH in the low-temperature regime.58 Spin-boson models with strong
coupling in the low-temperature regime present challenging tests for trajectory-based dynamics methods.

The Hamiltonian of the spin-boson model is divided to three parts, bH¼ bHsþ bHbþ bHsb. Here bHs ¼ εbσzþΔcbσx
describes a two-site system with the bias, ε, and tunneling Δc, while the bath part of the Hamiltonian is discretized into
a combination of a number of quantum harmonic oscillators bHb ¼

PNb
j¼1

bP2
j þω2

j
bR2
j

� �
=2: The system-bath coupling

adopts a bilinear interaction, bHsb ¼�PNb
j¼1cjbRjbσz: Here, we use an Ohmic bath spectral density J ωð Þ¼ π=2ð Þαωe�ω=ωc ,

where α is the Kondo parameter and ωc is the cut-off frequency. Its discrete frequencies and coupling strengths ωj,cj
� �

are sampled269,270,306 from

ωj ¼�ωcln 1� j= 1þNbð Þ½ �
cj ¼ωj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αωc= 1þNbð Þp(

, j¼ 1,…,Nb: ð81Þ

The initial density is set as 1⟩ s⟨1


 



s

Nbρb, where the system is in excited state j 1⟩ s while all bath modes are at thermal
equilibrium with bρb ¼ e�βbHb=Zb: Initial nuclear DOFs are sampled from the Wigner distribution of bρb, while initial elec-
tronic DOFs are sampled from (weighted) constraint coordinate-momentum phase space S x,pð Þ: The continuous spec-
tral density is discretized into Nb ¼ 300 effective bath modes to guarantee numerical convergence in simulations.

In Figure 6, we demonstrate results produced by wMM with parameter Δ¼ 0:05, by wMM with Δ¼ 0:1, and by
CMM with γ¼ ffiffiffiffiffiffiffiffiffiffiffi

Fþ1
p �1
� 	

=F¼ 0:366 that is a special case of CMM of Reference 134. Numerically exact results, as
well as results yielded by Ehrenfest dynamics and FSSH, are also shown for comparison. Figure 6 indicates that wMM,
as well as CMM, outperforms both Ehrenfest dynamics and FSSH dynamics, either for short-time coherences or for
long-time dissipations.

4.3 | Tully's gas phase scattering models

Tully's scattering models242 mimic different intersection types of molecular systems, which have widely been tested for
various nonadiabatic dynamics methods. They describe a two-state Hamiltonian with a central coupling area and
asymptotic plateau regions where diabatic potential function Vnn R!�∞ð Þ is flat. All the three models, including the
single avoided crossing (SAC), dual avoided crossing (DAC), and extended coupling region (ECR) problems, are used in
our numerical tests.

Atomic units are used in the simulations of the Tully models. The SAC model (Panel a1 of Figure 7) describes the
simplest but essential surface crossing in molecular systems. In the diabatic representation, its diagonal potential energy
surfaces (PESes) are V11 ¼�V22 ¼A 1� e�BjRj� 	

sgn Rð Þ and off-diagonal coupling terms are V12 ¼V21 ¼Ce�DR2
. Here,

the parameters are A¼ 0:01, B¼ 1:6, C¼ 0:005, and D¼ 1:0. The DAC model (Panel b1 of Figure 7) includes two cross-
ing points, thus different (electronic) paths are interfered with the dependence on the initial momentum. Its diagonal
PESes are V11 ¼ 0 and V 22 ¼�Ae�BR2 þE0, and off-diagonal coupling terms are V 12 ¼V 21 ¼Ce�DR2

in the diabatic rep-
resentation with parameters A¼ 0:10, B¼ 0:28, E0 ¼ 0:05, C¼ 0:015, and D¼ 0:06. The ECR model in the diabatic rep-
resentation (Panel c1 of Figure 7) has diagonal PESes V 11 ¼�V 22 ¼E0 and coupling terms
V12 ¼V21 ¼C eBRΘ �Rð Þþ 2� e�BRð ÞΘ Rð Þ½ �, with E0 ¼�0:0006, B¼ 0:9, and C¼ 0:1. Here, Θ Rð Þ is the Heaviside func-
tion of coordinate R. The adiabatic PESes and nonadiabatic coupling vector of the ECR model are also illustrated in
Panel c2 of Figure 7.

We investigate the transmission and reflection coefficients of each state. In the simulations, the initial condition is a
nuclear wavepacket, Ψ R; t¼ 0ð Þ/ exp �α R�R0ð Þ2=2þ i R�R0ð ÞP0


 �
(here we adopt ℏ¼ 1), occupied in state 1, where

α¼ 1 is the Gaussian width parameter, and R0 and P0 are the initial average coordinate and momentum. The initial
average coordinate is set at R0 ¼�3:8, �10, and �13 for the SAC, DAC, and ECR models, respectively. The initial Wig-
ner distribution for the nuclear DOF is then ρnucW R,Pð Þ/ exp �α R�R0ð Þ2� P�P0ð Þ2=α
 �

.
Figure 7a shows that all methods are capable of quantitatively describing transmission coefficients in (diabatic) state

1 and state 2 of the SAC model. Figure 7b demonstrates that either wMM or CMM outperforms Ehrenfest dynamics
and FSSH in predicting the peak shape when the initial momentum is relatively high, for example, P0 ≥ 15 au. This
indicates that the trajectory-based approximate dynamics approaches in the mapping phase space formulation are good
for fast processes in the gas phase composite/nonadiabatic system. However, the performance of either wMM or CMM
in the low initial momentum region should be improved. It is important to note that the EOMs of wMM/CMM are
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invariant with the representation of the electronic state, as described in the Supporting Information of Reference 57.
(More discussion is also available in Appendix 2 of the Supporting Information.) That is, both the diabatic and adiabatic
representations produce the same results for wMM or CMM, which is often not satisfied in FSSH and other
nonadiabatic dynamics approaches.

For the ECR model of Figure 7c, the numerically exact DVR solution indicates an energy threshold for a bifurcation.
Ehrenfest dynamics totally misses the step-like behaviors for the transmission coefficient in state 1, and for the reflec-
tion coefficient in either state 1 or state 2. CMM greatly improves over Ehrenfest dynamics. It is more encouraging that
wMM is capable of faithfully describing such step-like behaviors. Tully's original FSSH algorithm is not able to well
describe the ECR model,242 but a modified version for treating frustrated hopping of FSSH (e.g., see Reference244) is
capable of qualitatively capturing the step-like behaviors. As shown in Figure 7c, in comparison to the traditional FSSH
approach,242,244 the overall performance of wMM for the ECR model is better.

4.4 | Atom/molecule-in-cavity models of quantum electrodynamic light-matter systems

The cavity quantum electrodynamics (cQED) focuses on studying the interaction between light and a multi-level system
(e.g., an atom or a molecule) in an optical cavity, which has many applications in the field of quantum information and
quantum computation. There exist many interesting and important phenomena in cQED, for example, the Purcell
effect when the coupling is weak and the vacuum Rabi splitting when the coupling becomes strong.271–285 When the
general atomic/molecular system is coupled to multi-cavity modes, it is often intractable to solve the exact evolution in
real time due to the curse of dimensionality. We test wMM for two typical models that describe an imprisoned multi-
level atom coupled with a series of optical modes in a one-dimensional lossless cavity.57,204,286–289
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FIGURE 6 Results of population difference D tð Þ¼P1 tð Þ�P0 tð Þ between two states for the spin-boson model at low temperature

(β¼ 1= kBTð Þ¼ 5) with the Ohmic bath. Panel (a) reports the population dynamics of the spin-boson model with parameters ε¼Δc ¼ 1, β¼
5,ωc ¼ 1,α¼ 0:1 in Panel (a). Solid circles: Exact results produced by eHEOM reported in Reference 134. Cyan dashed lines: Ehrenfest

dynamics. Orange dashed lines: FSSH. Magenta solid lines: CMM with γ= 0.366. Purple and green solid lines: wMM with Δ = 0.1 and 0.05,

respectively. Panel (b) is similar to Panel (a) but for α¼ 0:4; Panel (c) is similar to Panel (a) but for ωc ¼ 2:5; Panel (d) is similar to Panel (a)

but for ωc ¼ 2:5,α¼ 0:4. In each model, 300 continuous DOFs (i.e., effective bath modes) are used.
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The total Hamiltonian consists of three parts. The optical field is depicted by N effective modes

bHp ¼
XN
j¼1

1
2
bP2
j þω2

j
bR2
j

� �
, ð82Þ

where bRj,bPj

n o
denote the canonical coordinate-momentum variables of j-th optical field mode with the corresponding

photonic frequency ωj. The atomic system is described by bHa ¼
PF
n¼1

εn nj ⟩⟨n


 with εn representing the n-th atomic energy

level. Employing the dipole approximation, one can formulate the interaction between atom and optical field as

bHc ¼
XF
n≠m

XN
j¼1

ωjλj r0ð ÞbRj

 !
μnm nj ⟩⟨m



: ð83Þ

Here μnm denotes the transitional dipole moment between the n-th and m-th atomic levels, and the coupling between
the j-th mode and the atom is

λj r0ð Þ¼
ffiffiffiffiffiffiffi
2
ε0L

r
sin

jπr0
L

� �
, ð84Þ

where L is the volume length of cavity, ε0 denotes the vacuum permittivity, and r0 represents the location of the atom.
In the simulation, the volume length of the cavity is set to 236,200 au, and the atom is frozen at the central location,
that is, r0 ¼L=2. The optical field is depicted by 400 standing-wave modes in cavity, of which the j-th frequency is ωj ¼
jπc=L with c the light speed in vacuum. We use two benchmark models for studying cQED processes, a three-level
model with ε1 ¼�0:6738, ε2 ¼�0:2798, ε3 ¼�0:1547, μ12 ¼�1:034, μ23 ¼�2:536 (all in atomic units), and a reduced
two-level model where only the two lowest atomic levels are employed.

The highest atomic level of each model is initially occupied with no photon in cavity, that is, all cavity modes are in
the corresponding vacuum state. The spontaneous emission occurs at the beginning, the released photon evolves in the
cavity, and the re-absorption and re-emission happen later when the photon is reflected to meet the atom. Figure 8
shows the population transfer of each atomic level of the two models. The wMM results are compared with CMM,
Ehrenfest dynamics, FSSH, and exact results.287,288 Results of Ehrenfest dynamics and of FSSH significantly deviate
from exact results even since very short time, while CMM and wMM yield much more reasonable descriptions for all
energy levels, including the transfer behavior at short time and the revival at around t¼ 1800 au. The wMM approach
shows overall better performance than CMM in most of the cases. Figure 8 implies that the trajectory-based methods in
the general coordinate-momentum phase space formulation will be useful for studying cQED phenomena in the field
of quantum optics and quantum information.

4.5 | Linear vibronic coupling model for the molecular system involving the conical
intersection

The conical intersection widely exists in molecular systems and plays a central role in many photophysical and photo-
chemical phenomena.135,139,214,246,247,290–293 The linear vibronic coupling model (LVCM) is the simplest but effective

FIGURE 7 Illustration of three Tully models and simulation results. Panel (a1) denotes diabatic PESes V 11 Rð Þ and V 22 Rð Þ, as well as
coupling term V 12 Rð Þ for the SAC model; panel (b1) does so for the DAC model; panel (c1) does so for the ECR model. Panel

(c2) demonstrates adiabatic PESes E1 Rð Þ and E2 Rð Þ, as well as nonadiabatic coupling vector d12 Rð Þ. Panels (a2–a3): transmission coefficients

on diabatic state 1, and those on diabatic state 2 of the SAC model, respectively. Panels (b2–b3): similar to Panels (a2–a3), but for the DAC
model. Panels (c3) and (c4): transmission/reflection coefficients on adiabatic state 1 of the ECR model; Panels (c5) and (c6): those on

adiabatic state 2. In Panels (a2–a3), (b2–b3), and (c3–c6), magenta, purple, and green lines stand for transmission coefficients results for

CMM with γ¼ 0:366, wMM with Δ¼ 0:1, and wMM with Δ¼ 0:05, respectively. Long-dashed blue lines: Ehrenfest dynamics; Short-dashed

orange lines: FSSH; Black points: exact DVR benchmarks.
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model widely used to describe dynamic properties around the conical intersection region, of which Hamiltonian in the
diabatic representation is

bH¼ bH0þ bHlþ bHc: ð85Þ
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FIGURE 8 Results of population dynamics for the atom-in-cavity models. Panels (a) and (b) represent data of the first and second states

of the two-level model, respectively. Panels (c–e) denote data of the first, second, and third states of the three-level model, respectively.

Magenta solid lines: CMM with γ¼ ffiffiffiffiffiffiffiffiffiffiffi
Fþ1

p �1
� 	

=F; purple solid lines: wMM with Δ¼ 0:1; green solid lines: wMM with Δ¼ 0:05; cyan long-

dashed lines: Ehrenfest dynamics; Orange short-dashed lines: FSSH; black solid-dotted lines: Exact results from References 287,288. In each

model, 400 continuous DOFs (i.e., standing-wave modes) are involved.
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Here, bH0 ¼
PN

k¼1ωk bP2
kþbR2

k

� �
=2 is the zeroth-order harmonic oscillator Hamiltonian in normal-mode space of the elec-

tronic ground state, where bPk,bRk k¼ 1,…,Nð Þ denote the k-th effective weighted normal-mode variables with frequency
ωk(i.e., Pk ¼ pk=

ffiffiffiffiffiffi
ωk

p
, Rk ¼ ffiffiffiffiffiffi

ωk
p

rk, where pk,rk are the canonical momentum, and canonical coordinate of k-th normal-
mode). In Equation (85), bHl ¼

PF
n¼1 Enþ

PN
k¼1κ

nð Þ
k
bRk

� �
nj ⟩⟨n



 contains the vertical excitation energy, En n¼ 1,…,Fð Þ of
F electronic states, and the linear coupling term κ nð Þ

k of each nuclear DOF for diagonal Hamiltonian elements, whilebHc ¼
PF

n≠ m

PN
k¼1λ

nmð Þ
k

bRk

� �
nj ⟩⟨m



 includes linear coupling λ nmð Þ
k for each normal-mode between two different elec-

tronic states, nj ⟩ and mj ⟩.
A typical two-level 3-mode LVCM describes the S1/S2 conical intersection of the pyrazine molecule. The parameters

of this model are fitted from semi-empirical electronic structure calculations by Schneiders and Domcke in Reference
294 The excitation energies for the two electronic states are E1 ¼ 3:94 eV and E2 ¼ 4:84 eV. The diagonal linear coupling
terms of the first two modes fbR1, bR2} are κ

1ð Þ
1 ¼ 0:037 eV, κ 1ð Þ

2 ¼�0:105 eV for the first electronic state, and κ 2ð Þ
1 ¼�0:254

eV, κ 2ð Þ
2 ¼ 0:149 eV for the second electronic state, respectively. The off-diagonal linear coupling of third mode bR3 is

λ 12ð Þ
3 ¼ λ 21ð Þ

3 ¼ 0:262 eV. The normal-mode vibronic frequency of each mode is ω1 ¼ 0:126 eV, ω2 ¼ 0:074 eV, and ω3 ¼
0:118 eV, respectively. Initial conditions of nuclear DOFs are sampled from the corresponding Wigner function of the
vibronic ground state while the second electronic state is occupied. All simulations employ � 105 trajectories and time
stepsize Δt¼ 0:01 fs for fully converged results. Numerically exact result of this model calculated by ML-MCTDH are
available in Reference 212.

Figure 9 shows population dynamics of state 2 yielded by wMM, CMM, Ehrenfest dynamics, FSSH and ML-
MCTDH. It is evident that Ehrenfest dynamics performs poorly even for the short-time behavior (before 100 fs). In com-
parison, wMM, CMM, and FSSH more reasonably describe the radiationless energy transfer process at short time. Inter-
estingly, wMM describes the oscillating behaviors in the long-time region (after 300 fs) better than other approximate
methods. Such oscillating behavior in population dynamics indicates the molecular system passes through the “slo-
pped” conical intersection region.294

Figures 6–9 demonstrate that the overall performance of wMM is better than CMM, especially in the gas phase scat-
tering case of Figure 7c and the quantum electrodynamic light-matter systems of Figure 8. Both wMM and CMM
approaches are able to outperform Ehrenfest dynamics as well as FSSH for condensed phase systems (e.g., in Figures 6
and 8).
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FIGURE 9 Results of population dynamics of the second electronic state of the 2-level 3-mode pyrazine model. Magenta solid lines:
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Fþ1

p �1
� 	

=F ≈ 0:366; purple solid lines: wMM with Δ¼ 0:1; green solid lines: wMM with Δ¼ 0:05. Cyan dashed lines:

Ehrenfest dynamics; Orange short-dashed lines: FSSH; black solid lines: ML-MCTDH results of Reference 212.
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5 | CONCLUSION REMARKS

The phase space formulation of quantum mechanics not only presents a type of convenient interpretation to describe
quantum-classical correspondences as well as nonclassical correlations/entanglement, but also sets the insightful scene
for developing practical and useful trajectory-based quantum dynamics approaches.

In the Focus Article, we show that the constraint coordinate-momentum phase space formulation for the discrete-
variable system which we have recently developed, and the weighted representation that we propose in the Focus Arti-
cle are useful approaches for illustration of nonclassical features of quantum systems. The novel formulation is expected
to have potential use for the illustration of nonclassical features of quantum states, as well as for future phase point
measurement experiment.70,85,221–234

It is straightforward to show the relationship between the SU(F)/U(F-1) Stratonovich phase space114 and constraint
coordinate-momentum phase space, which is diffeomorphic to U(F)/U(F-1). When F >2, it is inevitable to meet singu-
larities in dynamics for discrete-variable systems when Stratonovich phase space is used (based on the symplectic struc-
ture of the phase space).303 In comparison, (weighted) constraint coordinate-momentum phase space does not cause
any singularities in trajectory-based exact dynamics, which is much more numerically favorable. (See more discussion
in Appendix 3 of the Supporting Information).

When the general Moyal bracket of the quantum Liouville theorem is approximated by the corresponding Poisson
bracket57,58 on (weighted) constraint phase space, it reproduces the correct frozen-nuclei limit of composite/nonadiabatic
systems. Such trajectory-based EOMs on (weighted) constraint coordinate-momentum phase space does not rely on the
choice of representation of electronic states and are straightforward to obtain the form under covariant transformations.
Because second-order nonadiabatic coupling terms are avoided in the EOMs of the adiabatic representation, it is espe-
cially useful for applications to realistic molecular systems. (In addition to Section 4.1, more discussion on the EOMs is
presented in Appendices 2 and 5 of the Supporting Information.) Various benchmark model tests from gas phase to con-
densed phase quantum systems (as shown in Figures 6–9) indicate that wMM, the new trajectory-based approximate
approach with the weighted constraint coordinate-momentum phase space representation, demonstrates overall better
performance than FSSH as well as Ehrenfest dynamics. It is expected that more investigations on the (weighted) con-
straint phase space formulation will shed light on more numerically favorable dynamics approaches with the Meyer–
Miller mapping Hamiltonian or other mapping Hamiltonians (e.g., those of Reference 131 and discussed in Reference 58).

We note that the (weighted) constraint coordinate-momentum phase space formulation is established for any systems
with a finite set of states, not only limited to discrete electronic states, but also for finite discrete nuclear states. The
weighted phase space strategy that we propose can also be applied to other types of phase space formulations of the
discrete-variable system, such as Stratonovich phase space, and Wootters phase space, albeit the general coordinate-
momentum phase space formulation presented in the Focus Article will be more convenient, for experimental measure-
ments, tomography, or characterizations of fidelity, coherence, inequalities, displaced parity, atomic/molecular/optical
Schrodinger cat states, and entanglement in quantum information and computation70,85,221–234,295,296 as well as for study-
ing dynamic processes of composite systems in physics, chemistry, materials, biology, and environmental science.
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